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Analysis of continuous-time Markovian ε-SIS epidemics on networks
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We analyze continuous-time Markovian ε-SIS epidemics with self-infections on the complete graph. The
majority of the graphs are analytically intractable, but many physical features of the ε-SIS process observed in
the complete graph can occur in any other graph. In this work, we illustrate that the timescales of the ε-SIS
process are related to the eigenvalues of the tridiagonal matrix of the SIS Markov chain. We provide a detailed
analysis of all eigenvalues and illustrate that the eigenvalues show staircases, which are caused by the nearly
degenerate (but strictly distinct) pairs of eigenvalues. We also illustrate that the ratio between the second-largest
and third-largest eigenvalue is a good indicator of metastability in the ε-SIS process. Additionally, we show that
the epidemic threshold of the Markovian ε-SIS process can be accurately approximated by the effective infection
rate for which the third-largest eigenvalue of the transition matrix is the smallest. Finally, we derive the exact
mean-field solution for the ε-SIS process on the complete graph, and we show that the mean-field approximation
does not correctly represent the metastable behavior of Markovian ε-SIS epidemics.
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I. INTRODUCTION

Over the past 100 years, many epidemic diseases have
plagued humanity. Most epidemic outbreaks tend to emerge
quickly, but they take much longer to disappear [1]. One of the
main reasons is reinfections. A common example of a disease
with reinfections is influenza, which affects large portions of
the population during the winter season. The influenza virus
strain keeps mutating slightly, thereby bypassing the human
immune system while maintaining most of its viral properties.
Another example of recurring diseases are sexually transmit-
ted diseases, such as chlamydia and gonorrhoea. Contrary to
influenza, sexually transmitted diseases do not mutate, but
people can simply be reinfected after recovering from the
disease.

Initially, epidemic outbreaks spread exponentially fast, be-
cause most individuals in the population are susceptible to
the new disease, as happened with the COVID-19 pandemic.
In a closed and well-mixed population, the number of in-
fected individuals stabilizes after a short time and continues
to oscillate around the prevalence, which is defined as the
average number of infected individuals. Then, the epidemic
process is in the metastable or quasistationary state, because
the number of infected individuals remains in the vicinity
of the prevalence for a long period of time, whereafter the
process eventually converges to its steady state. The steady
state of most epidemic processes is the overall-healthy state,
which corresponds to the situation in which the disease has
disappeared completely from the population.

One of the simplest stochastic epidemic models with
reinfections is the continuous-time Markovian susceptible-
infected-susceptible (SIS) model, in which individuals are
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either infectious (I) or healthy, but susceptible (S). The contact
graph G represents the N individuals as nodes and specifies
the L contacts between all pairs of individuals as links. The
Markovian SIS dynamics consists of two independent Pois-
son processes: (i) the infected nodes can cure with rate δ,
and (ii) infected nodes can infect their connected, suscep-
tible neighbors with rate β. The curing process is a nodal
process, whereas the infection process evolves over the links
between pairs of nodes. Occasionally, a third, independent
self-infection process with self-infection rate ε is considered,
which describes background or indirect infections. Infections
may happen either through direct contact or indirectly, for
example after touching infected surfaces or inhaling air in a
closed room previously contaminated by an infected individ-
ual. The Markovian ε-SIS model consists of three independent
Poisson processes: (i) the curing process with rate δ, (ii)
infection process with rate β, and (iii) self-infection process
with rate ε. Given that the ε-SIS model consists of indepen-
dent Poisson processes, we can describe the time-dependent
behavior of the ε-SIS model as a continuous-time Markov
chain with 2N states. However, continuous-time Markovian
modeling implies that the infection and curing times are ex-
ponentially distributed. Measurements in real epidemics seem
to suggest that the infection time follows a bell-shaped distri-
bution (such as Gamma, Weibull, or log-normal distributions
[2,3]). This requires non-Markovian analysis, which is, un-
fortunately, considerably more complex (see, e.g., [4]) and is
currently insufficiently developed to compute time-dependent
infection probabilities.

The continuous-time Markovian SIS process without self-
infections on static networks has been investigated thoroughly
[5]. Even on the complete graph, quantifying the average
time spent in the metastable state appears challenging [6].
The major issue is that the metastable state is not stable; it
collapses eventually due to a rare occurrence of successive
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curings to the absorbing or overall-healthy state [7]. Several
approaches have been proposed to quantify the metastable
state in the Markovian SIS model. Jacquez and Simon [8]
introduced an epidemic process that prevents the original SIS
process from entering the absorbing state at time t . Their
reduced SIS model has a unique steady state, which can be
related to the metastable state of the original SIS model.
Cator and Van Mieghem [9] constructed a similar modified
process: If only a single node is infected, then the modified
process forbids the curing of that node. Effectively, their
modified SIS process is equivalent to the SIS process, with
the exception that the transitions to the absorbing state have
been removed. De Oliveira and Dickman [10] proposed to
store the complete time lapse of the SIS model. Once the
process converges to the absorbing state, the process jumps
to a randomly selected sample from the history of the SIS
process. Keeling and Ross [11] and Hill et al. [12] intro-
duced a self-infection process ε on the complete graph. In
addition to the usual infection and curing processes, the
nodes in the modified process can be infected by external
sources, which are modeled as self-infections. Van Mieghem
and Cator [13] generalized the ε-SIS model from the complete
graph to general networks. Introducing a small amount of
self-infections removes the absorbing state, reestablishes an
irreducible Markov chain with a well-defined steady state
different from the overall-healthy state and allows for a com-
parison between the ε-SIS model and the SIS model without
self-infections. Finally, the 2N -state Markov chain, described
by 2N linear differential equations, is often approximated
by a mean-field approximation with N nonlinear differential
equations. The simplest mean-field approximation for the SIS
model on networks is called the N-Intertwined mean-field
approximation (NIMFA), and it assumes that the infection
state of any two nodes is uncorrelated [14–17]. A mean-field
approximation is generally an adequate approximation for
large, dense graphs with homogeneous transition rates and for
infection rates sufficiently larger than the epidemic threshold.
The accuracy of NIMFA with respect to the Markovian SIS
process is studied in [18] for various graph types. A key
difference is the possibility of die-outs in the stochastic model,
albeit with a very small probability, whereas the mean-field
model either converges to the endemic equilibrium or to
the all-healthy state, and excludes the possibility of sudden
die-outs.

The continuous-time Markovian ε-SIS process on the
complete graph can be described by a birth and death
process (BDP). BDPs can be solved by computing the prob-
ability generating function and solving the corresponding
partial differential equation [19,20]. Unfortunately, solving
the partial differential equation seems infeasible for ε-SIS
dynamics (see Ref. [21], Appendix A). Alternatively, one may
compute the Rayleigh-Ritz coefficient of the partial differ-
ential equations to derive bounds for the eigenvalues. There
are also several approaches to compute the eigenvalues of
BDPs exactly. One possibility is to consider the orthogo-
nal polynomials that correspond to the BDPs, which are the
Tricomi-Carlitz polynomials. The zeros of the Tricomi-Carlitz
polynomials correspond to the eigenvalues of the BDP. Un-
fortunately, not many results are known for the zeros of
the Tricomi-Carlitz polynomials [22]. Alternatively, one may

solve for the eigenvalues directly, resulting in a continued
fraction expansion [23], or one can also derive bounds on the
eigenvalues, e.g., by the Cauchy interlacing theorem or using
a Fokker-Planck approximation [24].

The eigenvalues of Markov chains and their relation to
metastability have been studied in several works. Artajelo
[25] studied the second-largest eigenvalue in general Markov
chains in both continuous time and discrete time. Holme
and Tupikina [26] computed the exact second-largest eigen-
value in SIS epidemics for all nonisomorphic graphs with
3 � N � 8 nodes. For an arbitrary graph size N , exact results
of the ε-SIS model can be obtained only for a few graphs,
such as the complete graph and the star graph [9]. For the
complete graph with homogeneous transition rates and no
self-infections, several analytical results have been obtained,
such as the average time before extinction [24,27–29] and the
average time between the onset of the disease and the arrival
at the metastable state [30,31].

In this work, we study continuous-time Markovian ε-SIS
epidemics on the complete graph from an eigenvalue perspec-
tive by computing all its eigenvalues. Although we realize
that the complete graph is far from a realistic setting, we
derive many qualitative properties of the ε-SIS process which,
we believe, may also hold for other graphs. We describe
the continuous-time Markov chain for the complete graph
in Sec. II. We additionally derive the general solution of
the Markov chain. We introduce the concept of metastabil-
ity in Sec. III, and we derive the exact mean-field solution
in Sec. IV. We return to the Markovian ε-SIS process in
Sec. V and provide a detailed analysis of all eigenval-
ues. We numerically identify the influence of the infection
rate β, self-infection rate ε, and network size N on the
eigenvalues in Sec. VI. Finally, we present conclusions in
Sec. VII.

II. THE ε-SIS PROCESS ON THE COMPLETE GRAPH

The Markov chain of the ε-SIS process on the complete
graph can be described as follows. In the Markov chain M,
each state M denotes the number of infected individuals in the
population. Since the population consists of N individuals, the
number M of infected nodes ranges from zero to N . Thus, the
Markov chain M has N + 1 states with the transition rates
(derived in Ref. [32], p. 474)

M �→ M + 1 at rate (βM + ε)(N − M ),

M �→ M − 1 at rate δM,

where β denotes the infection rate, δ is the curing rate, and
ε is the self-infection rate in the complete graph KN . The
Markov chain M is a birth and death process with birth rate
λk = (βk + ε)(N − k) that is quadratic in k, and death rate
μk = δk that is linear in k and is drawn in Fig. 1.

