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Enhanced cooperation in multiplayer snowdrift games with random and dynamic groupings
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An analytically tractable generalization of the N-person snowdrift (NSG) game that illustrates how cooper-
ation can be enhanced is proposed and studied. The number of players competing within a NSG varies from
one time step to another. Exact equations governing the frequency of cooperation fc(r) as a function of the
cost-to-benefit ratio r within an imitation strategy updating scheme are presented. For group sizes g uniformly
distributed within the range g ∈ [1, gm], an analytic formula for the critical value rc(gm ), below which the system
evolves into a totally cooperative (AllC) state, is derived. In contrast, a fixed group size NSG does not support
an AllC state. The result rc(gm ) requires the presence of sole-player groups and involves the inverse of the
harmonic numbers and, more generally, the inverse first moment of the group size distribution. For r > rc(gm ),
the equation that determines the dynamical mixed states fc(r) is given, with exact solutions existing for gm � 5.
The exact treatment allows the study of the phase boundary between the AllC state and the mixed states. The
analytic results are checked against simulation results and exact agreements are demonstrated. The analytic form
of the critical rc(gm ) illustrates the necessity of having groups of a sole player in the evolutionary process. This
result is supported by simulations with group sizes excluding the sole groups for which no AllC state emerges. A
physically transparent picture of the importance of the sole players in inducing an AllC state is further presented
based on the last surviving pattern before the AllC state is attained. The exact expression rc(gm ) turns out to
remain valid for nonuniform group-size distributions. Our analytical tractable generalization, therefore, sheds
light on how a competing environment with variable group sizes could enhance cooperation and induce an AllC
state.
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I. INTRODUCTION

It is important to study how cooperation emerges in a
community from the interactions among selfish individuals
[1–5], as evidenced by the wealth of literature on the subject.
A typical setting is that of a cooperative individual needs
to do some work and thus pay a cost for getting a benefit,
and a noncooperative individual gets a free ride of sharing
the benefit. An obvious question is “why cooperate?” The
evolutionary game theory has been established as a powerful
tool for understanding cooperative behavior [6,7], with many
game theoretical settings designed to study the emergence
and extent of cooperation in competitive populations [8–14].
Important rules for the emergence of cooperation were dis-
covered [15]. A detailed review on human cooperation within
the scope of statistical physics was given by Perc et al. [16].
As human psychology and behavior are a complicated sub-
ject, the emergence of cooperation may also be caused by
personal and moral preferences beyond the social preferences
as reviewed recently by Capraro and Perc [17]. Games typ-
ically involve two-person competitions, but they have been
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generalized to involve N-person competitions. The prisoner’s
dilemma (PD), as a paradigm, has been widely used to study
the cooperative behavior among selfish individuals via two-
person interactions [1–3,6,8,18]. The N-person generalization
of the PD, called the public goods game (PGG), exhibits
features due to group interactions when N-person interactions
are incorporated [19–22]. These N-person interactions can
be incorporated into a population in a well-mixed manner
[20,23], with spatial relationship [24,25], or under mech-
anisms that involve punishments and/or rewards [23–28].
Other N-person extensions of two-person games have also
been studied [29–35].

In general, the N-person scenario involves a group of N
individuals, who come together momentarily within a bigger
population and decide on being cooperative or not. Many
previous works on N-person games have the number N being
fixed throughout. When the group size varies, cooperation
could be sustained or enhanced in the PGG [20–22]. In inves-
tigating problems in physics and applied mathematics, much
insight will be gained by having an analytically tractable prob-
lem. Here, we present an evolutionary N-person snowdrift
game, in which the group size g is varying from time step
to time step within a range g ∈ [1, gm], that can be treated
analytically. The analytic approach leads to an expression for
the critical cost-to-benefit parameter, below which a totally
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cooperative population results. It also gives a physically trans-
parent picture on how the varying group sizes serve to enhance
cooperation.

