
PHYSICAL REVIEW E 105, 054306 (2022)

Learning by mistakes in memristor networks

Juan Pablo Carbajal
Institute for Energy Technology, University of Applied Sciences of Eastern Switzerland, Oberseestrasse 10, 8640 Rapperswil, Switzerland

Daniel A. Martin and Dante R. Chialvo *

Center for Complex Systems and Brain Sciences (CEMSC3) and Instituto de Ciencias Físicas, CONICET, Escuela de Ciencia y Tecnología,
Universidad Nacional de General San Martín, Campus Miguelete, CP 1650, 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina

(Received 25 January 2022; accepted 20 April 2022; published 11 May 2022)

Recent results revived the interest in the implementation of analog devices able to perform brainlike opera-
tions. Here we introduce a training algorithm for a memristor network which is inspired by previous work on
biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled
memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little
peripheral computation overhead.

DOI: 10.1103/PhysRevE.105.054306

I. INTRODUCTION

In the past decade we have witnessed an explosion in the
interest in neuromorphing, i.e., adaptive devices inspired by
brain principles. Many of the current efforts focus on the
replication of the dynamics of a single neuron, using a di-
versity of technologies including magnetics, optics, atomic
switches, etc. [1]. While the emulation of a single neuron
seems achievable with the present technology, we still lack
learning algorithms to train large interconnected neuronlike
elements without resorting to peripheral computation over-
head.

In thinking about this issue, it is soon realized that in
vivo biological learning exhibits important features which are
not presently considered in neuromorphing implementations.
The most relevant one, in the context of our work, is the
fact that the only information a biological neuron has at its
disposal to modify its synapses is either global or local. In
other words, in real brains, there is no peripheral computation
overhead; the strength of the synaptic weight between any two
given neurons is a function of the activity of its immediate
neighbors and/or (through some so-called neuromodulators)
some global state (or partial region) of the brain, resulting
from success or frustration in achieving some goal (or being
happy, angry, excited, sleepy, etc.). These observations have
led to the proposal [2–7] of a simple neural network model
able to learn simple input-output associations.

The present article instantiates a translation of the work
of Refs. [2,3] into the realm of memristive networks. The
main objective is to design a device working on the principles
described therein, able to be fully implemented in hardware,
requiring no access to the inner structure of the network and
minimal (i.e., one ammeter, one switch, and two batteries)
external processing.

*dchialvo@gmail.com

This article is organized as follows. First we will review
previous work [2–7] describing a self-organized process by
which biological learning may proceed. Such work is the in-
spiration for the algorithm proposed here to train a network of
memristors [8,9], which is introduced after that. Subsequently,
the main results describing the simulation results obtained
from a three-layer feedforward network are presented. The pa-
per closes with a short list of expected hurdles to surpass and
other possible similar implementations. Numerical details are
described in the Appendix, together with some miscellaneous
observations.

II. ALGORITHM, MODEL, AND OBSERVABLES

A. Toy model of biological learning

Two decades ago, Chialvo and Bak [3] introduced an
unconventional model of learning which emphasized self-
organization. In that work they reexamined the commonly
held view that learning and memory necessarily require po-
tentiation of synapses. Instead, they suggested that, for a naive
neuronal network, the process of learning involves making
more mistakes than successful choices; thus the process of
adapting the synapses would have more opportunities to pun-
ish the mistakes than to positively reinforce the successes.
Consequently, their learning strategy used two steps: The first
involves extremal dynamics to determine the propagation of
the activity through the nodes and the second using synaptic
depression to decrease the weights involved in the undesired
(i.e., mistaken) outputs. The first step implies the selection
of only the strongest synapses for propagating the activity.
The second step assumes that active synaptic connections are
temporarily tagged and subsequently depressed if the result-
ing output turns out to be unsuccessful. Thus, all the synaptic
adaptation leading to learning is driven only by the mistakes.

The toy model considered an arbitrary network of nodes
connected by weights. Although almost any network topology

2470-0045/2022/105(5)/054306(10) 054306-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6556-1760
https://orcid.org/0000-0001-8641-4711
https://orcid.org/0000-0002-1038-3637
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.054306&domain=pdf&date_stamp=2022-05-11
https://doi.org/10.1103/PhysRevE.105.054306

CARBAJAL, MARTIN, AND CHIALVO PHYSICAL REVIEW E 105, 054306 (2022)

FIG. 1. (a) Example of a three-layer network with three input
nodes, four intermediary nodes, and three output nodes. Each input
node has a synaptic connection to every intermediary node, and each
intermediary node has a similar connection to every output node.
(b)–(d) Typical run to learn the six simple input-output patterns (i.e.,
maps) for a network of six input neurons, 300 middle neurons, and
six output neurons. As noted in (b), the error eventually reaches zero,
after which learning of a new pattern (c) is attempted. The list of
maps is shown in (d). (Figure has been redrawn from [3].)

can be used, for the sake of description we discuss the simplest
version of a three-layer feedforward network [see Fig. 1(a)].
To describe the working principle, let us suppose that we
wish to train the network to learn an arbitrary map. To be
precise, a map is an association of each input neuron with an
output neuron. For instance, the identity map is one where
each input neuron is associated with the corresponding output
neuron (the first input neuron is associated with the first output
neuron, the second input neuron is associated with the second
output neuron, and the same relation holds for all other input
neurons) and a random map is one where one output neuron
is chosen randomly for each input neuron.

The learning algorithm needs to modify the network’s
weights in such a way that a given input neuron connects to
the prescribed output neuron. The entire dynamical process
goes as follows.