We compute the probability that k nodes are infected at
time t in the Markov chain M. Let M(t ) be the number of
infected nodes at time t . By introducing sk (t ) = Pr[M(t ) = k]
as the probability that the number M(t ) of infected nodes at
time t equals k, the following differential equations describe
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FIG. 1. The Markov chain M of the ε-SIS process on the complete graph is a finite birth and death process with birth rate λk =
(βk + ε)(N − k) and death rate μk = δk. The state M = 0, . . . , N of the Markov chain denotes the number of infected nodes in the graph.
Furthermore, β is the infection rate, δ is the curing rate, and ε is the self-infection rate.

the exact dynamics of the Markov chain M:

d s0

dt
= μ1s1(t ) − λ0s0(t ),

d sk

dt
= −(λk + μk )sk (t ) + λk−1sk−1(t ) + μk+1sk+1(t ),

k = 1, . . . , N − 1.

d sN

dt
= λN−1sN−1(t ) − μN sN (t ),

If the curing rate δ > 0, the ε-SIS process can be simpli-
fied by introducing the rescaled time t̃ = δt . We additionally

define the scaled birth rate λ̃k = λk/δ = (τk + ε∗)(N − k)
and the scaled death rate μ̃k = μk/δ = k, where the effec-
tive infection rate τ = β/δ and the effective self-infection
rate ε∗ = ε/δ. We emphasize that the scaled time t̃ , the ef-
fective infection rate τ , and the effective self-infection rate
ε∗ are dimensionless variables. Introducing the (N + 1) × 1
vector s = (s0, . . . , sN )T , the linear differential equations can
be written in matrix notation:

d sT

dt̃
= sT P, (1)

where P is the (N + 1) × (N + 1) tridiagonal transition ma-
trix,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ̃0 λ̃0

μ̃1 −(λ̃1 + μ̃1) λ̃1

μ̃2 −(λ̃2 + μ̃2) . . .
. . .
. . . λ̃N−2

μ̃N−1 −(λ̃N−1 + μ̃N−1) λ̃N−1

μ̃N −μ̃N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Together with the initial condition s0 = s(0), Eq. (1) describes
the exact dynamics of the continuous-time Markovian ε-SIS
process on the complete graph KN , which can be solved to find

sT (t̃ ) = sT
0 ePt̃ . (3)

Using the probability vector of the number of infected nodes
s(t̃ ) at time t̃ , one may compute the average fraction of in-
fected cases y(t̃ ), commonly known as the prevalence, as

y(t̃ ) = 1

N

N∑
k=0

ksk (t̃ ). (4)

In the remainder of this work, we omit the tilde for the scaled
time t̃ for readability.

We intend to show that metastability in the ε-SIS pro-
cess is directly linked to the eigenvalues of the transition
matrix P. We start by denoting the eigenvalues ξ1, . . . , ξN+1,
the right-eigenvectors v1, . . . , vN+1, and the left-eigenvectors
w1, . . . , wN+1 of the (N + 1) × (N + 1) transition matrix P.
The eigenvalues of the transition matrix P are real, because P

is similar to a symmetric matrix P̃ and similarity preserves
the eigenvalues. The transformed matrix P̃ is computed in
Appendix A. The eigenvalues of P and P̃ cannot be computed
analytically for N > 4 because it involves finding the roots of
a characteristic polynomial with degree N . Thus one resorts
to numerical methods to obtain the eigenvalues. Once the
eigenvalues are known, the corresponding eigenvectors can be
computed analytically (Ref. [32], Appendix A.6.3).

Since all eigenvalues are real-valued, we may rank them in
decreasing order ξ1 � ξ2 � · · · � ξN+1. Given that the tridi-
agonal matrix P̃ is symmetric and all off-diagonal terms are
nonzero,1 all eigenvalues of P are distinct (Ref. [33], Lemma
7.7.1). The same conclusion follows by computing the proba-
bility generating function of the ε-SIS process and concluding
that the resulting differential equation is of Sturm-Liouville
type [21], which is known to have simple eigenvalues. The

1Here, we assume that the curing rate δ, the effective infection rate
τ and the effective self-infection rate ε∗ are nonzero.
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transition matrix P of the ε-SIS Markov chain has a unique,
largest eigenvalue ξ1 = 0, which corresponds to the steady
state π . The remaining eigenvalues ξ2, . . . , ξN+1 are negative
and distinct. The solution (3) can be written as

s(t ) = π +
N+1∑
k=2

ckeξkt wk, (5)

where ξk is the eigenvalue corresponding to the right-
eigenvector wk of the ε-SIS process, and the constant ck =
vT

k s(0) projects the initial vector s(0) on the kth left-
eigenvector vk [Ref. [11], Eq. (2.5)]. The vector s(t ), whose
components sk (t ) specify the probability that k nodes at time
t are infected, is decomposed in Eq. (5) into N + 1 eigen-
states of which the corresponding eigenvectors w1, . . . , wN+1

span the N + 1 vector space. Each eigenvector wk in Eq. (5)
is weighted by the coefficient ckeξkt . The eigenvalue ξk re-
sembles a rate and has units 1/time. The contribution of
eigenvector wk to the solution s(t ) decays exponentially
over time with a decay rate equal to the eigenvalue ξk (the
contribution decays because ξk < 0). The eigenvalue ξk is
thus inversely proportional to the average time that the cor-
responding eigenvector wk significantly contributes to the
solution s(t ).

In particular, the second-largest eigenvalue ξ2 (sometimes
called the convergence rate, spectral gap, mixing rate, or de-
cay parameter) is inversely proportional to the average time
required to converge toward the steady state [25,34]. The con-
vergence rate for continuous-time Markov chains and BDPs is
thoroughly analyzed in probability theory. For an overview of
bounds of the convergence rate in Markov chains and BDPs,
we refer the reader to Van Doorn et al. [35] and Artalejo
[25] and references therein. If the effective self-infection rate
ε∗ = 0, then the average time of convergence E[Textinction] =
−1/ξ2 to the steady state (or equivalently, the extinction time,
survival time, or absorption time) on the complete graph has
the following exact relationship [27]:

E[Textinction] =
N∑

i=1

i−1∑
j=0

(N − i + j)!

i(N − i)!
τ j .

Nearly all works consider the SIS process without self-
infections. Most proofs for the convergence rate (e.g., the
proof in [27]) are based on the hitting time distribution of the
absorbing state. By introducing the self-infection process, the
absorbing state no longer exists and the proofs therefore do
not hold for the ε-SIS process. Fortunately, the introduction
of the self-infection process makes the Markov chain of the
ε-SIS process irreducible, implying that the steady state exists
and is also unique. The existence of the steady state greatly
simplifies the analysis of the ε-SIS process for large times,
because we can analyze the behavior of the conceptually sim-
pler steady state instead of the more complicated metastable
state.

III. METASTABILITY IN THE ε-SIS PROCESS

Our primary motivation for researching the eigenvalues
of the transition matrix P in Eq. (2) is the observation of
plateau-behavior in the ε-SIS process [21], which is illustrated

10-2 100 102 104
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0.1

0.2

0.3

0.4

0.5

0.6

FIG. 2. Plateau-behavior in the Markovian ε-SIS process on
the complete graph. Each curve is computed using the exact
solution (5), and the parameters are N = 30 nodes, effective in-
fection rate τ = 2.5τ (1)

c = 2.5/(N − 1), the process starts with a
single infected node, and the effective self-infection rate ε∗ =
{10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 0}. For ε∗ � 10−5, the back-
ground colors indicate the current phase of the ε-SIS process:
(I) initial phase, (II) metastable behavior, and (III) convergence to
the steady state.

in Fig. 2. Each curve in Fig. 2 is computed based on the
exact solution (5), where initially a single node is infected. For
small effective self-infection rates ε∗ � 10−5, Fig. 2 depicts
roughly three regimes for the time-varying prevalence: (I)
initial phase, (II) metastable behavior, and (III) convergence to
the steady state. Phase (I) is characterized by the fast conver-
gence to the metastable state. In the metastable phase (II), the
prevalence y stays nearly constant for an extended period of
time. Finally, phase (III) shows the exponential convergence
to the steady state π .

Plateau-behavior is generally caused by metastability
of the dynamical process, where the infection and curing
processes are temporarily in equilibrium (the physical ex-
planation is presented in [7]). We consider the following
definition of metastability for general dynamical processes
that possess a steady state π .

Definition III.1. A dynamical process is metastable if the
process stays in a certain state for an extended period of time
before converging to the steady state π .

We quantify metastability for the ε-SIS process using the
eigenvalue ratio, which was first introduced by Jacquez and
Simon (Ref. [8], p. 85).

Definition III.2. The eigenvalue ratio ρ is defined as

ρ = ξ3

ξ2
. (6)

The eigenvalue ratio ρ is an indicator for the exis-
tence of plateaus [8]. If the eigenvalue ratio ρ is large,
then the second-largest eigenvalue ξ2 is much larger than
the other eigenvalues ξ3, . . . , ξN+1. The influence of the
right-eigenvectors w2, . . . , wN+1 on the solution s(t ) in (5),
weighted by the exponentials eξkt , will therefore converge
much faster to zero for the eigenvalues ξ3, . . . , ξN+1 than for
the second-largest eigenvalue ξ2.
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The height of the plateaus in Fig. 2 equals the prevalence
y, which is defined in Eq. (4). Plateau-behavior, as shown
in Fig. 2, is only clearly observed if the steady-state preva-
lence y∞ is sufficiently different from the prevalence in the
metastable state and if the effective self-infection rate ε∗ is
sufficiently small. Our definition of metastability in the ε-SIS
process is as follows:

Definition III.3. The ε-SIS process is metastable if the
eigenvalue ratio ρ � 1 and the prevalence y∞ in the steady
state is sufficiently different from the prevalence in the
metastable state.

We analyze the case when the metastable prevalence y
and the steady-state prevalence y∞ are equal in Appendix B.
We find the power-law relation ε∗ ∼ τ−N if τ is sufficiently
larger than the epidemic threshold τc. For further details, see
Appendix B.

If the ε-SIS process is metastable, the average time spent in
the metastable state is roughly equivalent to the average time
required to converge to the steady state, because the average
time between the onset of the disease and the arrival at the
metastable state is relatively short (see Fig. 2 for an example).

IV. MEAN-FIELD APPROXIMATION
OF THE ε-SIS PROCESS

The majority of the research on epidemiology is based on
mean-field approximations of stochastic processes. However,
the behavior of the Markovian ε-SIS process is intrinsically
different from its mean-field approximation, especially re-
garding the metastable state. Recently, Prasse et al. [36] solved
the continuous-time mean-field SIS process on the complete
graph KN with arbitrary initial conditions. We derive a similar
result in Theorem IV.1 for the ε-SIS process with self-loops,
whereby we added the infection rates τii from each node i
to itself. We refer to Appendix C for the derivation of the
mean-field equations, which approximate the exact, Marko-
vian solution s(t ) by the mean-field state vector sMF(t ).

Theorem IV.1. Consider the mean-field approximation of
the ε-SIS process on the complete graph with homoge-

neous transition rates and self-loops, given by Eq. (C2) in
Appendix C, with arbitrary initial conditions. Then the viral
state sMF(t ) is equal to

sMF(t ) = c1(t )z1 + c2(t )z2 (7)

at every time t . Here, z1 and z2 are orthonormal agitation
modes, which are given by

z1 = 1√
N

u, (8)

where u = (1, . . . , 1)T denotes the N × 1 all-one vector, and

z2 = ∥∥(I − z1zT
1

)
sMF(0)

∥∥−1

2

(
I − z1zT

1

)
sMF(0). (9)

The functions cl (t ) = zT
l sMF(t ) ∈ R, where l = 1, 2, are the

projection of the viral state vector sMF(t ) on the agitation
mode zl . The scalar function c1(t ) equals

c1(t ) = 1

2τ
√

N

[
τN − 1 − ε∗

+wε∗ tanh
(wε∗

2
t + ϒ1,ε∗ (c1(0))

)]
with the viral slope

wε∗ =
√

(1 + ε∗ − τN )2 + 4ε∗τN

and the constant

ϒ1,ε∗ (c1(0))

= arctanh

(
1

wε∗

(
2τ

√
NzT

1 sMF(0) − τN + 1 + ε∗)).