We motivate the problem by the setup in the two-person
snowdrift game (SG) [11]. The scenario is one with a snow-
drift on a road obstructing two drivers traveling in opposite
directions. It takes some labor to remove the snowdrift and
thus a cost c (c > 0) to complete the task. There are two strate-
gies: to cooperate (C) or not-to-cooperate (D). When both
drivers cooperate, they can share the cost. A noncooperative
driver, who refuses to shovel the snowdrift, is called a defector
(D). A defector can enjoy the work of a cooperator without
paying a cost. As long as there is one cooperator, both drivers
can continue their journey and each enjoys a benefit b. When
both drivers are cooperators, each gets a payoff b − c/2.
When a cooperator meets a defector, the cooperator gets a
payoff b − c and the defector gets b. When the drivers are both
noncooperative, they get stuck and each gets a zero payoff. For
the SG to make sense, b > c so that the cooperator still gets a
payoff that is higher than the case when two defectors meet.
For c/2 < b < c, the scenario becomes that of the prisoner’s
dilemma (PD) [36]. For the SG, the two Nash equilibria are
to take C when the opponent takes D, and to take D when
the opponent takes C [7]. The structure or the organization
of the population also matters. Here are two examples. In a
well-mixed population, a stable mixed state with coexisting
C and D strategies emerges when strategy updating is carried
out by imitating the opponent’s strategy of better performance
[11]. A networked population supports a totally cooperative
(AllC) state when a synchronous strategy updating rule is
applied [11,37].

There are tasks in real-life situations that involve bigger
groups than two persons. The famous public goods game [38]
for studying group interactions in experimental economics is
a representative N-person design. We proposed the N-person
snowdrift game (NSG) as an extension of the two-person SG
and studied its cooperation and dynamics [39–41]. In NSG,
the cooperators in a group can share the labor and thus the
cost, and so the payoffs to the cooperators become depen-
dent on the number of cooperators in the N-group. These
N-groups are formed momentarily as the strategies of the
players evolve. In a well-mixed population, strategy updates
based on the replicator dynamics shows that cooperation is
suppressed as the group size increases [39]. The players tend
to take the D-strategy and hope that someone in the N-group
could complete the task. As a result, the population does not
support an AllC state. The NSG was subsequently modified
by Souza et al. [42] to accommodate situations in which the
task can only be completed by at least having a certain number
of cooperators in the N-group. Another modification was to
include the extra benefit that a task can be completed sooner
when more cooperators are present in the N-group [43]. Com-
paring with the original NSG, cooperation is enhanced and an
infinite population can evolve into an AllC state under proper
conditions.

In the NSG and its variations, however, the number N of
participating players in a group often takes on a fixed number
during the strategy evolutionary process. In such a situation,
the players are often competing in a well-mixed population, in
a static spatial relationship defined by an underlying structure

[44,45], or in preassigned groups of a given size [39,42]. In the
PGG, enhanced cooperation was found when the competing
group size was allowed to vary [21,46]. We are, therefore,
motivated to study the effects of having a varying group size
during the evolutionary process. First, it is always important
to have a nontrivial but exactly solvable model so that further
complications can be studied subsequently in a controllable
manner. Second, it has been realized that the dynamical group-
ing of players, often called agents in different contexts, is
crucial in understanding many real-life phenomena across
different disciplines. Such a grouping mechanism of agents
often involves dynamical formation, growth, and dissociation
of groups of various sizes. An agent will then belong to
different groups with different members at different times.
Diversified phenomena including patterns observed in market
trading [47–49], human groups formation in online guilds and
offline gangs [50], variations in foreign-exchange rates and
the spread of a disease among school children [51], insurgent
and terrorists dynamics [52,53], and more recently on online
hate ecology [54], all have dynamical grouping being a crucial
element. Closer to daily-life, a person may interact with other
passengers on a train, with colleagues in a company, with
other customers in a restaurant, and with friends at a pub in
their daily routines. Here, we propose and study a model in
which the group size can vary from one time step to another.
Assuming, for simplicity, that the group size g can vary within
a uniform distribution with g ∈ [1, gm], we study the model
analytically for the existence of an AllC state. We find an
analytic expression of the critical value rc of the cost-to-
benefit ratio below which an AllC state is supported. This is in
sharp contrast with the original NSG in which no AllC state
is supported. For the mixed state for r > rc with coexisting
C and D strategies, we present the governing equations for
the cooperation level fc(r) for which analytic solutions are
possible for gm � 5. The phase diagram in the gm − r space
is presented. The analytic results are further checked against
simulation results. We also give a physical picture for the
importance of the g = 1 groups in the evolutionary process
in promoting the AllC state.