(1) Activate an input neuron i chosen randomly from the
set established by the task to learn.

(2) Activate the neuron jm in the middle layer connected
with the input neuron i with the largest w(j, i).

(3) Activate the output neuron km with the largest w(k, jm).

(4) If the output k happens to be the desired one, nothing is
done.

(5) Otherwise, that is, if the output is not correct, w(km, jm)
and w(jm, i) are both reduced (depressed) by an amount δ.

(6) Go back to step 1. Another input neuron from the task
set is randomly chosen and the process is repeated.

The process involves a principle of extremal dynamics
(here simplified by choosing the strongest weights) followed,
in the case of incorrect output, by negative feedback (i.e., step
5 of the adaptation). The only parameter of the model is δ, but,
at least in the numerical simulations, it is not crucial at all, be-
cause its only role is to prevent the same path from the input to
the undesired output to be selected more than once. Numerical
explorations with this simple model showed that step 5 above
can be modified in many different ways (including choosing
random values) without serious consequences, as long as it
makes less probable the persistence of “wrong paths.” Initial
values of w(i, j) and w(j, k) are not relevant either [3].

Note that the toy model omits consideration of the neuronal
dynamics: It is not necessary to introduce spikes whose only
role would be to propagate activity across the network. Since
propagation occurs most often (statistically speaking) across
the strongest synapses, the toy model omits including spikes
and directly selects the strongest paths, as done in steps 2 and
3 of the algorithm.

In Figs. 1(b) and 1(c) we reproduce the results of a typ-
ical simulation in which a few simple maps [indicated in
Fig. 1(d)] are successively learned by the model (see details
in [3]). The error in learning map a, computed as the squared
distance between the actual output and the desired one, is
seen to fluctuate until eventually vanishing at time �600 [see
Fig. 1(b)]. After that, the network is given the task to learn
map b (which is achieved at time �800), map c, and so on.
Interference between maps is expected for a relatively small
system size, since the same path can be chosen by chance for
two different input-output maps. As was discussed earlier in
Refs. [3,4], a system trained under these premises is robust
with respect to noise, in the sense that depression of synaptic
weights will self-adjust proceeding to correct the errors, until
eventually achieving the desired outputs. Another interesting
property of this setup is that the learning time goes down with
the size of the middle layer, a fact that is easily understood
since the learning process implies finding and keeping the
strongest paths between the input and the desired nodes in the
output layer. This and other scaling relations can be found in
Refs. [3–7].

B. Memristor model

Now we turn to discuss how to implement the toy model
just described on a network of memristors. Memristive de-
vices are a family of two-terminal devices whose resistance
evolves according to the bias and currents they experience
[10]. In analogy to long-term potentiation and depression
taking place in neuronal synapses, memristor resistances can
be increased or decreased through the application of relatively
high voltage differences or currents.

In this article we consider voltage-controlled memristors
with a threshold [11], whose resistance R can take any value
between Rmin and Rmax. When a voltage difference V is

054306-2

LEARNING BY MISTAKES IN MEMRISTOR NETWORKS PHYSICAL REVIEW E 105, 054306 (2022)

-0.1

1000

0

F
(R

,V
)

0.1

R V

3000

0.1

0
-0.1

5000

FIG. 2. Memristor behavior as a function of resistance and ap-
plied voltage. The resistance of the memristor does not change unless
the absolute value of the applied voltage is greater than V�. Here we
used V� = 0.075, Rmin = 75, Rmax = 5000, and β = 0.9

applied, a current I passes through the memristor and the value
of R may change, depending on V and R values.

The memristor equations can be written as

I = V

R
, (1)

∂R

∂t
= −F (R,V), (2)

where the function F describes the behavior of the memris-
tor. The individual memristor dynamics is fully described by
previous equations plus a definition of the function F , which
describes how the characteristics of the memristor change
upon applied voltage differences. For that we use the bipolar
memristive system with threshold (BMS), which is described
in detail in Sec. 3.2 of [11] (a different memristor model,
known as the boundary condition memristor [12,13], is con-
sidered in the Appendix). According to that reference, we
write

F (R,V) =
⎧⎨
⎩

β(V + V�) if V < −V�, R < Rmax

0 if |V | < V�
β(V − V�) if V > V�, R > Rmin,

(3)

where β > 0 is the rate at which the resistance increases or de-
creases when a large enough voltage difference is applied. The
function F (R,V) is illustrated in Fig. 2. From Eqs. (1)–(3) we
find that a relatively large positive voltage difference tends to
decrease resistance, while a negative voltage difference tends
to increase resistance on the memristor (R is not modified if
the absolute value of the voltage does not exceed the threshold
V�).

In Fig. 3 we show an example of the typical changes
exhibited by the voltage-controlled memristor when subjected
to voltage sources of different amplitudes. The circuit and the
sign convention are depicted in Fig. 3(a), while the voltage,
the current across the device, and the memristor resistance
are shown in Figs. 3(b)–3(d). The voltage source applies
three triangle-shaped low positive voltage pulses, which do

FIG. 3. Behavior of a voltage-controlled memristor connected to
the circuit shown in (a). (b) Typical changes in the properties of the
memristor as a function of a time-dependent voltage V . Also shown
are (c) the resulting current I and (d) the instantaneous resistance
R. (e) The same data are presented as an I-V curve. Notice that
relatively small voltage excursions (i.e., upward triangular sweeps)
do not change the device resistance, while relatively large voltage
excursions do, resulting in the typical hysteresis loop. The results in
(b)–(e) have been colored to aid the interpretation.