The scalar function c2(t ) equals

c2(t ) = ϒ2,ε∗ (c2(0)) exp

(
−1 + ε∗ + τN

2
t

)

× sech
(wε∗

2
t + ϒ1,ε∗ (c1(0))

)
,
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(a) (b)

FIG. 3. The exact Markovian solution (solid lines), the mean-field approximation without self-loops (dashed lines), and exact mean-
field solution with self-loops from Theorem IV.1 (dotted lines) of the ε-SIS process on the complete graph with N = 30 nodes for various
effective self-infection rates ε∗ for (a) effective infection rate τ = 2.5/(N − 1) and (b) effective infection rate τ = 1/(N − 1). The mean-field
approximation is generally a loose upper bound for the Markovian ε-SIS dynamics.
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FIG. 4. All eigenvalues ξk of the transition matrix P on the complete graph with effective infection rate τ = 2/(N − 1), and effective
self-infection rate ε∗ = 0.01/N on (a) linear-linear scale and (b) log-log scale for k = 1, . . . , N + 1. The eigenvalues have been normalized
with respect to the number of nodes N . Normalized index 0 corresponds to the largest eigenvalue ξ1 = 0, and normalized index 1 corresponds
to the smallest eigenvalue ξN+1. The horizontal dash-dotted line indicates the lower bound for ξN+1 from Theorem V.1. The largest eigenvalue
ξ1 = 0 is not shown in (b) because of the logarithmic axis. The inset in (a) zooms in for 0 � (k − 1)/N � 0.05 and shows the critical index k2

as a vertical dash-dotted line. In this case, the critical index k1 = 0.

with the constant

ϒ2,ε∗ (c2(0)) = zT
2 sMF(0) cosh (ϒ1,ε∗ (c1(0))). (10)

Proof. See Appendix C. �
As derived in Appendix C, the mean-field prevalence

upperbounds the Markovian prevalence y(t ). Theorem IV.1
states that the mean-field dynamics on the complete graph
can be reduced from N equations to two agitation modes,
where one is related to the initial condition and the other to the
steady state. Hence, the metastable state [Phase (II) in Fig. 2]
does not exist under the mean-field approximation, because
the existence of only two agitation modes does not allow for
an intermediate, transient regime.

We plot the Markovian prevalence, the mean-field preva-
lence and the mean-field prevalence with self-loops, based on
Theorem IV.1, in Fig. 3. Figure 3 illustrates that the mean-

field approximation vastly overestimates the time-dependent
fraction of infected nodes of the Markovian ε-SIS process,
both with and without self-loops. If the effective infection rate
τ is larger than the epidemic threshold τc, Fig. 3(a) shows
that, for N = 30, the discrepancy between the mean-field
prevalence and the Markovian prevalence is large every-
where, except at very small timescales or if ε∗ is very large.
Figure 3(b) is situated around the epidemic threshold τc,
where the mean-field approximation is known to have the
worst accuracy [18]. In the limit N → ∞, the mean-field
approximation error converges to zero, which we further il-
lustrate in Sec. VI C. Given that the metastable state is a
key epidemiological quantity and that the metastable state
does not exist under the mean-field approximation, we fo-
cus in the remainder of this work on the Markovian ε-SIS
process.
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FIG. 5. The critical indices k1 (a) and k2 (b) for different values of the effective infection rate τ and the effective self-infection rate ε∗ on
the complete graph KN with N = 20 nodes.
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In addition to approximating the Markovian ε-SIS process
by a mean-field approximation, various other approximation
methods exist. We investigate an eigenmode approximation
of the Markovian ε-SIS process on KN in Appendix D. Un-
fortunately, for an accurate approximation, the number of
eigenmodes scales proportional to the number of nodes N ,
rendering the approximation method infeasible for large net-
works.

V. SPECTRUM ANALYSIS OF THE ε-SIS PROCESS

Since the eigenvalues ξk are key for the characteristic
timescales of the ε-SIS process, we focus on the determination
of the eigenvalues ξk of the transition matrix P from Eq. (2).
The eigenvalues are computed in several parameter limits in
Theorem V.1.

Theorem V.1. The eigenvalues ξk of the transition matrix P
satisfy2

for ε∗ → ∞, ξk = −(k − 1)ε∗ − (k − 1)[τ (N + 1 − k) + 1] + O

(
1

ε∗

)
,

for τ → ∞, ξk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4τ (N − 1)(N + 1) ± √

τ (N + 1)
√

N−1
2 + O(1) if N odd, k = N+2±1

2 ,

−τ
(

N
2 − 1

)(
N
2 + 1

)+ N3

12 + N2

12 − 5N
6 − 1

3

±
√

1 + (
N
2

)3(N
2 + 1

)2(N
2 − 1

)+ O
(

1√
τ

)
if N even, k = N+2±2

2 , ε∗ = 1,

−τ (k − 1)(N − k + 1)

+(−ε∗(N − k + 1) + (k−1)(N−k+1)(N+1)
(2k−N−3)(2k−N−1)

)+ O
(

1√
τ

)
otherwise,

for ε∗ <
1

N
, ξN+1 �

{−( 1
2x + 1 + x

2

)
N for x � 1,

−2N for x < 1,

for k = 1, 2, . . . , N + 1 and where x = τ/τ (1)
c is the normal-

ized effective infection rate.
Proof. See Appendix E. �
Theorem V.1 states that the eigenvalue ratio ρ for large

effective self-infection rates ε∗ equals ρ = ξ3/ξ2 ≈ 2. Thus
metastability is not expected if the self-infection process dom-
inates the infection and curing processes. For large but finite
effective infection rates τ and effective self-infection rates ε∗,
the asymptotic expansions in Theorem V.1 are only valid if
the second term is strictly smaller than the first term, the third
is smaller than the second, etc. For example, the second term
in the expansion τ → ∞ must be strictly smaller than the first
term, which only holds if τ > N + 1 (see Appendix E for the
derivation). Hence, the expansions in Theorem V.1 provide
valuable insights into the eigenvalues ξk , even for finite values
of the effective infection rate τ and effective self-infection
rate ε∗.

We present here a full numerical analysis of the eigenvalues
for finite parameter values. We compute the eigenvalues of
the transition matrix P in MATLAB using the command eig.
Figure 4 illustrates the normalized eigenvalues ξk/N versus
the normalized index (k − 1)/N of the ε-SIS process for
k = 1, . . . , N + 1. An interesting observation from Fig. 4(a)
is the negligible dependence of the network size N on the nor-
malized eigenvalues ξk/N . We further investigate the influence
of the network size N by simulations in Sec. VI. Figure 4(b)
shows that the second-largest eigenvalue ξ2 deviates signifi-
cantly from the other eigenvalues ξ3, . . . , ξN+1. The difference
between the second-largest eigenvalue ξ2 and the third-largest

2Contrary to our general consensus that the eigenvalues 0 = ξ1 >

ξ2 > · · · > ξN+1 are ordered, the eigenvalues ξk in Theorem V.1 are
not necessarily ordered.

eigenvalue ξ3 is the precise reason why we used the eigenvalue
ratio ρ in our Definition III.3 of the metastable state in the
ε-SIS process.

The inset of Fig. 4(a) shows a “staircase” for certain eigen-
values of the ε-SIS process. We propose to subdivide the
eigenvalues into three regimes. We define the critical index
k1 as the start of the staircase, and the critical index k2 as the
end of the staircase. If the staircase does not exist, we take
k1 = k2 = 0. The main plot of Fig. 4(a) illustrates that the
eigenvalues ξk with k > k2 roughly follow a quadratic relation
between the normalized eigenvalues ξk/N and the normalized

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

FIG. 6. The normalized eigenvalues ξk/N on the complete graph
KN with N = 20 nodes and τ = 10 for different effective self-
infection rates between ε∗ = 10 and ε∗ = 20. By varying the
effective self-infection rate ε∗, one eigenvalue of the nearly degen-
erate pair changes significantly, whereas the other remains largely
unchanged.
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index (k − 1)/N . Theorem V.1 states that the eigenvalues ξk

converge to τ (k − 1)(N − k + 1) if the effective infection rate
τ tends to infinity, which explains the nearly quadratic form
for k > k2. On the other hand, the inset of Fig. 4(a) shows
staircase behavior for k1 < k � k2. The staircase is the result
of two nearly degenerate (but strictly distinct) eigenvalues
of the ε-SIS process. If the effective infection rate τ tends
to infinity, the eigenvalues converge to ξk → τ (k − 1)(N −
k + 1), which are degenerate because ξk = ξN−k+2 for all k =
1, . . . , N + 1. Even for large, finite effective infection rates τ ,
there is a small region k1 < k � k2 where staircase behavior
is observed, which is illustrated in Fig. 4.

The staircase behavior from Fig. 4(a) is not always ob-
served. Figure 5 illustrates the dependence of the critical
indices k1 and k2 on the effective infection rate τ and the effec-
tive self-infection rate ε∗. Staircases are observed if the critical
index k2 > 0 in Fig. 5, whereas the critical index k1 indicates
the start of the staircase and is only nonzero for a small region
in the (τ, ε∗)-space. If the effective infection rate τ is below

the epidemic threshold τc, both indices k1 = k2 = 0 and no
staircases can be observed. In the limit ε∗ → ∞, Theorem V.1
shows that staircases do not exist, because ξk → −(k − 1)ε∗
for k = 1, . . . , N + 1. In the intermediate regime, where 0 <

ε∗ < ∞ and τ > τc, the critical index k2 is often nonzero,
indicating staircase behavior. However, Fig. 5 additionally
shows small blue regions, where staircase behavior is not ob-
served. The blue regions are centered around ε∗ = τ (n + 1

2 ),
where n = 0, 1, 2, . . . . Upon further inspection, the staircases
seem best visible for ε∗ = τn, where n = 1, 2, . . . .