II. MODEL

We consider a large population with M players. The con-
text under consideration is a multiplayer SG with a variable
number of players in the group momentarily engaging in a
SG. We refer to our model as the variable N-person SG
(VNSG). The special case of a fixed and predetermined group
size reduces to the NSG [39–41] previously studied. In the
present model, the number of players participating in the SG
is not fixed but instead is randomly chosen within a range in
each time step. The group size affects the number of attending
cooperators in the group. The playoff to a player, therefore,
depends not only on the player’s strategy but also on the
instantaneous group size and the number of cooperators in the
group. The model can be applied to scenarios involving the
varying interests among a population, e.g., a market in which
the number of investors varies from time to time. Specifically,
let g be the number of players involved in a VNSG at a time.
The value of g lies within the range [1, gm], with gm being the
maximum size of the attending group. The case of g = 1 is
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included because a single player could also complete a task
and receive a positive playoff. We specify the payoff assign-
ments to the g players first, before describing the evolutionary
process from one time step to another. After choosing g, the
group of g players are involved in a round of NSG after which
the payoff to a cooperator is

vc = b − c

n
, (1)

with n being the number of cooperators in the group, and the
payoff to a defector is

vd =
{

b, n > 0,

0, n = 0.
(2)

The important parameter is the cost-to-benefit ratio r = c/b
with 0 < r < 1. This can be seen by dividing Eqs. (1) and
(2) by b, letting Vc ≡ vc/b and Vd ≡ vd/b and rewriting the
payoffs as

Vc = 1 − r

n
(3)

and

Vd =
{

1, n > 0,

0, n = 0.
(4)

The effects of the variable group sizes enter through the
evolutionary process as follows. At each time step, a target
player i is randomly selected from the whole population and
a value of group size gi is chosen within [1, gm]. The player
will participate in a NSG with the other (gi − 1) players ran-
domly selected from the whole population. After the round of
NSG, the player i gets a payoff Vi according to his current
strategy based on Eqs. (3) or (4). For carrying out a pos-
sible evolutionary process, a player j is randomly selected
from the population as a reference player and a group size
gj ∈ [1, gm] is randomly chosen. The player j then engages
in a NSG with other (g j − 1) randomly selected players in
the population and attains a playoff Vj . Note that g j is, in
general, different from gi. The target player i will consider
a switch in its strategy by comparing Vi with Vj . If Vi � Vj ,
then the player i will keep his strategy. If Vi < Vj , then the
player i has a probability wi j = (Vj − Vi )/� to imitate player
j′s strategy, where � ensures that wi j � 1. Using the reduced
payoffs allows us to simply take � = 1. This strategy updat-
ing rule is a learning mechanism that helps the strategy with
a higher payoff to prevail in the population [11,39]. As the
competing players are randomly selected in each time step
from the whole population, the players interact effectively
in a well-mixed situation. Note that the reference player is
selected globally from the population and is not restricted
to be within the local competing group of the target player.
Such global referencing was also employed in multiplayer
ultimatum games and N-person PGG in evolving the fitness of
the players [21,32]. The strategy updating scheme is based on
the idea that there is a tendency among players to mimic what
the more successful players are doing, but without know-
ing the details of the reference’s players competing group.
Depending on the samplings of the target player’s group mem-
bers and the reference player’s group members, the difference
between the competing environments of the two players varies
from one time step to another. In a social context, learning

beyond one’s close circle of neighbors and even learning from
someone one does not know has become much easier in the
information age, when public information is readily available
through various social media. The questions of interest in our
model are the levels of cooperation in the population as a
function of the payoff parameter r and the range of group
sizes characterized by gm, and the transitions between a to-
tally cooperative state that exists even without a networked
structure [44] among the players and a mixed-strategy state
with the two strategies coexisting. The present model allows
analytic treatment to these interesting questions, as we now
show.

III. THEORY

Let fc(t ) be the frequency of cooperation, i.e., the fraction
of C-players, in the population at the time step t . According
to the model, the probability pc(g, n) of randomly selecting a
C-player to participate in a g-sized NSG given that there are n
cooperators in it is given by

pc(g, n) = fc

gm

(
g − 1
n − 1

)
f n−1
c (1 − fc)g−n . (5)

Here, fc is the probability of randomly selecting a C-player
and the factor 1/gm is the probability that the C-player partic-
ipating in a g-size group because gm gives the possible values
of the group size. The remaining factors in the right-hand side
of Eq. (5) represent the binomial distribution that there are
n − 1 other C-players in the remaining g − 1 players in the
group. Similarly, the probability pd (g, n) of randomly select-
ing a D-player to participate in a g-sized NSG given that there
are n cooperators in it is given by

pd (g, n) = 1 − fc

gm

(
g − 1

n

)
f n
c (1 − fc)g−1−n. (6)