not change the memristor’s resistance, followed by a high
negative voltage excursion, which results in an increase of the
memristor’s resistance. The final triangular low voltage pulse
shows that the resulting resistance increase is permanent. This
property will be used here to modify the network input-output
paths, as explained in the following paragraphs.1

C. Memristor network

The results presented here correspond to numerical simu-
lations of a three-layer network of memristors [14], with Nin

input nodes, Nbulk bulk nodes, and Nout output nodes. Pairs of
nodes from successive layers are connected through the BMS
of Ref. [11] (see also Ref. [15]). Note that this three-layer
network is equivalent to a memristor crossbar array [16] with
Nin input nodes and Nbulk output nodes, connected to a second
memristor crossbar array of Nbulk inputs and Nout outputs. The
training algorithm uses an ammeter and a voltage source with
two possible values: Vread (read voltage) and Vwrite (punish-
ment or correction voltage). Memristor polarity is set in such
a way that a negative Vwrite tends to increase their resistance
[see Figs. 3(a) and 4(b)]. The network and control resources
are as sketched in Fig. 4.

We consider a relatively small (quenched) variability in the
parameters of the device: The parameters for each memristor
are randomly chosen from a uniform distribution with 0.8 <

β < 1, 0.05 < V� < 0.1, 50 < Rmin < 100, and Rmax = 5000.
The initial condition is set to R = Rmin. The reading step lasts
one time step using a voltage value of Vread = 0.0001. The

1In the following, it is customary to express all resistances in terms
of an arbitrary unit resistance R0, thus omitting units. Similarly,
all voltages are written in terms of a unit voltage V0 and time is
also measured in terms of time unit t0. Consequently, currents are
measured in units of V0/R0 and the parameter β [which describes the
rate at which the memristor’s resistance change (see the Appendix)]
in units of R0/V0/t0.

054306-3

CARBAJAL, MARTIN, AND CHIALVO PHYSICAL REVIEW E 105, 054306 (2022)

FIG. 4. Sketch of the learning algorithm for a network with
Nin = 2, Nbulk = 4, and Nout = 2. In the reading step (a) a relatively
small Vread voltage is applied and the current at each output node is
measured by the ammeter. The output node with the largest current
is defined as the output. If that output is not the desired one, in the
correction step (b) a relatively large Vwrite voltage is applied to alter
the resistance of the memristor path. The cycle is repeated until the
desired map is learned.

correction step lasts five time steps using a voltage of Vwrite =
−0.2.

Voltage values are chosen such that |Vread| � V� <

|Vwrite/2|. In this way the memristor properties do not change
in the reading step and only a few memristors change their
resistance during the correction step of the algorithm.

D. Learning algorithm

Here we discuss the implementation defining a simple
input-output association task, similar to the one already dis-
cussed in the preceding section for the case of the toy model of
Fig. 1: For each input node in, we ask the memristor network
to learn a randomly chosen output node.

The proposed training involves the following sequence at
each training step.

(1) Randomly choose an input node in.
(2) Read the current flowing through all the output nodes.

Here this is done by setting the in voltage to Vread and moving
the ammeter tip (which closes the circuit) to each output node
sequentially (o1, o2, etc.) while measuring the current [see
Fig. 4(a)].

(3) Determine the output node with the maximum current.

(a) If the node with maximum current is the desired one,
do nothing.

(b) Otherwise, that is, if the output maximum current is not
at the desired node, apply Vwrite [see Fig. 4(b)] and go back to
point 2.

(4) Go back to point 1.
The value of Vread needs to be small (such that it does not

change the values of the resistances in the network); Vwrite is
large and with inverted polarity, hence inducing an increase of
the resistances of the network. This is the only crucial factor to
ensure that the reading (in step 2) is not modifying the network
conductances and conversely that the correction (in step 3b)
decreases the likelihood of having large currents in the unde-
sired paths. It is evident that the memristor learning algorithm
preserves the same spirit of the earlier work: to punish wrong
paths by increasing the resistance of the involved memristors.
We applied step 3b a maximum of nmax = 80 times in each
training step.2

To collect the statistics presented here, at the end of each
training step we calculate the learning error as follows. For
each input node, we find the largest output (we apply Vread

among that input node and all output nodes sequentially and
take the node through which current flow is largest). We define
the error as the Hamming distance from the vector of largest
outputs and the desired map. If the error is null, the network
has learned. Otherwise, a new training step is performed. In
some cases, after the network has learned, we will consider
training it with a different map. The pseudocode for this
algorithm is shown in the Appendix.

III. RESULTS

Now we proceed to describe the parametric behavior of the
algorithm just explained in the previous paragraphs. First we
explore the dependence of the learning time on the size of
the middle layer Nbulk for random maps. As discussed, larger
values of Nbulk in the neuron network model of Refs. [3,4]
provide more paths to the correct output, which leads to
shorter learning time. We find a very similar performance for
the memristive network, as shown in the results of Fig. 5,
where success (the fraction of networks that have learned a
map) is shown as a function of the training step and Nbulk for a
three-layer network with Nin = Nout = 3, Nin = Nout = 4, and
several values of Nbulk. In Figs. 5(a) and 5(b) the success as a
function of the step number improves with larger Nbulk. This
is also apparent when we plot the fraction of networks that
have learned at (or before) correction step 1000 [see Figs. 5(c)
and 5(d)], showing that performance is an increasing function
of the middle layer size Nbulk. It can also be noticed, from
Figs. 5(c) and 5(d), that success in equal to 1 for long enough
Nbulk, which means that any map can be learned on those
networks. Similar numerical simulation results, for a different

2The actual value of nmax does not determine whether the network
learns. It only changes the number of required learning steps. Taking
nmax = 1 would make our computational implementation spend too
much time reading for each correction, while setting nmax = ∞ may
make some numerical simulations get struck (i.e., in networks that
do not learn).