For a given number of k infected nodes, the total effec-
tive infection rate equals τk(N − k) and the total effective
self-infection rate ε∗(N − k). The effect of both infection
processes is equally strong if its rates are equal, which im-
plies that ε∗ = τk. Thus, the staircases are best visible if
the total rate of the infection process and self-infection pro-
cess are equally large. We argue that one eigenvalue of the
nearly degenerate pair is due to the infection process and one
eigenvalue corresponds to the self-infection process. Then,

10-10 10-5 100 105
10-5

100

105

(a)

10-10 10-5 100 105
10-5

100

105

(b)

10-10 10-5 100 105
100

105

(c)

FIG. 7. The eigenvalues of the transition matrix P for the complete graph with N = 30 nodes and effective infection rate τ = 2.5τ (1)
c for

varying effective self-infection rates ε∗ on a log-log scale. Subfigure (a) shows the second-to-fifth-largest eigenvalues ξ2, ξ3, ξ4, ξ5 and smallest
eigenvalue ξN+1 as a function of the effective self-infection rate ε∗. The vertical line indicates the relation ε∗ = τ . Subfigure (b) is equivalent
to (a), but here the eigenvalue ratio ρ is colored green (light) and the area with the other eigenvalues is colored blue (dark). Finally, (c) shows
a plot of the eigenvalue ratio ρ vs the effective self-infection rate ε∗.
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by varying either τ or ε∗, one of the eigenvalues of the
pair must remain unchanged. Figure 6 shows the normalized
eigenvalues for varying effective self-infection rates ε∗ be-
tween τ and 2τ . Indeed, while the effective self-infection
rate ε∗ is varied, one eigenvalue of the nearly degenerate
pair changes whereas the other stays approximately constant.
Thus, a plausible explanation for the staircase behavior is a
balance between self-infections and infections between nodes.
While Fig. 6 supports our explanation for the staircase behav-
ior, an analytic proof remains an open research question.

To summarize, we believe that the eigenvalues ξk in the
regime 2 < k � k1 are related to self-infection-dominated be-
havior, the regime k1 < k � k2 describes when the influence
of the infection and self-infection process is equally strong,
and the regime k > k2 pertains to the infection-dominated
behavior. Equation (11) summarizes our findings for the
eigenvalues ξk of the ε-SIS process:

ξk ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for k = 1,

convergence rate for k = 2,

roughly linear for 2 < k � k1,

staircases for k1 < k � k2,

roughly quadratic for k2 < k � N + 1.

(11)

VI. NUMERICAL SIMULATIONS

We perform numerical simulations to examine how the en-
tire set of eigenvalues changes with the effective self-infection
rate ε∗ the effective infection rate τ and the network size N .

A. The influence of the effective self-infection rate ε∗

First, we examine the influence of the effective self-
infection rate ε∗ on the eigenvalues by fixing the network
size N and the effective infection rate τ . Figure 7 shows the
absolute value of the eigenvalues of the transition matrix P for
varying effective self-infection rates ε∗.

The ε-SIS process is governed by two infection processes:
the infection process and the self-infection process. All events
in the continuous-time Markovian ε-SIS process are inde-
pendent, such that the rate to transition from a completely
susceptible population to one infected node is solely governed
by the self-infection process and may happen for every node
independently, leading to a total rate ε∗N . Simultaneously, if
a single node is infected, another node is infected with rate
τ (N − 1). If ε∗N < τ (N − 1), the process is dominated by
the infection process, whereas the process is dominated by
self-infections if ε∗N > τ (N − 1). For large network sizes N ,
the influence of the self-infection process and the infection
process is equally large if τ ≈ ε∗. The vertical line in Fig. 7
indicates the relation τ = ε∗. The minimum of the eigenvalue
ratio ρ and the relation τ = ε∗ coincide in Fig. 7(c). At the
intersection point τ = ε∗, the minimal eigenvalue ratio ρ is
approximately 1. Then both eigenvalues are approximately
equal and exhibit staircases in the eigenvalue spectrum, which
was discussed in detail in Sec. V.

The second-largest eigenvalue ξ2 changes significantly
from ε∗ = 0 to ε∗ = τ , but the remaining eigenvalues
ξ3, . . . , ξN+1 stay nearly constant. To the right of the vertical
line in Fig. 7, the remaining eigenvalues increase as well.
In the limit of large effective self-infection rates ε∗, it holds

10-3 10-2 10-1 100 101
10-15

10-10

10-5

100

105

FIG. 8. Illustration of the explosive phase transition for effec-
tive self-infection rates ε∗ > 0 and no phase transition for ε∗ = 0
for the second-largest eigenvalue ξ2. The remaining eigenvalues
ξ3, . . . , ξN+1 are nearly indistinguishable for different ε∗. The net-
work size equals N = 30.

that ξk ≈ −(k − 1)ε∗ according to Theorem V.1. The smallest
eigenvalue ξN+1 ≈ −ε∗N and the second-largest eigenvalue
ξ2 ≈ −ε∗ are shown by dashed lines in Fig. 7. Thus, the eigen-
values ξk increase linearly with the effective self-infection
rate ε∗, because the self-infection process dominates the other
processes and drives the ε-SIS process to the all-infected
state.

If the effective self-infection rate ε∗ < τ , Fig. 7 shows that
the self-infection process barely influences the characteristic
timescales of the ε-SIS process, which was also observed
in Fig. 2. A seemingly contradictory result was recently ob-
tained by Van Mieghem [7], who showed that the steady-state
prevalence y∞ exhibits an explosive phase transition at certain
small effective self-infection rates ε∗. The difference is that
we consider a fixed effective infection rate τ and vary the
effective self-infection rate ε∗, which contrasts [7], where the
effective infection rate τ is varied for fixed self-infection rates
ε∗ = 0 and ε∗ > 0. Performing a similar analysis as [7] on the
eigenvalues, Fig. 8 illustrates that the second-largest eigen-
value ξ2 is heavily influenced by the effective self-infection
rate ε∗. For any finite effective self-infection rate ε∗ > 0, there
exists a phase transition for some effective infection rate τ ,
where the second-largest eigenvalue ξ2 converges to a constant
for large effective infection rates τ . In the limit ε∗ → 0, no
such transition is observed, which is in agreement with [7].
The other eigenvalues ξ3, . . . , ξN+1 remain largely unaffected
by considering the limit ε∗ → 0.

B. The influence of the effective infection rate τ

Analogously to the effective self-infection rate ε∗, we an-
alyze the influence of the effective infection rate τ on the
eigenvalues of the transition matrix P in Fig. 9. The vertical
line in Fig. 9 illustrates the mean-field epidemic threshold
τ (1)

c = 1
N−1 , which is slightly smaller than the true epi-

demic threshold [9,37]. Below the epidemic threshold τc, the
eigenvalue ratio ρ in Fig. 9(c) is small. Around the epidemic
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FIG. 9. The eigenvalues of the transition matrix P for the complete graph with N = 30 nodes and effective self-infection rate ε∗ = 10−5

for varying effective infection rates τ . Subfigure (a) shows the second-to-fifth-largest eigenvalues ξ2, ξ3, ξ4, ξ5 and smallest eigenvalue ξN+1 as
a function of the effective infection rate τ . The vertical line indicates the mean-field epidemic threshold τ (1)

c , which is slightly smaller than the
true epidemic threshold τc. Subfigure (b) is equivalent to (a), but here the eigenvalue ratio ρ is colored green (light) and the area with the other
eigenvalues is colored blue (dark). Finally, (c) shows a plot of the eigenvalue ratio ρ vs the effective infection rate τ . Finally, (a) illustrates the
lower bound for the smallest eigenvalue ξN+1 from Theorem V.1 by a dashed line.

threshold τc, the eigenvalue ratio ρ increases rapidly, as illus-
trated in Fig. 9(c).

For large effective infection rates τ , the second-largest
eigenvalue ξ2 converges to −ε∗N whereas the remaining
eigenvalues ξ3, . . . , ξN+1 increase linearly with the effective
infection rate τ , which is in line with Theorem V.1. Hence, the
eigenvalue ratio ρ tends to infinity if τ → ∞ and the system
is considered metastable according to our Definition III.3. For
large effective infection rates τ and starting with a nonzero
number of infected nodes, the remaining nodes will be in-
fected extremely quickly. The spreading is only slowed down
by the transition from 0 to 1 infected node. The metastable
state here is the all-healthy state, which takes a considerable
amount of time to leave, whereafter the process converges
extremely fast to the all-infected state. The convergence rate
from the metastable state to the steady state, which equals
minus the second-largest eigenvalue −ξ2, exactly equals the

rate to jump from 0 to 1 infected node, which is given by the
scaled birth rate λ̃0 = ε∗N .

The epidemic threshold τc in the Markovian ε-SIS process
exhibits a second-order phase transition.3 Van Mieghem and
Cator (Ref. [13], p. 9) derived the following relation for the
epidemic threshold τc for ε-SIS dynamics on the complete
graph for large network sizes N � 1 and for small effective

3A first-order, abrupt phase transition at the epidemic threshold
τc exhibits a discontinuity in the first derivative of the steady-state
prevalence y∞. A second-order, continuous phase transition is an
interval [a, b] in which the behavior of the ε-SIS process gradually
changes from nearly exponential die-outs to long-lived epidemic
outbreaks.
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FIG. 10. Several formulas for the suggested epidemic threshold
τc for various network sizes N .

self-infection rates ε∗ < 1
N :

τc,∞ = 1

N + 2 − 2
√

N + 1
. (12)

We expand both approximations for the epidemic threshold τc

for large network sizes N � 1:

τ (1)
c = 1

N − 1
= 1

N

[
1 + 1

N
+ O

(
1

N2

)]
,

τc,∞ = 1

N + 2 − 2
√

N + 1

= 1

N

[
1 + 2√

N
+ 2

N
− 1

N
√

N
+ O

(
1

N2

)]
.

Figure 9 illustrates that the eigenvalues ξ2, ξ3, and ξ4 reach
a minimum at a certain infection rate τ . We verify our hypoth-
esis that the minimum of ξ2, ξ3, or ξ4 coincides with the true
epidemic threshold by plotting the mean-field threshold τ (1)

c ,
Van Mieghem and Cator’s threshold τc,∞, and the numerically
obtained effective infection rates τ for which the eigenvalues
ξ2, ξ3 and ξ4 attain a minimum in Fig. 10. Additionally, we
compute the steady-state prevalence y∞ for the ε-SIS pro-
cess, and we take the derivative of the steady-state prevalence
y∞ with respect to the effective infection rate τ . Then the
epidemic threshold follows as the effective infection rate τ

for which dy∞/dτ is maximal.4 The maximum of dy∞/dτ

indicates for which effective infection rate τ the steady-state
prevalence grows the fastest, which is presumably a good
indicator of the epidemic threshold. Figure 10 depicts that the
effective infection rate τ where the minimum ξ3 is attained is
very close to Van Mieghem and Cator’s threshold based on
the maximum of dy∞/dτ . Interestingly, Van Mieghem and
Cator’s threshold τc,∞ is always larger than the mean-field
threshold τ (1)

c , but always lower than the other estimates.
Figure 11 shows the steady-state prevalence y∞ and the

eigenvalue ratio ρ for varying infection rates τ . Above
the epidemic threshold τc, the eigenvalue ratio ρ increases

4We further investigate the maximum of dy∞/dτ as a function of
the network size N in Sec. VI C.
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FIG. 11. The steady-state prevalence y∞, the mean-field steady-
state prevalence y(1)

∞ , and the eigenvalue ratio ρ with N = 30 nodes
and effective self-infection rate ε∗ = 10−5 for varying effective in-
fection rate τ . The vertical line indicates the mean-field epidemic
threshold τ (1)

c = 1
N−1 , which is slightly smaller than the true epidemic

threshold τc.

significantly and the time-dependent ε-SIS process will
show metastable behavior. Below the epidemic threshold τc,
metastability is never observed because the eigenvalue ratio
ρ is small. We conclude here that the epidemic threshold τc

not only describes for which infection rates τ the epidemic
persists or dies out, but it is additionally a good descriptor of
whether the ε-SIS process exhibits metastable behavior.