We then proceed to construct a dynamical equation of fc(t )
in the system. Based on the strategy updating rule, there
are two situations. When a target C-player having a payoff
1 − r/ni is selected for an updating process with the probabil-
ity pc(gi, ni ), he has a probability pd (g j, n j ) (n j � 1) to make
reference to a D-player having a payoff 1. The target C-player,
therefore, has a probability r/ni to switch his strategy. The
number of C-players will then drop by 1 and the frequency
of cooperation fc will drop by an amount of 1/M. When a
target D-player having a payoff 0 is selected for an updating
process with the probability pd (gi, 0), he has a probability
pc(g j, n j ) to make reference to a C-player having a payoff
(1 − r/nj ). The target D-player, therefore, has a probability
(1 − r/n j ) to switch his strategy. The number of C-player
will then increase by 1 and the frequency of cooperation fc

will increase by 1/M. It is worth noting that a target D-player
selected with probabilities pd (g j, n j ) (n j � 1) for an updating
process will not make a switch since such a D-player has
the highest payoff. Accounting for all possible events that
would lead to a change in the frequency of cooperation, the
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dynamical equation of fc(t ) is given by

dfc

dt
= − 1

M

gm∑
g j=2

g j−1∑
n j=1

pd (g j, n j )
gm∑

gi=1

gi∑
ni=1

pc(gi, ni )
r

ni

+ 1

M

gm∑
g j=1

g j∑
n j=1

pc(g j, n j )
gm∑

gi=1

pd (gi, 0)

(
1 − r

n j

)
. (7)

Here, the first (second) term on the right-hand side includes all
the possibilities that a target C-player (D-player) will switch
into using the strategy D (C) by comparing payoffs with a ref-
erencing D-player (C-player), as detailed above. In general, by
setting dfc/dt = 0, we can immediately get the two solutions
with fc = 1 and fc = 0 for the homogeneous states. There is
another solution for a mixed state (0 < fc < 1) that can be
solved for given r and gm. Defining

�1( fc, gm) = 1

M

gm∑
g j=2

g j−1∑
n j=1

pd (g j, n j )
gm∑

gi=1

gi∑
ni=1

pc(gi, ni )

ni
, (8)

�2( fc, gm) = 1

M

gm∑
g j=1

g j∑
n j=1

pc(g j, n j )
gm∑

gi=1

pd (gi, 0)

n j
, (9)

�3( fc, gm) = 1

M

gm∑
g j=1

g j∑
n j=1

pc(g j, n j )
gm∑

gi=1

pd (gi, 0), (10)

it follows from Eq. (7) that the value of fc in the steady mixed
state is given implicitly by

r = �3( fc, gm)

�1( fc, gm) + �2( fc, gm)
, (0 < fc < 1). (11)

Equation (11) is a (gm − 1)-th order equation for fc(r, gm).
Analytic solutions can be found for gm � 5. For example,
when gm = 3, Eq. (11) gives a quadratic equation for fc in
the form of

r = 6
(

f 2
c − 3 fc + 3

)
2 f 2

c − 9 fc + 18
, (12)

and thus the solution

fc(r, gm = 3) = 3[6 − 3r − √−7r2 + 28r − 12]

4(3 − r)
,

(6/11 < r < 1). (13)

Note that the result gives a mixed state with 0 < fc < 1 only
in the range of the cost-to-benefit ratio r ∈ (6/11, 1). For
r � 6/11 and gm = 3, the system will evolve to an absorbing
AllC state with fc = 1. Therefore, there exists a critical value
of rc for a given gm below which the system attains an AllC
state. The solution of fc = 0, i.e., an AllD state, exists only
when r � 1 and it is not the focus of discussion here. Even
for values of gm that Eq. (11) can only be solved numerically

for fc(r, gm), the equation can be used to locate the critical
value rc for all values of gm analytically. Noting that the phase
transition from a mixed state to an AllC state is continuous in
r, the value of rc is the first value of r that fc = 1 for a given
value of gm and thus can be obtained from Eq. (11) by setting
fc = 1. As an example, Eq. (11) for gm = 6 is

r = 60
(

f 5
c − 6 f 4

c + 15 f 3
c − 20 f 2

c + 15 fc − 6
)