054306-4

LEARNING BY MISTAKES IN MEMRISTOR NETWORKS PHYSICAL REVIEW E 105, 054306 (2022)

10 100 1000

Step
0

0.5

1

S
uc

ce
ss

Nbulk=20
Nbulk=100
Nbulk=400

1 10 100 1000

Step
0

0.5

1

S
uc

ce
ss

Nbulk=70
Nbulk=200
Nbulk=600

0 300 600

Nbulk

0.8

0.9

1

0 200 400

Nbulk

0.85

0.9

0.95

1
(a)

(b)

(c)

(d)

FIG. 5. Learning performance as a function of the middle layer
size. Results show the success as a fraction of networks that learn
a random input-output association map after a given number of cor-
rection steps for (a) Nin = Nout = 3 and Nbulk = 20, 100, and 400 and
(b) Nin = Nout = 4 and Nbulk = 70, 200, and 600. Also shown is the
success at 1000 steps as a function of Nbulk for (c) Nin = Nout = 3 and
(d) Nin = Nout = 4. In (c) and (d) the colored symbols correspond to
the results in (a) and (b) obtained with the respective Nbulk values. All
results are averages over at least 500 network realizations, yielding
values of standard errors smaller than the symbols size (standard
error of the mean approximately equal to 0.025).

memristor model [12,13], with parameters fixed to represent
the behavior of the first reported memristor [10,17], are shown
in the Appendix. This similarity suggests that the performance
of the learning algorithm presented here does not depend
strongly on the details of the memristors used.

The implementation of the training algorithm shows also
that the memristor network learns a series of maps in a way
similar to that exhibited by the earlier neuronal model [3,4].
This can be seen in the example of Fig. 6, which shows
the evolution of the network with Nin = 4, Nbulk = 200, and
Nout = 4. The network is trained in one of the labeled maps
until eventually the error is zero, at which point it starts being
trained on a different map and so on. Notice the resemblance
to the results in Fig. 1, which suggests that the training strat-
egy proposed here is capturing the essence of the learning
algorithm of Refs. [3,4].

Another distinctive property of the proposed training strat-
egy is the fact that the memristive networks are robust to
perturbations of the device properties. This alterations can
be seen, for instance, as changes in resistance, which in real
networks can be due to volatility, defects, etc. As an example,
we plot in Fig. 7 the evolution of a network (Nin = Nout = 4
and Nbulk = 200) which, after learning the identity map, is
periodically perturbed. It can be seen that after each pertur-
bation, the network recovers to null error learning the map
in a few additional steps. This ability is not surprising given
the fact that the network proceeds with the perturbation in the
same way as during the usual learning process.

0 500 1000
0

2

4

E
rr

or

0 500 1000
Steps

1

2

3

4

5

6

7

M
ap

2

4

2

4

2

4

2

4

2

4

2 4
2

4
aa

b
c

d
e

f

a

b

c

d

e

f

FIG. 6. Typical evolution of the training of a network learning
seven successive maps for Nin = Nout = 4, Nbulk = 200, and the other
parameters the same as in Fig. 5. The upper main panel shows the
error (Hamming distance from the desired to the current output) as a
function of training steps. (a)–(f) The input-output maps are depicted
and presented sequentially as indicated in the lower main panel.

To gain insight into the dynamics of the memristor network
resistances during learning of successive maps, a network
with Nin = Nout = 3 and Nbulk = 400 is trained to learn all
the possible NNin

out = 27 maps. After all maps are learned,
the network location of each memristor is randomly shuffled
(preserving their resistance values). After that, the network is
retrained to learn the same NNin

out maps.
In Fig. 8(a) we show the histogram of resistances, at the

beginning of the simulation, after learning all possible maps
once (labeled 27), after shuffling and relearning all maps four

0 1000 2000
Steps

0

2

E
rr

or
 (

H
am

m
in

g
D

is
ta

nc
e)

FIG. 7. Example of the network recovery after a single pertur-
bation for Nin = Nout = 4, Nbulk = 200, and the other parameters the
same as in Fig. 5. We plot the error (i.e., the Hamming distance from
the desired to the current output) as a function of the training steps for
a network which is learning the identity map. One hundred steps after
the map is learned, 10% randomly chosen memristors are perturbed
by increasing their resistances by 5%. The first downward arrow
indicates the first perturbation, while the second downward arrow
denotes the 14th perturbation (which did not increase the network
error).

054306-5

CARBAJAL, MARTIN, AND CHIALVO PHYSICAL REVIEW E 105, 054306 (2022)

0 500 1000 1500
R

0

0.05

0.1

F
re

qu
en

cy

0 1 2
R/Ri

0

0.03

0.06

F
re

qu
en

cy

Initial
27
108
270

0 100 200
Map No.

0.2

0.3

<
C

V
i>

0 100 200
Map No.