For noncomplete graphs, we expect that a similar conclu-
sion will hold, but the 2N -sized Markov chain for general
graphs prevents us from rigorously demonstrating this claim.
For connected Erdös-Rényi graphs with N � 12 nodes and
a randomly chosen link-connectivity p, simulations indicate
that the eigenvalue ratio ρ and the steady-state preva-
lence y∞ show a similar plot as for the complete graph
in Fig. 11.

C. The influence of the network size N

Finally, we investigate the effect of the network size N on
the ε-SIS process. In the limit N → ∞, the Markovian ε-SIS
process exactly converges to the mean-field approximation
[38]. Figure 12 shows the steady-state prevalence y∞ for var-
ious network sizes and the mean-field prevalence y(1)

∞ = 1 −
1/x. By increasing the network size N , the steady-state preva-
lence y∞ converges to the mean-field approximation. One of
the methods in Sec. VI B to estimate the epidemic threshold τc

is based on the computation of the derivative dy∞/dτ , which
is plotted in Fig. 12(b). We estimate the epidemic threshold
τc based on the peak of dy∞/dτ , which converges to the
mean-field threshold x = 1 if the network size N increases to
infinity. All curves have a 1/x2 tail, which agrees with the
mean-field steady-state prevalence dy(1)

∞ /dτ = 1/x2.
We further investigate the eigenvalues of the ε-SIS process

in Fig. 13, where we scale the effective infection rate τ/N
and the effective self-infection rate ε∗/N . If the effective in-
fection rate τ = 1.5τ (1)

c is larger than the epidemic threshold
τc, as shown in Fig. 13(a), then by fixing k, all eigenvalues
ξk converge to a constant value in the limit N → ∞. For
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FIG. 12. The normalized effective infection rate x = τ/τ (1)
c vs the steady-state prevalence y∞ for varying network sizes N and the mean-

field steady-state prevalence y(1)
∞ = 1 − 1

x and ε∗ = 0.01/N .

example, the second-largest eigenvalue ξ2 stays nearly con-
stant for N � 100. Closer to the epidemic threshold, namely
for τ = 1.2τ (1)

c in Fig. 13(b), convergence occurs near
N � 600.

The mean-field approximation of the ε-SIS process is
often used in network theory to reduce the computational
complexity of the 2N -sized Markov chain. In the limit
of the network size N approaching infinity, the mean-
field approximation becomes the exact solution, at least
for the complete graph [38]. In practice, however, finite-
sized networks are also approximated by mean-field methods,
introducing an approximation error. It is known that mean-
field methods perform poorly around the epidemic threshold,
because the assumed independence of the stochastic vari-
ables does not hold. We illustrate here that around the
epidemic threshold, the number of nodes N in the com-
plete graph required to obtain a reasonable accuracy with the
mean-field method tends to increase closer to the epidemic
threshold.

We illustrate the aforementioned statement by focusing on
the second-largest eigenvalue ξ2 of the transition matrix P. We
define the critical network size Nc as the smallest network size
N for which the second-largest eigenvalue ξ2 has a relative
error of less than 10−6 compared to ξ2 in the thermodynamic
limit. Figure 14 exemplifies that the critical network size Nc

increases if the epidemic threshold is approached from above.

VII. CONCLUSION

In this paper, we analyzed the continuous-time Markovian
ε-SIS process on the complete graph with N nodes. The tran-
sition matrix corresponding to the underlying Markov chain
has N + 1 distinct eigenvalues, of which the largest eigenvalue
is zero and corresponds to the steady state and the remain-
ing eigenvalues are all negative. Metastable behavior can be
observed in the ε-SIS process if the ratio between the second-
largest and third-largest eigenvalue of the transition matrix
is sufficiently large. The remaining eigenvalues are nearly
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FIG. 13. The eigenvalues of the transition matrix P for the complete graph with effective self-infection rate ε∗ = 0.01/N . Both subfigures
show the second-to-fifth-largest eigenvalues ξ2, ξ3, ξ4, ξ5 and smallest eigenvalue ξN+1 as a function of the network size N . Subfigure
(a) corresponds to effective infection rate τ = 1.5τ (1)

c = 1.5/(N − 1) and (b) to τ = 1.2τ (1)
c = 1.2/(N − 1).
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FIG. 14. The critical network size Nc as a function of the normal-
ized effective infection rate x = τ/τ (1)

c . The analysis is conducted on
the complete graph with effective self-infection rate ε∗ = 0.01/N .
The critical network size Nc, which indicates when the ε-SIS process
can be safely approximated using a mean-field method, increases if
the normalized effective infection rate x approaches the epidemic
threshold xc = 1.

degenerate for large effective infection rates, which results in
staircases in the eigenvalue plot. The staircases are particu-
larly related to the complete graph, and they are best visible
if ε∗ = nτ , where n = 1, 2, . . . . The epidemic threshold can
be accurately estimated using the effective infection rate for
which the third-largest eigenvalue of the transition matrix is
the smallest. We additionally showed that the epidemic thresh-
old not only distinguishes between small and large epidemic
outbreaks, but additionally describes when the ε-SIS process
may exhibit metastable behavior.

Even though we confined ourselves in this paper to the
complete graph, we believe that some of our results are phys-
ical characteristics of ε-SIS dynamics and may hold for any
graph. Monte Carlo simulations show metastable behavior for
the ε-SIS process on general graphs [21], in non-Markovian
SIS epidemics [39], and also in SIS processes on time-varying
or adaptive networks [40]. Therefore, our results on the com-
plete graph may describe the general physical behavior of
metastability in ε-SIS dynamics on networks.
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APPENDIX A: SIMPLIFYING THE TRANSITION MATRIX P

To prove that the (asymmetric) transition matrix P has real eigenvalues, we show that P is similar to a symmetric matrix.
Here, we follow Ref. [32] (Appendix A.6.3). We omit the tildes on the scaled birth rate λk and the scaled death rate μk in
this Appendix for readability. Let H be a diagonal matrix with values (h1, h2, . . . , hN+1) on the diagonal. Then the similarity
transform P̃ = HPH−1 equals

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 λ0
h1
h2

μ1
h2
h1

−(λ1 + μ1) λ1
h2
h3

μ2
h3
h2

−(λ2 + μ2) . . .

. . .

. . .

μN−2
hN

hN−1
−(λN−1 + μN−1) λN−1

hN
hN+1

μN−1
hN+1

hN
−μN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

To assure the symmetry P̃ = P̃T , we require that P̃i j = P̃ji for all 1 � i, j � N + 1. Then we find the following condition:

hk+1

hk
λk = hk

hk+1
μk−1 (A2)

for all k = 2, . . . , N . Solving recurrence relation (A2) and taking h1 = 1, we find that

hk =
√√√√k−1∏

i=1

μi−1

λi
,
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which implies that P̃ = HPH−1 is a symmetric matrix. The transformed matrix P̃ equals

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0
√

λ0μ1√
λ0μ1 −(λ1 + μ1)

√
λ1μ2√

λ1μ2 −(λ2 + μ2) . . .

. . .

. . . √
λN−2μN−1 −(λN−1 + μN−1)

√
λN−1μN√

λN−1μN −μN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The transformed matrix P̃ is symmetric and has therefore real eigenvalues. Since the similarity transform preserves the
eigenvalues, we conclude that P has real eigenvalues.

For the numerical computation of the eigenvalues of the transition matrix P, the best practice is to consider the transformed
matrix P̃ instead of the original matrix P, because symmetric matrices have favorable properties for most eigenvalue algorithms
[41]. We further improve the numerical procedure by removing the steady state π corresponding to the eigenvalue ξ = 0. Here,
we follow Ref. [35] (Secs. 3 and 4). Given the transition matrix P, we define P̄ as the reduced N × N-matrix with entries p̄i j =
p ji − p0i for i, j = 1, 2, . . . , N . We now prove that the eigenvalues of P̄ are equal to the eigenvalues of P, except for the removed
eigenvalue zero. Let ξ be an eigenvalue of P, and let v = (v0, v1, . . . , vN ) be the corresponding eigenvector. Furthermore, we
denote u as the (N + 1) × 1 all-ones vector. Since Pu = 0, it follows that

P̄T (v̄ − v0ū) = ξ (v̄ − v0ū),

where v̄ = (v1, . . . , vN ) and ū is the N × 1 all-ones vector. Thus ξ is also an eigenvalue of P̄, unless v̄ − v0ū = 0, which is only
true if v̄ is constant, thus corresponding to ξ = 0. Hence, the eigenvalues of P̄ equal the eigenvalues of P, and the matrix P̄
equals

P̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ0 + λ1 + μ1) μ2 − λ0 −λ0 . . . −λ0 −λ0 −λ0

λ1 −(λ2 + μ2) μ3

. . .

. . .

λN−2 −(λN−1 + μN−1) μN

λN−1 −μN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The reduced matrix P̄ can be transformed into a tridiagonal matrix. Let T be the upper triangular matrix with ones at and above
the diagonal, and the remaining terms are zero. Then

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
1 1 · · · 1 1

. . .
...

...
. . .

...
...

1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, T −1 =

⎛
⎜⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .

1 −1
1

⎞
⎟⎟⎟⎟⎠,

such that the reduced, transformed matrix ¯̄P = T P̄T −1 equals

¯̄P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ0 + μ1) μ1

λ1 −(λ1 + μ2) μ2

λ2 −(λ2 + μ3) . . .
. . .
. . .

λN−2 −(λN−2 + μN−1) μN−1

λN−1 −(λN−1 + μN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The reduced, transformed matrix ¯̄P is asymmetric and can be converted to a symmetric matrix ˜̄̄P using the same transformation

matrix H as for the original transition matrix P. The main advantages of the reduced, transformed, symmetric matrix ˜̄̄P compared
to the original transition matrix P are that numerical methods to obtain eigenvalues (i) are more efficient because the matrix is
symmetric, (ii) prevent complex eigenvalues due to symmetry, and (iii) are less prone to rounding errors as the zero eigenvalue
is removed.
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FIG. 15. Illustration of the effective self-infection rate ε∗ for
which the metastable prevalence y and the steady-state prevalence
y∞ are equal. The power-law tail is observed for τ > 0.3 ≈ 9τ (1)

c and
the results are obtained on a graph with N = 30 nodes.