10 f 5
c − 72 f 4

c + 255 f 3
c − 400 f 2

c + 450 fc − 360
. (14)

The critical value rc(gm = 6) then follows by setting fc = 1
in Eq. (14), giving the analytic result rc = 60/147. In contrast,
the mixed state fc(r, gm = 6) for rc < r < 1 can only be found
by solving Eq. (14) numerically. Interestingly, the same ap-
proach using Eq. (11) with Eqs. (8)–(10) gives rc analytically
for all values of gm after some algebra. The result is that rc is
given by the inverse of the gm-th harmonic number for a given
gm, or equivalently

1

rc(gm)
=

gm∑
g=1

1

g
. (15)

The simple form of the result asks for a physical argument,
which we will discuss in the following section.

IV. RESULTS AND DISCUSSIONS

The validity of the analytic results can be checked against
results obtained by numerical simulations on the model. In
what follows, the simulation results are obtained in a popu-
lation of M = 104 players for different values of the upper
bound gm in the group size, with an initial frequency of co-
operation of 0.5. After the system equilibrates, the frequency
of cooperation is obtained by sampling the population ev-
ery 104 steps for 104 times. The chosen population size is
sufficiently large that finite-size effects are not noticeable in
the results.

Figure 1 shows the frequency of cooperation fc as a
function of r at four different values of gm = 2, 3, 4, 6.
The simulation results (symbols) and the theoretical results
(curves) are in excellent agreement for all the cases. For
gm = 2, the results are given analytically by rc(gm = 2) = 2/3
and fc(r) = 4(1 − r)/(2 − r) for 2/3 < r < 1. For gm = 4,
Eq. (11) gives the following cubic equation to solve for fc(r):

r = 12
(

f 3
c − 4 f 2

c + 6 fc − 4
)

3 f 3
c − 16 f 2

c + 36 fc − 48
. (16)

Analytic solution exists, but the expression is too lengthy to
be shown here. The critical value rc(gm = 4) = 12/25 follows
from Eq. (15). The theoretical results of gm = 3 and 6 can
be obtained by solving Eqs. (12) and (14), respectively. The
general behavior is that rc gradually drops as gm increases. In
the mixed phase, fc(r) drops with r and approaches zero as r
approaches unity in a way governed by Eq. (11).

A phase diagram on the gm − r plane is shown in Fig. 2.
The phase boundary (curve) separating the mixed C + D
phase and the AllC phase is calculated using Eq. (15) and
confirmed by the simulation results (symbols). The behavior
of the harmonic numbers gives rc a gradually lower sensitivity
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FIG. 1. The dependence of fc on r for four different values of gm.
The competing group sizes are randomly selected within the range
of g = 1 to g = gm during evolutionary process. Results obtained by
the theory (curves) and results obtained by simulations (symbols) are
shown for comparison. There is an AllC phase with fc = 1 for r < rc,
in contrast to the NSG.

FIG. 2. Phase diagram on the gm − r plane. The phase boundary
as obtained by theory (curve) and by simulations (symbols) are
shown. The phase boundary separates a homogeneous phase with a
totally cooperative population (AllC phase) from a mixed dynamical
phase characterized by a coexistent population with cooperators and
defectors (C + D phase).

on gm as gm increases, leading to the existence of an AllC state
even for very large gm. The interesting physics here is the
importance of the presence of the g = 1 groups in inducing
the AllC state in the evolutionary process. In sharp contrast,
the NSG with any fixed value of group size N � 2 does not
support an AllC phase for r > 0 [39]. Our results indicate,
however, that even for g ∈ [1, gm = 1000], we have an AllC
state for r < 0.133 even the probability of having the g = 1
groups in the evolutionary process is only 0.001. The mere
presence of the g = 1 groups in the dynamics, therefore, must
be responsible for the emergence of AllC state. To understand-
ing the point, it is instructive to consider the last surviving
pattern [37], from which a physically transparent picture be-
hind Eq. (15) and the role played by the g = 1 groups emerges.
As a system evolves to an AllC state, the last surviving pat-
tern is that of a single D-player in an otherwise cooperative
population. When the probability Pc→d for the number of
D-players to grow is smaller than the probability Pd→c for the
number to drop, the last surviving D-player will be replaced
and an AllC state will result. This sets a criterion for the
value rc. For r < rc, Pc→d < Pd→c, and for r > rc, Pc→d >