0

300

600

<
R

>

(b)

(d)(c)

(a)

FIG. 8. Evolution of the distribution of resistance values after
repeated relearning of the same set of maps for a network with
Nin = Nout = 3, Nbulk = 400, and other parameters values as in Fig. 5.
(a) Resistance histogram at the beginning of the simulation, after
learning all possible maps once (labeled 27), after shuffling and
relearning all maps four times (labeled 108), and after shuffling and
relearning all maps ten times (labeled 270). The dashed vertical line
shows the minimum possible value Rmin = 50. (b) Average resistance
as a function of the number of learned maps. Arrows indicate the
maps used for the histograms in (a). (c) Same data as in (a) after
normalizing each memristor’s resistance by the average value of
the whole network. (d) Coefficient of variation of the memristor’s
resistance as a function of the number of learned maps. Results are
calculated for a single network and then averaged over 25 network
realizations. The bin size (a) �R = 5 and (b) �R = 0.05Ri.

times (labeled 108), and after shuffling and relearning all maps
ten times (labeled 270). In Fig. 8(b) we show the evolution of
the average resistance as a function of the number of learned
maps. As expected from the nature of the training algorithm,
resistances can only grow when performing correction steps.
Moreover, in Fig. 8(a) the range of resistance values increases
with the number of steps. We remove the effect of growing
resistance by normalizing with the average resistance of the
ith network Ri. In Fig. 8(c) we plot a histogram of the nor-
malized resistances, where each resistance value is divided by
the average resistance of the network. Finally, in Fig. 8(d) we
show the coefficient of variation 〈CV 〉 of a single network,
computed as the standard deviation divided by the mean value
of all resistances in the network. After repeated learning,
the distribution tends to a Gaussian distribution, approaching
〈CV 〉 ∼ 1

3 .

IV. DISCUSSION

Several learning strategies for memristor networks have
been proposed recently [18–21]. For problems with time-
dependent inputs, one strategy consists of using reservoir
computing [22], where the inputs are connected to a reser-
voir network composed of interconnected time-dependent
elements (whose properties continue evolving after a stim-
ulus is applied), such as volatile memristors. The response
of the network is then classified through an output layer,

which needs to be trained. Reservoir computing has also been
applied to time-independent inputs that are reencoded as time-
dependent ones [20]. While this kind of network differs from
those studied here, an error penalization learning mechanism,
such as the one studied here, may be useful for training the
output layer of this scheme.

For time-independent inputs, several learning strategies
considering nonvolatile memristors (as done here) have also
been proposed. Most of them are inspired by machine learn-
ing algorithms, such as gradient-descent training (see, e.g.,
[18,21]), where the value of each resistance needs to be known
and modified at each correction step. As an alternative, a
random weight change algorithm, which does not require
knowing the precise values of all elements, was recently pro-
posed for training a network where each synapse is composed
of four memristors and several transistors [19].

Similarly, here we have described a training procedure
allowing a simple network of memristors to learn any arbitrary
input-output association map. This is achieved without any
detailed information about the inner structure of the layers.
The method is inspired by a learning algorithm proposed
about 20 years ago [3,4]; however, there are some differences
among them.

First, in the original model, the active neurons transmitted
their activity to just one neuron on the following layer, while
here the current passing through each node is determined by
Kirchoff’s laws. Probably, the inclusion of diodes or transis-
tors (such as in Refs. [19,20]) may generate dynamics which
are closer to the original proposal. The study of this possibility
is an interesting avenue for future research.

Second, in the correction step for the toy model, only the
(two) intervening connections are punished. Here, instead,
we apply Vwrite over the input and output nodes in such way
that the correction voltage difference (and consequently the
correction) over each memristor in the network is proportional
to the voltage involved in the wrong answer. In this way, the
correction is performed without the need to measure or to
have control over the middle layer: The learning method does
not need to control individual memristors and requires only
access to read and/or perturb two nodes from the (arbitrarily
large) networks at any given time (consider, as an example, the
network of Fig. 8, which has 2400 memristors and only three
input nodes plus three output nodes need to be considered in
the present learning method).

Despite the extreme simplicity of the approach, it is
demonstrated that an iterative reading of the current flow-
ing between two points of the network, and its eventual
perturbation, can modify the overall network connectivity
until arriving at one of the possible solutions. By design,
the learning is robust against different types of perturbations,
including differences and fluctuations in the memristor param-
eters, noise, and defects, as well as distribution of polarities
(see the Appendix). Although the present results are limited
to numerical simulations, in case of being implemented in
hardware, the method is easily scalable to arbitrarily large
network sizes.

Note that the memristor network is able to learn despite
lacking an important feature of its biological neural counter-
part: the spikes. That is not a limitation, because as noted in
the Introduction, in this kind of network, the only role for the

054306-6

LEARNING BY MISTAKES IN MEMRISTOR NETWORKS PHYSICAL REVIEW E 105, 054306 (2022)

spikes would be to propagate the information from the input
node(s) through the network to some output node(s). Instead,
in the present implementation, this is also achieved, but by
the current flow from an external battery. Thus, knowing
which input node is connected, the current flowing through
the network will be reflected on the value of the output current
at a given node. In this context, our approach is a simple
solution which does not require any implementation of any
spiking mechanism. Obviously, the absence of additional elec-
tronics to implement neurons becomes very relevant when
considering a hardware implementation of this concept. Con-
cerning hardware, the proposed learning method benefits from
variability in the network properties, therefore not requiring
precise control of the memristor parameter during manufac-
turing.

Several analytical results have been provided for the orig-
inal model [5,6]. For instance, it has been shown that a
geometric transition from no learning to learning takes place
at Nbulk = Nin × Nout. While our numerical simulation results
show similarities to the original learning algorithm, it would
be useful to verify whether and how these results are valid
here. Also, extending other analytical approaches, such as the
work by Caravelli et al. [23,24], to the system studied here,
should give a deeper understanding of how learning in this
memristor network takes place.