APPENDIX B: EQUAL METASTABLE
AND STEADY-STATE PREVALENCE

The time-dependent behavior of the ε-SIS process, which
is illustrated in Fig. 2, shows that the final steady-state preva-
lence y∞ can be lower or higher than the prevalence y in the
metastable state. For a given network size N and effective
infection rate τ , we believe that there always exists some
ε∗ > 0 for which the prevalence in the metastable state and
the steady-state prevalence y∞ are equal. We numerically
determine this self-infection rate ε∗ and depict the result in
Fig. 15. We only show effective infection rates τ that are larger
than the epidemic threshold τc, because the metastable state
does not exist below the threshold. If the effective infection
rate τ is sufficiently large, Fig. 15 depicts a power-law decay
with exponent α = −27.6.

We find an explanation for this result in Theorem 4 by Van
Mieghem [7], which states that the epidemic threshold τc for
sufficiently small ε∗ is bounded by

1

e

(
10−s

ε∗(N − 1)!

) 1
N−1

< τc <

(
10−s

ε∗(N − 1)!

) 1
N−1

,

where 10−s specifies an agreed fraction of infected nodes that
determines whether an outbreak has taken place. Considering
that the final steady-state prevalence y∞ is of order 1, we
choose s = 0. Naturally, the equation can be rewritten in terms
of the effective self-infection rate ε∗:

1

e1−N (N − 1)!
τ 1−N � ε∗ � 1

(N − 1)!
τ 1−N . (B1)

Considering the example in Fig. 15 with N = 30 nodes, our
estimation (B1) states that

10−19τ−29 � ε∗ � 10−31τ−29.

The estimation is very similar to the fitted function from
Fig. 15, but for larger effective self-infection rates ε∗, the
approximated solution (B1) starts to deviate.

APPENDIX C: MEAN-FIELD ε-SIS

The well-known N-intertwined mean-field approximation
(NIMFA) [16] assumes that any two stochastic variables X
and Y are uncorrelated: E[XY ] = E[X ]E[Y ]. Applying the
mean-field approximation to the ε-SIS process on the com-
plete graph, the governing equations become (Ref. [32],
p. 462)

dsMF(t )

dt
= εu − (δ + ε)sMF(t ) + diag [u − sMF(t )]B̃sMF(t ),

(C1)

where sMF(t ) = (s1(t ), . . . , sN (t ))T is the N × 1 viral state
vector, u = (1, . . . , 1)T is the N × 1 all-ones vector, and B̃ =
β(uuT − I ), where I is the N × N identity matrix. As an upper
bound to Eq. (C1), we consider the ε-NIMFA process with
self-loops, thus βii = β > 0. Furthermore, we rescale time
t̃ = δt , and introducing the effective infection rate τ = β/δ

and the effective self-infection rate ε∗ = ε/δ, we find, after
dropping the tildes,

dsMF(t )

dt
= ε∗u − (1 + ε∗)sMF(t ) + diag [u − sMF(t )]BsMF(t ),

(C2)

where B = τuuT . We adopt the approach in [36] to obtain
the solution of the ε-SIS process on the complete graph. Since
the Markovian ε-SIS process is non-negatively correlated [42]
and we introduced self-loops βii > 0, the solution of (C2) is a
strict upper bound for Markovian ε-SIS dynamics.

Proof of Theorem IV.1. We prove Theorem IV.1 in three
steps. First, in Appendix C 1, we show that the viral state
sMF(t ) is in a two-dimensional subspace at every time t .
More specifically, we show that sMF(t ) = c1(t )z1 + c2(t )z2

for two N × 1 agitation modes z1, z2 and two scalar functions
c1(t ), c2(t ) ∈ R. Second, in Appendix C 2, we obtain the
closed-form expression for the function c1(t ). Third, given the
function c1(t ), we obtain the function c2(t ) in Appendix C 3.

1. The viral state is in a two-dimensional subspace

With the definition of the agitation mode z1 in (8), we can
write the infection rate matrix B as

B = τNz1zT
1 .

Thus, ε-NIMFA on the complete graph (C2) becomes

dsMF(t )

dt
= ε∗√Nz1 − (1 + ε∗)sMF(t ) + diag(

√
Nz1

− sMF(t ))τNz1zT
1 sMF(t ).

Suppose that (7) holds at time t . Then, we obtain that

dsMF(t )

dt
= ε∗√Nz1 − (1 + ε∗)c1(t )z1 − (1 + ε∗)c2(t )z2

+ diag[(
√

N − c1(t ))z1 − c2(t )z2]τNz1zT
1 [c1(t )z1

+ c2(t )z2].
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Since zT
1 z1 = 1 and zT

1 z2 = 0, it follows that

dsMF(t )

dt
= (ε∗√N − (1 + ε∗)c1(t ))z1 − (1 + ε∗)c2(t )z2

+ τNc1(t ) diag[(
√

N − c1(t ))z1 − c2(t )z2]z1,

which is equivalent to

dsMF(t )

dt
= (ε∗√N − (1 + ε∗)c1(t ))z1 − (1 + ε∗)c2(t )z2

+ τN
(√

Nc1(t ) − c2
1(t )

)
diag(z1)z1

− τNc1(t )c2(t ) diag(z2)z1.

From the definition of the agitation mode z1 in (8), we obtain
that diag(z1)z1 = z1/

√
N and diag(z2)z1 = z2/

√
N . Thus, we

arrive at

dsMF(t )

dt
= (ε∗√N − (1 + ε∗)c1(t ))z1 − (1 + ε∗)c2(t )z2

+ τ
√

N
(√

Nc1(t ) − c2
1(t )

)
z1 − τ

√
Nc1(t )c2(t )z2,

which simplifies to

dsMF(t )

dt
= (

ε∗√N + (τN − 1 − ε∗)c1(t ) − τ
√

Nc2
1(t )

)
z1

− (1 + ε∗ + τ
√

Nc1(t ))c2(t )z2. (C3)

Hence, the N × 1 viral state vector sMF(t ) is equal to the linear
combination (7) of only two agitation modes z1, z2 at every
time t . Thus, solving ε-NIMFA on the complete graph sim-
plifies to obtaining a closed-form expression for the functions
c1(t ) and c2(t ).

2. First agitation mode

Since
dcl (t )

dt
= zT

l

dsMF(t )

dt
(C4)

for both l = 1, 2, we obtain for the scalar function c1(t ) from
(C3) that

dc1(t )

dt
= ε∗√N + (τN − 1 − ε∗)c1(t ) − τ

√
Nc2

1(t ). (C5)

The differential equation (C5) is separable,

dc1(t )

−τ
√

Nc2
1(t ) + (τN − 1 − ε∗)c1(t ) + ε∗√N

= dt .

Hence, it follows that

dc1(t )

c2
1(t ) + μ1c1(t ) − μ2

= −τ
√

Ndt (C6)

with the constants

μ1 = 1 + ε∗ − τN

τ
√

N
(C7)

and

μ2 = ε∗

τ
. (C8)

We obtain from (C6) that∫
dc1(t )

c2
1(t ) + μ1c1(t ) − μ2

= −τ
√

Nt + K (c1(0))

for some constant K (c1(0)) ∈ R. By integration, it follows
that

2√
−4μ2 − μ2

1

tan−1

⎛
⎝ μ1 + 2c1(t )√

−4μ2 − μ2
1

⎞
⎠ = −τ

√
Nt + K (c1(0)),

which yields that

μ1 + 2c1(t )√
−4μ2 − μ2

1

= tan

(
1

2

√
−4μ2 − μ2

1(−τ
√

Nt + K (c1(0)))
)

.

We isolate for c1(t ) and arrive at

c1(t ) = −1

2
μ1 + 1

2

√
−4μ2 − μ2

1 tan

(
1

2

√
−4μ2 − μ2

1

(−τ
√

Nt + K (c1(0))
))

.

With the imaginary unit i = √−1, it follows that

c1(t ) = − 1

2
μ1 + 1

2
i
√

μ2
1 + 4μ2 tan

(
1

2
i
√

μ2
1 + 4μ2(−τ

√
Nt + K (c1(0)))

)
.

Finally, with the relation i tan(i x) = − tanh(x) of the tangent and hyperbolic tangent and with − tanh(x) = tanh(−x) for all
x ∈ R, we arrive at

c1(t ) = − 1

2
μ1 + 1

2

√
μ2

1 + 4μ2 tanh

(
1

2

√
μ2

1 + 4μ2(τ
√

Nt − K (c1(0)))
)

. (C9)

To further simplify (C9), we obtain with the definition of the constants μ1 and μ2 in (C7) and (C8) that

√
μ2

1 + 4μ2 =
√

(1 + ε∗ − τN )2

τ 2N
+ 4

ε∗

τ
,

054305-16



ANALYSIS OF CONTINUOUS-TIME MARKOVIAN … PHYSICAL REVIEW E 105, 054305 (2022)

which simplifies to √
μ2

1 + 4μ2 = 1

τ
√

N
wε∗ , (C10)

where we define the viral slope wε∗ for ε-NIMFA as

wε∗ =
√

(1 + ε∗ − τN )2 + 4ε∗τN .

If ε∗ = 0, then the viral slope wε∗ equals wε∗ = |w|, where w is the viral slope of the NIMFA model, defined in [43]. With (C10)
and the definition of μ1 in (C7), the function c1(t ) in (C9) becomes

c1(t ) = 1

2

τN − 1 − ε∗

τ
√

N
+ 1

2

1

τ
√

N
wε∗ tanh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)

with the constant ϒ1,ε∗ (c1(0)) = − 1
2

1
τ
√

N
wε∗K (c1(0)). Thus, it holds that

c1(t ) = 1

2τ
√

N

[
τN − 1 − ε∗ + wε∗ tanh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)]
. (C11)

The initial condition of the projection c1(t ) is given by c1(0) = zT
1 sMF(0), which yields for the constant ϒε∗ (c1(0)) that

ϒ1,ε∗ (c1(0)) = arctanh

(
1

wε∗

(
2τ

√
NzT

1 sMF(0) − τN + 1 + ε∗)).