Pd→c. The value of rc can thus be estimated by setting
Pc→d = Pd→c. For a large population, the probability Pc→d

is given by

Pc→d = pc,d

(
1 − 1

gm

) gm∑
g=1

1

gm

r

g
, (17)

where pc,d is the probability of selecting a target C-player
and a reference D-player in the evolutionary process. The
factor 1/gm in the summation is approximately the proba-
bility of the target C-player being in a totally cooperative
group of size g; and the factor (1 − 1/gm) is the probabil-
ity of the referencing D-player gaining a payoff of 1 in a
group of size g > 1. Similarly, the probability Pd→c is given
by

Pd→c = pd,c
1

gm

gm∑
g=1

1

gm

(
1 − r

g

)
, (18)

where pd,c is the probability of selecting a target D-player and
a reference C-player in the evolutionary process. The factor
1/gm in the summation is the probability of the target D-player
being in a group of size g = 1 and having a payoff 0, and the
factor 1/gm is again the probability of the reference C-player
being in a totally cooperative group of size g. The critical
value rc can be estimated by equating Pc→d and Pd→c, with
the resulting expression rc = 1/(

∑gm
g=1

1
g ) happens to be iden-

tical to Eq. (15). It should, however, be noted that Eq. (15) in
Sec. III was obtained by rigorous mathematical manipulations
of the governing equations. The physical picture emerged
from the discussion can be summarized in simple terms. A
single D-player competing in any group of sizes g � 2 will
attain the highest payoff and therefore will not make a switch
in strategy and the single D-player cannot be made extinct.
The presence of g = 1 groups facilitates the extinction of
D-players, because the occurrence of a single D-player in a
g = 1 group will definitely switch to the C-strategy due to
their zero payoff.
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FIG. 3. The dependence of fc on r for several distributions with
identical mean group size of 4. Results obtained by the theory
(curves) and results obtained by simulations (symbols) are shown for
comparison. The case of g = 4 refers to the case of NSG with a fixed
group size of 4. The presence of g = 1 groups induces the extinction
of D-strategy for r < rc and leads to an AllC state.

Equation (15) is also mathematically illuminating. For the
uniform distribution of group sizes considered so far, every

group size occurs with the probability w(g) = 1/gm for all
values of g ∈ [1, gm]. We can rewrite Eq. (15) for rc(gm) as

1

rc(gm)
= gm

gm∑
g=1

1

gm

1

g
= 1

w(1)

gm∑
g=1

w(g)
1

g
= 1

w(1)

〈
1

g

〉
,

(19)
where w(1) is the probability of having g = 1 groups and
〈· · · 〉 is an average over the distribution w(g). The last form
implies that there exists a finite rc < 1 as long as w(1) 	= 0.
This echoes the argument of the extinction of D-players in-
duced by the presence of the g = 1 groups. Most interestingly,
it can be shown that the last expression in Eq. (19) remains
valid for nonuniform distributions with values of g ∈ [1, gm]
by following the approach given in Sec. III. We skip the
proof here, but the result indicates that our physical argument
on the importance of the g = 1 groups is valid for both
uniform and nonuniform group-size distributions. As many
dynamical grouping models exhibit nonuniform group-size
distributions, it will be interesting to extend our study in
conjunction with group formation and dissociation dynamics
in the future.

Eqation (19) indicates that it is the nonvanishing value
of w(1) and the inverse first moment of the group-size dis-
tribution, instead of the first moment, that determine rc. To
illustrate this point further, we study three distributions with
the same mean group size of 〈g〉 = 4, namely, uniform distri-
butions with g ∈ [1, 7], g ∈ [2, 6], and g ∈ [3, 5]. The results
are shown in Fig. 3. We also included the results of NSG
with a fixed group size of 4 for comparison. For g ∈ [1, 7],
rc = 140/363 and fc(r) in the mixed state is obtained by
solving

r = 420
(

f 6
c − 7 f 5

c +21 f 4
c − 35 f 3

c + 35 f 2
c − 21 fc + 7

)
60 f 6

c − 490 f 5
c +1764 f 4

c − 3675 f 3
c + 4900 f 2

c − 4410 fc + 2940
. (20)

For the cases with the minimum group size larger than one,
Eq. (11) can still be used to solve for fc(r) after the sum-
mations over gi and g j in the �1,2,3 [see Eqs. (8)–(10)] are
properly modified to start from the corresponding lower limit.
For g ∈ [2, 6], fc(r) satisfies the equation

r = 60
(

f 5
c − 6 f 4

c +15 f 3
c − 20 f 2

c + 15 fc − 5
)