In this paper we limited ourselves to the presentation of the
most fundamental aspects of the results. As a salient feature,
we reported how a single network can learn many maps, and
this causes an expansion of the distribution of their resis-
tances, possibly due to the multiplicity of solutions to learn
a single map. Nonetheless, a few caveats must be mentioned.
First, we consider adversarial situations for the algorithm,
concerning some simple variations on the approach, where
changes in the initial condition of memristor conductances
and polarity as well as minor changes in the type of correc-
tion step are described. These studies are presented in the
Appendix. Second, we did not expand the discussion of the
types of problems that the present approach can solve. This
issue would require extensive numerical simulations and it
seems to deserve being explored on a hardware implementa-
tion, since it will work tens of orders of magnitude faster than
any of our current numerical simulations. Finally, we expect
the approach to be useful on a variety of network topologies
including less ordered systems such as a random network of
nanowires [25] whose conductivity can be varied by applying
a voltage difference among pairs of points in the network.
The algorithm may also be useful on other structures [26]
as long as a correction mechanism increasing resistance over
undesired paths can be generated.

V. CONCLUSION

In summary, we have introduced an algorithm able to train
a memristor network to learn arbitrary associations. Robust
results for its performance were demonstrated using numeri-
cal simulations of a network of voltage-controlled memristive
devices. Given the design principles, the results suggest that
its implementation in hardware would be straightforward, be-
ing scalable and requiring very little peripheral computation
overhead.

10 100 1000
Step

0

0.5

1

S
uc

ce
ss

Random Polarity
Equal Polarity

10 100 1000
Step

0

0.5

1

S
uc

ce
ss

Random Vwrite
Random Rmin

0 250 500
R

0.01

1

F
re

qu
en

cy

0 250 500
R

0

0.03

0.06

F
re

qu
en

cy

(a)

(b)

(c)

(d)

FIG. 9. Performance of the approach using a random distribution
of memristor polarities or random Vwrite correction values. (a) Success
as a function of step number for networks where memristors polari-
ties are chosen at random . (b) Success as a function of step number
for equal initial conditions Rmin = 100 and correction voltages Vwrite

uniformly drawn from 0.15 to 0.3. Also shown is the initial and final
resistance density distribution for the case of using (c) random polar-
ity and (d) random correction Vwrite. For comparison, in (a) and (b) the
dashed line reproduces the results presented in Fig. 4(b) (NB = 200,
black circles). In (c) and (d), the bin width �R = 5. Results are
averaged over at least 100 network realizations using, in all cases,
Nin = Nout = 4 and Nbulk = 200.

ACKNOWLEDGMENTS

This work was partially supported by Grant No.
1U19NS107464-01 from NIH BRAIN Initiative (USA) and
CONICET (Argentina).

APPENDIX

1. Miscellaneous observations

Some special cases are described here, including different
initial conditions of the memristor parameters and variations
on the implementation of the correction step, noting that all
the results remain valid despite these changes. Figure 9(a)
shows the results of simulations where the polarity of the
memristors is distributed randomly. As a comparison, we
plotted (with dashed line) the data already in Fig. 5(b) cor-
responding to equal memristor polarity. Figure 9(c) shows the
changes in the R distribution before and after the learning pro-
cess. These results suggest that the distribution of polarities
produces only minor changes in the overall performance of
the approach.

Then we explored how the lack of variability of the mem-
ristor’s properties may affect the performance, by starting the
simulation with identical resistances (R = 100) for all mem-
ristors and using random Vwrite values in the correction steps
(uniformly distributed from 0.15 to 0.3) while keeping the
other parameters β and V� randomly distributed. The results
are shown in Fig. 9(d). It is apparent that the network learns
approximately in the same manner as when starting with ran-
dom initial conditions for R, except that it takes additional

054306-7

CARBAJAL, MARTIN, AND CHIALVO PHYSICAL REVIEW E 105, 054306 (2022)

steps to reach comparable success rates. Probably these addi-
tional correction steps are trivially related to the time needed
to generate a minimal dispersion of the R values, needed for
the approach to work. Thus, the manufacturing variability of
the memristor properties expected in an experimental setup
will not be disadvantageous. In Fig. 9(d) the initial (i.e.,
R = 100) and final distributions of resistances for this case
are shown, showing the resulting broad R distribution, after
the map is learned.

2. Alternative memristor model

We have reproduced some results in the main text using a
different memristor model, known as the boundary condition
memristor (BCM). This model was proposed in Ref. [12]. In
Ref. [13] it was shown that the BCM model reproduces the
current-voltage characteristics of Pickett’s model [17] (which
explains the dynamics of the first reported memristor, based
on TiO2 nanofilms [10]) closer than other alternative descrip-
tions, when the parameters are chosen adequately.

The equations for a single BCM can be written as a func-
tion of a state parameter ω as

I = V

R
, (A1)

R = Rmax − ω

D
(Rmax − Rmin), (A2)

∂ω

∂t
= μRmin

D
I fB(ω,V), (A3)

where D = 10 nm is the assumed width of the memristor (0 �
ω
D � 1) and fB may have three different values (a > 0, b >

a, 0) depending on four non-negative constants vt0, vt1, vth0,
and vth1 and the values of ω and V : For 0 < ω

D < 1,

fB(ω,V) =
{

a if − vt1 � V � vt0

b otherwise. (A4)

For ω
D = 1 (minimum resistance),

fB(ω,V) =
{

b if V < −vth1

0 otherwise. (A5)

For ω
D = 0 (maximum resistance),

fB(ω,V) =
{

b if V > vth0

0 otherwise. (A6)

The parameters which more closely reproduced Pickett’s
result, having D = 10 nm, μ = 10−16 m2 V−1 s−1, Rmin =
103 �, and Rmax = 104 � fixed, were a = 0.1494, b =
1.6182, vt0 = 0.915 V, vt1 = 1.3048 V, vth0 = 4.7404 V, and
vth1 = 2.4629 V (a and b are unitless) (see Ref. [12]).