3. Second agitation mode

From (C4) for l = 2, it follows with (C3) that the scalar function c2(t ) obeys

dc2(t )

dt
= −(1 + ε∗ + τ

√
Nc1(t ))c2(t ). (C12)

The closed-form expression for the function c1(t ) is given in (C11), and the differential equation (C12) becomes

dc2(t )

dt
= −(1 + ε∗)c2(t ) − 1

2

[
τN − 1 − ε∗ + wε∗ tanh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)]
c2(t ) (C13)

= −1 + ε∗ + τN

2
c2(t ) − wε∗

2
tanh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)
c2(t ). (C14)

The remaining steps are similar to Ref. [36] (Proof of Theorem 4). Since

d ln (c2(t ))

dt
= 1

c2(t )

dc2(t )

dt
,

we obtain that

d ln (c2(t ))

dt
= − 1 + ε∗ + τN

2
− wε∗

2
tanh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)
. (C15)

The integral of the hyperbolic tangent equals [44]∫
tanh(ξ )dξ = ln (cosh(ξ )) + C

for an arbitrary constant C ∈ R, where cosh(ξ ) denotes the hyperbolic cosine. Hence, we obtain with the chain rule from (C15)
that

ln (c2(t )) = − 1 + ε∗ + τN

2
t − wε∗

2

2

wε∗
ln

(
cosh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

))
+ C

for some constant C ∈ R. Thus, exponentiation yields that the function c2(t ) equals

c2(t ) = exp(C) exp

(
−1 + ε∗ + τN

2
t

)[
cosh

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)]−1

= ϒ2,ε∗ (c2(0)) exp

(
−1 + ε∗ + τN

2
t

)
sech

(
wε∗

2
t + ϒ1,ε∗ (c1(0))

)
,

where we denote the hyperbolic secant by sech(ξ ) = cosh(ξ )−1. The constant ϒ2,ε∗ (c2(0)) follows from the initial condition
c2(0) = zT

2 sMF(0) as

ϒ2,ε∗ (c2(0)) = zT
2 sMF(0) cosh (ϒ1,ε∗ (c1(0))). (C16)
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FIG. 16. The time-varying prevalence y(t ) for the complete
graph with N = 30 nodes, effective infection rate τ = 2.5τ (1)

c , and
effective self-infection rate ε∗ = 10−6. The solid line indicates the
solution (5), and the dashed lines show the approximation (D1) for
various values of m.

APPENDIX D: EIGENVALUE TRUNCATION
OF THE ε-SIS PROCESS

If the metastable state exists, Fig. 2 depicts roughly three
regimes for the time-varying prevalence: (I) initial phase, (II)
metastable behavior, and (III) convergence to the steady state.
Since the behavior is rather limited, we expect that the time-
dependent dynamics of the ε-SIS process can be accurately
approximated. Apart from the largest eigenvalue ξ1 = 0 and
the second-largest eigenvalue ξ2, the majority of the eigenval-
ues are largely clustered. The (N + 1)-sized linear process (1)
can perhaps be approximated accurately with only m � (N +
1) eigenvalues and eigenvectors. This methodology has been
applied successfully for the mean-field SIS model around the
epidemic threshold [43], but to the best of our knowledge, no
results have been obtained for the Markovian SIS process.

We approximate the solution (5) by considering only the m
largest eigenvalues and corresponding eigenvectors:

s̃(t ) =
m∑

k=1

ckeξkt wk, (D1)

where ck = vT
k s(0). Approximating the exact solution (5) by

the approximation (D1) introduces an error,

e(t ) = ‖s(t ) − s̃(t )‖ =
∥∥∥∥∥

N+1∑
k=m+1

ckeξkt wk

∥∥∥∥∥ �
N+1∑

k=m+1

eξkt‖ckwk‖,

where ‖ · ‖ denotes a vector norm and we used the vector
inequality ‖a + b‖ � ‖a‖ + ‖b‖. Further, since eigenvectors
are normalized with norm 1,

e(t ) �
N+1∑

k=m+1

eξkt‖ckwk‖ < eξm+1t
N+1∑

k=m+1

|ck|.

Thus the error scales as e(t ) = O(eξm+1t ). Figure 16 shows the
solution (5) and the approximation (D1) for various choices

20 40 60 80 100
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15

FIG. 17. The relation between the critical number of eigenvalues
m∗ and the number of nodes N in the graph. The critical number m∗

is defined as the smallest integer m for which the initial prevalence
ỹ(0) of the approximated solution (D1) differs at most 10−3 from the
initial prevalence y(0) of the exact solution (1).

of m. The original solution (5) is recovered accurately using
only m = 8 from the total of 31 eigenvalues.

We define the critical number of eigenvalues m∗ as the
smallest m for which |y(0) − ỹ(0)| � 10−3, where y(0) and
ỹ(0) describe the initial prevalence of the exact solution (5)
and approximated solution (D1), respectively. The critical
number m∗ is an integer between 1 and N + 1. Figure 17
shows an apparent linear relationship between the critical
number m∗ and the network size N . Even though an accurate
approximation is possible, the number of required eigenvalues
grows linearly with the network size N , effectively rendering
the approximation method infeasible for large networks. This
contrasts results for the mean-field ε-SIS process with arbi-
trary initial conditions but homogeneous parameters, where
the number of required equations reduces to only two (see
Appendix C).

APPENDIX E: EIGENVALUE APPROXIMATIONS
AND BOUNDS

This Appendix contains all proofs for the eigenvalues ξk of
the transition matrix P in Eq. (2) in several parameters limits.
Most proofs use the symmetric transition matrix P̃, which is
derived in Appendix A. We start by presenting Theorem E.1.

Theorem E.1 (based on Ref. [45], pp. 366–372, and
Ref. [46], pp. 303–321). Given a Hermitian matrix P = A +
αB, where A and B are Hermitian matrices and α is a small
parameter, such that the element ai j is strictly larger than bi j

for all α and all 1 � i, j � N . We assume that the eigenvalues
ξ

(0)
k and eigenvectors x(0)

k of the unperturbed matrix A can be
computed easily.
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(a) If an eigenvalue ξ
(0)
k of A is simple, then the eigenvalue

ξk of P is up to fourth order

ξk = ξ
(0)
k + αWkk + α2

N∑
l=1
l 
=k

|Wlk|2
ξ

(0)
k − ξ

(0)
l

+ α3
N∑

l=1
l 
=k

(Wll − Wkk )

(
Wkl

ξ
(0)
k − ξ

(0)
l

)2

+ α3
N∑

l=1
l 
=k

N∑
m=1
m 
=k
m 
=l

WklWlmWmk(
ξ

(0)
k − ξ

(0)
l

)(
ξ

(0)
k − ξ

(0)
m
) + O(α4),

where Wi j = (x(0)
i )T Bx(0)

j .

(b) If an eigenvalue ξ
(0)
k of A is twofold single degenerate,5

then the eigenvalue ξk of P is up to third order

ξk = ξ
(0)
k + αξ

(1)
k + α2

N∑
l=1
l 
=k1
l 
=k2

|W ′
lk|2

ξ
(0)
k − ξ

(0)
l

+ O(α3),

where the eigenvalues ξ
(1)
k are determined from the eigenvalue

equation (
Wk1,k1 Wk1,k2

Wk2,k1 Wk2,k2

)(
αk

βk

)
= ξ

(1)
k

(
αk

βk

)
, (E1)

where Wi j = (x(0)
i )T Bx(0)

j . The indices k1 and k2 correspond

to the degenerate eigenvalues ξ
(0)
k = ξ

(0)
k1

= ξ
(0)
k2

. The cor-

rected zero-order eigenvectors are x′(0)
k = αk1 x(0)

k1
+ βk2 x(0)

k2
.

The second-order correction term requires the W ′ matrix,
which has elements W ′

i j = (x′(0)
i )T Bx′(0)

j .

(c) If an eigenvalue ξ
(0)
k of A is twofold double degenerate,6

then the eigenvalue ξk of P is up to third order

ξk = ξ
(0)
k + α

2

(
Wk1,k1 + Wk2,k2 ±

√(
Wk1,k1 − Wk2,k2

)2 + 4Wk1,k2Wk2,k1

)
+ α2

2

(
Mk1,k1 + Mk2,k2 ±

√(
Mk1,k1 − Mk2,k2

)2 + 4Mk1,k2 Mk2,k1

)+ O(α3),

where Wi j = (x(0)
i )T Bx(0)

j and

Mi j =
N∑

m=1
m 
=i
m 
= j

Wi,mWm, j

ξ
(0)
i − ξ

(0)
m

.

Sketch of the proof. Instead of providing a proof, we sketch
the idea of the proof here. An actual proof can be based on
[45] and/or [46].

The primary goal of this theorem is to approximate the
eigenvalues of a matrix P, for which exact computations are
generally infeasible. Defining a small variable α, we split up
the Hermitian (or here, symmetric) matrix P into P = A + αB,
where A is a diagonal matrix and B contains the remaining,
symmetric terms. We emphasize that both A and B may con-
tain functions of α, as long as the element ai j is larger than bi j

for all i, j in the limit α → 0. The division of P into A and B
is generally not unique, but the number of choices is heavily
restricted by the small parameter α.

If the eigenvalue ξk of the matrix A is nondegenerate,
one can perform an ordinary eigenvalue expansion that can
be found in any textbook covering perturbation expansions
of linear operators [part (a)]. Some eigenvalues may appear

5An eigenvalue ξ of some matrix A is twofold single degenerate if
the eigenvalue ξ appears twice in the spectrum of A and is no longer
degenerate after adding the first correction term.

6An eigenvalue ξ of some matrix A is twofold double degenerate if
the eigenvalue ξ appears twice in the spectrum of A and is no longer
degenerate after adding the second-order correction term.

multiple times in the spectrum of A, which complicates the
analysis. In our case, each eigenvalue exists at most twice,
thus we confine ourselves to twofold degeneracy. The proce-
dure can be easily generalized to n-fold degeneracy.

If the eigenvalues ξ
(0)
k are twofold-degenerate, the corre-

sponding eigenvectors are not determined up to a scalar value,
but are only known to be in the span of two vectors. We can
choose the eigenvectors freely, as long as they belong to the
span and are orthonormal to each other. If the eigenvalues are
distinct at the first order, that is, the degeneracy is lifted at the
first order [part (b)], we can determine the zeroth-order eigen-
vectors and use that basis as if we would perform a regular
expansion as in part (a), with the exception that the summation
over all terms excludes both the current index k as well as
the index k′ corresponding to the same zero-order eigenvalue
ξ

(0)
k = ξ

(0)
k′ and that we use the zeroth-order eigenvectors x′(0)

k

instead of the original x(0)
k .

If the first-order correction of the eigenvalue still maintains
the degeneracy, the second-order correction of the eigenvalues
must be computed [part (c)]. As before, if the eigenvalues are
no longer degenerate after adding the second-order correction,
the zeroth-order eigenvectors can be determined. The proce-
dure can be repeated up to higher orders, which is outside of
the scope of this theorem.