10 f 5
c − 72 f 4

c +255 f 3
c − 400 f 2

c + 450 fc − 300
. (21)

The numerical solution of fc(r) (curve) is shown in Fig. 3.
There is no AllC state, as argued after Eq. (19). For g ∈ [3, 5],
fc(r) follows the equation

r = 60( fc − 1)2
(

f 2
c − 3 fc + 3

)
12 f 4

c − 75 f 3
c + 200 f 2

c − 270 fc + 180
, (22)

and for g = 4,

r = 4( fc − 1)3

f 3
c − 4 f 2

c + 6 fc − 4
. (23)

The results obtained by Eqs. (22) and (23) are also shown in
Fig. 3, together with the simulation results (symbols). Again,
the AllC state disappeared. In comparing the results among

g ∈ [2, 6], g ∈ [3, 5], and g = 4, we see that the NSG with
fixed group size attains a lowering level of cooperation for the
same value of the cost-to-benefit ratio r.

V. SUMMARY

Motivated by the N-person snowdrift game (NSG) and the
absence of a totally cooperative (AllC) phase in NSG together
with the importance of having dynamical groups of various
sizes in many phenomena, we proposed and studied the evo-
lution of cooperation in a population in which the players
compete within a NSG with the group size varying randomly
from time step to time step within a range. The model can
be treated analytically and exact equations governing the fre-
quency of cooperation fc(r) are derived, within an imitation
strategy updating rule. The theoretical results are confirmed
by numerical simulations. As exactly solvable models in this
research area are rather unusual, our work adds to the litera-
ture on providing an exactly solvable model of a competing
population with dynamical group-size N-player interactions.
We, therefore, explained the analytic approach in details and
provided a physical picture based on the analysis of the last
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surviving patterns for the analytic results. A particularly im-
portant result is that as long as g = 1 groups are allowed in
the evolutionary process, rc 	= 0 and an AllC phase exists.
In contrast to NSG, for which an AllC phase does not exist,
the presence of the g = 1 groups in the evolutionary process
serves to induce the AllC phase. A physically transparent
argument for the mathematical expression of rc(gm) based
on the last surviving pattern was given. For other models
with a phase transition between a homogeneous phase and
an inhomogeneous phase, the technique of analyzing the last
surviving patterns used here should also be useful. A more
speculative comment of our results is that a society should
provide the environment for nurturing cooperative individuals
and they could become the seeds in building up a largely
cooperative community. This could refer to different contexts,
including the narrower scopes of online trading in which hon-
esty (cooperative behavior) is needed for a trading platform
to grow, and the broader scope of a harmonious society in
general. We further checked that for systems in which the
g = 1 groups are forbidden, an AllC phase is not supported.
Nonetheless, allowing a spread in group sizes during strategy
updates enhances fc(r) relative to a NSG with the same mean
group size. This indicates that the existence of small groups in
the population helps to sustain a relatively high cooperation
level. The finding is consistent with that was observed in
experiments involving PGG interaction [19].

Finally, the exactly solvable model and the analytic ap-
proach reported here shed light on how cooperation is
promoted and an AllC phase is supported when the com-
peting group size varies in g ∈ [1, gm]. The model and the
approach can be readily extended to include cases in which the
time-varying group sizes following a nonuniform distribution.
Indeed, the expression of rc in the form of Eq. (19) can be
proven to be valid for nonuniform group-size distributions.
The latter case is important as, more often than not, dynamical
grouping models show nonuniform group-size distributions.
The analytic approach can be applied to extract the critical
behavior of fc near the critical point rc for different values of
gm. It is also of interest to extend the study to the effects of
varying group sizes in other N-person games. For instance,
the analytic approach here can be applied to study dynamical
groups with PGG-type interactions on questions such as how
the group-size distribution would affect the cooperative be-
havior. An additional value of having an analytically solvable
model in hand is that one can use it to gauge the effects of
new features in the grouping, game, and updating mechanisms
when they are added to the model. This is analogous to adding
a perturbation to an exactly solvable problem in many areas
in physics. In summary, we illustrated that allowing for the
possibility of g = 1 groups in the evolutionary process helps
promote cooperation and induces an AllC phase within a
model that can be studied analytically.
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