Equations (A2) and (A3) can be rewritten in terms of
Eq. (2) by setting F (R,V) = μ(Rmax−Rmin)Rmin

D2
V
R fB(ω(R),V).

The function F (R,V) for the BCM model is shown in Fig. 10.
Note that the BCM model shows some differences from the
model in the main text (the BMS). The most important one is
that now the correction function F depends on the current I =
V/R. This means that, intuitively, in the first model, highest
resistance values would tend to show larger voltage differ-
ences and thus to have stronger corrections (for instance, when
connected in series with another resistance), while here the

-1

-0.5

0

F
(R

,V
)

(
/s

)

105

0.5

1

55000

R ()

2.5

V (V)

0
-2.510000 -5

FIG. 10. The BCM behavior as a function of resistance and
applied voltage, using the parameters proposed in Ref. [12]:
D = 10 nm, μ = 10−16 m2 V−1 s−1, Rmin = 103 �, Rmax = 104 �,
a = 0.1494, b = 1.6182, vt0 = 0.915 V, vt1 = 1.3048 V, vth0 =
4.7404 V, and vth1 = 2.4629 V.

lowest resistance values will tend to have higher corrections.
Also, the model presents four different voltage thresholds
and resistance evolution even with small voltages applied (for
a > 0).

We have reproduced the results shown in the main text
using BCMs whose evolution is given by Eqs. (A3)–(A6) and
the parameters listed above, except Rmin, which is randomly
chosen between 500 and 1000 � for each memristor. The
algorithm parameters are now Vread = 0.0001 V and Vwrite =
−5 V and the time over which the correction voltage is applied
is set to �t = 1 ms. Results similar to those presented in
main text are shown in Fig. 11. A detailed analysis of the
performance of this method as a function of the values of
memristor parameters (vt0, vt1, vth0, vth1, Rmin, Rmax, a, and
b), including noisy parameter distribution or the parameters
of the learning algorithm (Vread,Vwrite, and �t), exceeds the
scope of this Appendix.

3. Pseudocode

The computer codes used for generating numerical simula-
tion results have been uploaded to online repositories [14], as
stated on the main text. Here we summarize the code structure.

Before network simulation starts, variables are defined.

** Define variables **
* Number of input, bulk and output nodes: *
N_in, N_bulk, N_out
* Algorithm Voltages: *
V_read=0.00001 V_write=-0.2
* Node voltage vector variables: *
V_in(N_in), V_bulk(N_bulk), V_out(N_out)
* Resistance values and currents: *
R_In-Bulk(N_in,N_out),
R_Bulk-Out(N_bulk,N_out),
I_In-Bulk(N_in,N_out),
I_Bulk-Out(N_bulk,N_out)

054306-8

LEARNING BY MISTAKES IN MEMRISTOR NETWORKS PHYSICAL REVIEW E 105, 054306 (2022)

10 100 1000

Step
0

0.5

1

S
uc

ce
ss

Nbulk=20
Nbulk=100
Nbulk=400

10 100 1000

Step
0

0.5

1

S
uc

ce
ss

Nbulk=70
Nbulk=200
Nbulk=600

0 300 600

Nbulk

0.8

0.9

1

0 200 400

Nbulk

0.85

0.9

0.95

1
(a)

(b)

(c)

(d)

FIG. 11. Learning performance as a function of the middle layer
size for BCMs. Results show the success as the fraction of net-
works that learn a random input-output association map after a given
number of correction steps for (a) Nin = Nout = 3 and Nbulk = 20,
100, and 400 and (b) Nin = Nout = 4 and Nbulk = 70, 200, and 600.
Also shown is the success at 1000 steps as a function of Nbulk for
(c) Nin = Nout = 3 and (d) Nin = Nout = 4. In (c) and (d) the colored
symbols correspond to the results in (a) and (b) obtained with the
respective Nbulk values.

* Define other auxiliary variables *
Each memristor parameter is chosen.
** Generate memristor parameters **
* beta, V_threshold, R_min-plx-sol-plxmax *
for i=1,N_in; for j=1,N_bulk
beta_In-Bulk(i,j)=random(0.8-1)
VT_In-Bulk(i,j)= random(0.05-0.1)
R_min_In-Bulk(i,j)=random(50-100)
R_max_In-Bulk(i,j)=5000
end for (j); end for (i)
* Do the same for beta_Bulk-Out, *
VT_Bulk-Out, and Rmin-plx-sol-plxmax_Bulk-Out

A learning task is selected. In this case, a random input-output
map is selected.

** Generate random Map **
for i=1,N_in
input-output-MAP(i)=random_integer(1,N_out)
end for(i)

In the main routine, up to 1000 learning steps are performed.
Within each learning step, up to ns = 80 correction steps

are applied. The main routine uses three subroutines: READ,
CORRECT, and COMPUTE ERROR.

*** Main Routine ***
for learning_step=1,1000
input_node=random_integer(1,N_in)
for correct<n_s
call READ
if (output_node =
=input-output-MAP(input_node))
FINISH current learning_step
else
call WRITE(input_node,output_node)
end for (correct)
COMPUTE ERROR
if (error==0) SUCCESS, EXIT.
end for (learning_step)
END

The following is the pseudocode for READ, which requires
the calculation of currents and voltages following Kirchoff’s
equations.

READ routine(input_node)
for k=1,N_out
Solve the circuit equations~when
V_write is applied among input_node
and the k-th output node.
end for (k)
Report output_node as the one
with maximum current.

The following is the pseudocode for WRITE.

WRITE routine(input_node,output_node)
for time=1,5
Solve the circuit equations~when
V_read is applied among input_node
and output.
Calculate voltage difference on
each memristor.
Update resistances (using
memrisor equations).
end for(time)

The following is the pseudocode for COMPUTE ERROR.

COMPUTE ERROR routine
error=0
for i=1,N_in
call READ(i)
if (output_node -plx-sol-plx= input-output
-MAP(i))

error\ensuremath{+}\ensuremath{+}
end for(i)

[1] D. Marković, A. Mizrahi, A. Querlioz, and J. Grollier, Nat. Rev.
Phys. 2, 499 (2020).

[2] P. Bak, How Nature Works: The Science of Self-Organized
Criticality (Springer Science, New York, 1996).

054306-9

https://doi.org/10.1038/s42254-020-0208-2

CARBAJAL, MARTIN, AND CHIALVO PHYSICAL REVIEW E 105, 054306 (2022)

[3] D. R. Chialvo and P. Bak, Neuroscience 90, 1137 (1999).
[4] P. Bak and D. R. Chialvo, Phys. Rev. E 63, 031912

(2001).
[5] J. Wakeling, Physica A 325, 561 (2003).
[6] J. Wakeling, Physica A 340, 766 (2004).
[7] M. Brigham, Self-organised learning in the Chialvo-Bak model,

M.Sc. thesis, University of Edinburgh, 2009.
[8] L. O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
[9] F. Caravelli and J. P. Carbajal, Technologies 6, 118 (2018).

[10] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
Nature (London) 453, 80 (2008).

[11] D. Biolek, M. Di Ventra, and Y. V. Pershin, Radioengineering
22, 945 (2013).

[12] F. Corinto and A. Ascoli, IEEE Trans. Circ. Syst. I 59, 2713
(2012).

[13] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, IEEE Circ.
Syst. Mag. 13, 89 (2013).

[14] The computer code to reproduce the following results can be
downloaded from https://github.com/DanielAlejandroMartin/
Memristor121 (version 1.0). A complementary library writ-
ten in PYTHON is available at https://gitlab.com/kakila/memnet
and further considerations regarding potential memristive im-
plementation are available at https://kakila.gitlab.io/mistake-
learning/.

[15] D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, Proceed-
ings of the IEEE/ACM International Symposium on Nanoscale

Architectures (NANOARCH), San Diego, 2011 (IEEE, Piscat-
away, 2011), pp. 150–156.

[16] Q. Xia and J. J. Yang, Nat. Mater. 18, 309 (2019).
[17] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S.

Snider, D. R. Stewart, and R. S. Williams, J. Appl. Phys. 106,
074508 (2009).

[18] R. Hasan, T. M. Tarek, and C. Yakopcic, Microelectron. J. 66,
31 (2017).

[19] C. Yang, S. P. Adhikari, and H. Kim, IEEE Trans. Circ. Syst. I
66, 3906 (2019).

[20] R. Midya, Z. Wang, S. Asapu, X. Zhang, M. Rao, W. Song, Y.
Zhuo, N. Upadhyay, Q. Xia, and J. J. Yang, Adv. Intell. Syst. 1,
1900084 (2019).

[21] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
IEEE Trans. Neural Netw. Learn. Syst. 26, 2408 (2015).

[22] J. P. Carbajal, J. Dambre, M. Hermans, and B. Schrauwen,
Neural Comput. 27, 725 (2015).

[23] F. Caravelli, Phys. Rev. E 96, 052206 (2017).
[24] F. Caravelli, F. C. Sheldon, and F. L. Traversa, Sci. Adv. 7,

eabh1542 (2021).
[25] H. G. Manning, F. Niosi, C. G. da Rocha, A. T. Bellew, C.

O’Callaghan, S. Biswas, P. F. Flowers, B. J. Wiley, J. D.
Holmes, M. S. Ferreira, and J. J. Boland, Nat. Commun. 9, 3219
(2018).

[26] S. Fostner, R. Brown, J. Carr, and S. A. Brown, Phys. Rev. B
89, 075402 (2014).

054306-10

https://doi.org/10.1016/S0306-4522(98)00472-2
https://doi.org/10.1103/PhysRevE.63.031912
https://doi.org/10.1016/S0378-4371(03)00147-X
https://doi.org/10.1016/j.physa.2004.05.028
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.3390/technologies6040118
https://doi.org/10.1038/nature06932
https://doi.org/10.1109/TCSI.2012.2190563
https://doi.org/10.1109/MCAS.2013.2256272
https://github.com/DanielAlejandroMartin/Memristor121
https://gitlab.com/kakila/memnet
https://kakila.gitlab.io/mistake-learning/
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/10.1063/1.3236506
https://doi.org/10.1016/j.mejo.2017.05.005
https://doi.org/10.1109/TCSI.2019.2914125
https://doi.org/10.1002/aisy.201900084
https://doi.org/10.1109/TNNLS.2014.2383395
https://doi.org/10.1162/NECOa00694
https://doi.org/10.1103/PhysRevE.96.052206
https://doi.org/10.1126/sciadv.abh1542
https://doi.org/10.1038/s41467-018-05517-6
https://doi.org/10.1103/PhysRevB.89.075402