1. The limit ε∗ → ∞
Proof. The symmetric transition matrix P̃ from Eq. (A1)

can be rewritten as

P̃ = Ã + B̃,
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where Ã is a diagonal matrix with elements

Ãkk = −ε∗(N − k) for k = 0, 1, . . . , N

and B̃ is a symmetric, tridiagonal matrix with elements

B̃kk = −τk(N − k) − k,

B̃k−1,k =
√

k(N − k + 1)[(k − 1)τ + ε∗].

We define the small parameter α = 1√
ε∗ (which is small, be-

cause ε∗ → ∞), such that α2P̃ = A + αB, where we defined
A = α2Ã and B = αB̃. The matrix A is a diagonal matrix with

elements

Akk = −(N − k)

and the matrix B is then tridiagonal with elements

Bkk = −αk[τ (N − k) + 1],

Bk−1,k =
√

k(N − k + 1)[(k − 1)τα2 + 1].

The eigenvalues of A are simply ak = −(N − k) for k =
0, 1, . . . , N and the corresponding eigenvector xk = ek , where
ek is the (N + 1) × 1 all-zeros vector, except at entry k,
where it is 1. Since xk = ek , we immediately find that Wlk =
xT

l Bxk = Bkl . In the same manner, we find ak − al = k − l .
Given the uniqueness of the eigenvalues ak , we follow part (a)
of Theorem E.1 to find

α2ξk = −(N − k) + αBkk + α2
N∑

l=1
l 
=k

(Bkl )2

k − l
+ α3

N∑
l=1
l 
=k

(Bll − Bkk )
( Blk

k − l

)2

+ α3
N∑

l=1
l 
=k

N∑
m=1
m 
=k
m 
=l

BlkBml Bkm

(k − l )(k − m)
+ O(α4).

The value Bkl is only nonzero if l ∈ {k − 1, k, k + 1}. We conclude that BlkBml Bkm = 0 if k 
= l 
= m. Thus

α2ξk = −(N − k) + αBkk + α2
N∑

l=1
l 
=k

(Bkl )2

k − l
+ α3

N∑
l=1
l 
=k

(Bll − Bkk )
( Blk

k − l

)2

+ O(α4).

The α2-term can be worked out as follows:

N∑
l=1
l 
=k

(Bkl )2

k − l
=
(

B2
k,k−1

k − (k − 1)
+ B2

k,k+1

k − (k + 1)

)

= [τα2(k − 1) + 1](N − k + 1)k − (τα2k + 1)(N − k)(k + 1)

= τα2[(k − 1)(N − k + 1)k − k(N − k)(k + 1)] + [(N − k + 1)k − (N − k)(k + 1)]

= τα2k(3k − 2N − 1) + (2k − N ).

The α3-term can be worked out as follows:

N∑
l=1
l 
=k

(Bll − Bkk )

(
Blk

k − l

)2

= α

(
(2τk − τN − τ − 1)

B2
k,k−1

[k − (k − 1)]2
+ (2τk − τN + τ − 1)

B2
k,k+1

[k − (k + 1)]2

)

= α(2τk − τN − τ − 1)[τα2(k − 1) + 1](N − k + 1)k

+ α(2τk − τN + τ − 1)(τα2k + 1)(N − k)(k + 1)

= −8α3k3τ 2 + 3α3k2τ 2 + 3α3k2τ − 6αk2τ + 9α3k2Nτ 2 − α3kτ 2 − α3kτ

+ 2αk − 2α3kN2τ 2 − α3kNτ 2 − 2α3kNτ + 6αkNτ − αN2τ + αNτ − αN

= −6αk2τ + 2αk + 6αkNτ − αN2τ + αNτ − αN + O(α3).

Assembling the results, we find

α2ξk = −(N − k) + α2[−τk(N − k) − k] + α2(τα2k(3k − 2N − 1) + (2k − N ))

+ α4(−6k2τ + 2k + 6kNτ − N2τ + Nτ − N ) + O(α4).
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Using α2 = 1/ε∗, we find

ξk = −ε∗(N − k) − [τk(N − k) + k] +
(

1

ε∗ τk(3k − 2N − 1) + (2k − N )

)

+ 1

ε∗ (−6k2τ + 2k + 6kNτ − N2τ + Nτ − N ) + O

(
1

ε∗

)
.

The index k = 0, 1, . . . , N can be transformed so as to make sure that the eigenvalues ξk are descending: 0 = ξ1 > ξ2 > · · · >

ξN+1. We define the index k̂ = N − k + 1, which takes values in k̂ = 1, 2, . . . , N + 1 such that we recover

ξk̂ = −(k̂ − 1)ε∗ − (k̂ − 1)[τ (N + 1 − k̂) + 1]

+ (τ (2N + 2k̂N − 2 − 5k̂ − 3k̂2) + N − 2 − 2k̂)
1

ε∗ + O

(
1

ε∗

)
,

which concludes our proof. Presumably the O(α4)-terms will
bring additional terms for the O( 1

ε∗ )-term in the final solution,
thus our estimate is only correct until O( 1

ε∗ ).

2. The limit τ → ∞
If the effective infection rate τ tends to infinity, then

the dynamics of the ε-SIS process simplifies to an SI pro-
cess. Metastability cannot be observed in the SI process,
because the number of infected nodes only increases, until
all nodes are infected. The exact time-dependent solution of
the continuous-time Markovian SI process on any fixed graph
with heterogeneous infection rates is given in [47].

Proof. The symmetric transition matrix P̃ from Eq. (A1)
can be rewritten as

P̃ = Ã + B̃,

where Ã is a diagonal matrix with elements

Ãkk = −τk(N − k) for k = 0, 1, . . . , N

and B̃ is a symmetric, tridiagonal matrix with elements

B̃kk = −ε∗(N − k) − k,

B̃k−1,k =
√

k(N − k + 1)[(k − 1)τ + ε∗].

We define the small parameter α = 1√
τ

(which is small, be-

cause τ → ∞), such that α2P̃ = A + αB, where we defined
A = α2Ã and B = αB̃. The matrix A is then diagonal with
elements

Akk = −k(N − k)

and the matrix B is then tridiagonal with elements

Bkk = −α(ε∗(N − k) + k),

Bk−1,k =
√

k(N − k + 1)(k − 1 + ε∗α2).

The eigenvalues of A are simply ak = −k(N − k) for k =
0, 1, . . . , N and the corresponding eigenvector xk = ek , where
ek is the (N + 1) × 1 all-zeros vector, except at entry k where
it is 1. We distinguish between networks with even and odd
sizes and treat the case ε∗ = 1 with special care.

a. Case 1: Even size N

Consider a graph with an even number of nodes N . Then
the matrix A has one simple eigenvalue ak with index k =
N/2. The remaining eigenvalues are twofold-degenerate. Let
ak and aN−k be a pair of degenerate eigenvalues. Then the
eigenvalue equation is according to part (b) from Theorem
E.1, (

Bk,k Bk,N−k

BN−k,k BN−k,N−k

)(
αk

βk

)
= ξ

(1)
k

(
αk

βk

)
. (E2)

Since the number of nodes N is even, we know that Bk,N−k =
BN−k,k = 0 for all k 
= N/2. Thus the eigenvalue correction
equals

ξ
(1)
k = Bk,k = −α(ε∗(N − k) + k),

ξ
(1)
N−k = BN−k,N−k = −α(ε∗k + (N − k)),

which are different for all k 
= N
2 and all even network sizes

N , except when ε∗ = 1. If ε∗ 
= 1, the eigenvectors (αk βk )T

equal the elementary vectors ek , which implies7 that part (a)
from Theorem E.1 can be used instead of part (b).

Applying part (a) from Theorem E.1, we find

α2ξk = ak + αBkk + α2
N∑

l=1
l 
=k

(Blk )2

ak − al
+ O(α3)

= −k(N − k) − α2(ε∗(N − k) + k) + α2

(
(Bk−1,k )2

ak − ak−1
+ (Bk+1,k )2

ak − ak+1

)
+ O(α3)

7Please consult the sketch of the proof of Theorem E.1 for the complete reasoning.
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= −k(N − k) − α2(ε∗(N − k) + k) + α2

(
k(N − k + 1)(k − 1 + ε∗α2)

2k − N − 1
+ (k + 1)(N − k)(k + ε∗α2)

N − 1 − 2k

)
+ O(α3)

= −k(N − k) + α2

(
−ε∗(N − k) + k(N + 1)(N − k)

(2k − N − 1)(2k − N + 1)

)
+ O(α3).

Using α2 = 1
τ

, we find the following relationship for the eigenvalues:

ξk = −τk(N − k) +
(

−ε∗(N − k) + k(N + 1)(N − k)

(2k − N − 1)(2k − N + 1)

)
+ O

(
1√
τ

)
. (E3)

For k = N
2 , we simply find

ξN/2 = −τ
N2

4
− N

2

(
ε∗ + N

2
(N + 1)

)
+ O

(
1√
τ

)
. (E4)

From Eq. (E4), we may conclude that (E3) is only valid if τ > 2ε∗
N and τ > N + 1.

b. Case 2: Odd size N and ε∗ �= 1

For odd network sizes N , all eigenvalues ak are twofold-degenerate. All eigenvalues can be computed using (E3) provided that
ε∗ 
= 1. However, special attention is required for eigenvalues ak with indices k = N+1

2 and k = N−1
2 . In that case, the eigenvalue

equation (E1) becomes⎛
⎝−α

2 [ε∗(N + 1) + N − 1] N+1
2

√
N−1

2 + ε∗α2

N+1
2

√
N−1

2 + ε∗α2 −α
2 [ε∗(N − 1) + N + 1]

⎞
⎠(α(N−1)/2

β(N−1)/2

)
= ξ

(1)
(N−1)/2

(
α(N−1)/2

β(N−1)/2

)

whose eigenvalues are distinct:

ξ
(1)
(N−1)/2 = α(N − ε∗)

2
±
√(

α(N − ε∗)

2

)2

+ 1

8
(N + 1)2(N − 1).

The corresponding eigenvectors are

(
α(N−1)/2

β(N−1)/2

)
=
⎛
⎝α(N − ε∗) ±

√
α2(N − ε∗)2 + (N + 1)2

(
N−1

2 + ε∗α2
)

(N + 1)
√

N−1
2 + ε∗α2

⎞
⎠.

We will not continue our analysis for the O(α2) terms, because the computations are tedious. Our final result is

α2ξ(N−1)/2 = −N − 1

2

N + 1

2
+ α

α(N − ε∗)

2
±
√(

α(N − ε∗)

2

)2

+ 1

8
(N + 1)2(N − 1) + O(α2).

Using α2 = 1
τ

, we find the following relationship for the eigenvalues:

ξ(N−1)/2 = −1

4
τ (N − 1)(N + 1) ± √

τ (N + 1)

√
N − 1

2
+ O(1). (E5)

The relation (E5) is a valid perturbation expansion if τ > 8
N−1 . Since the computations of the second-order terms are tedious, we

have omitted them here. The key observation is that the eigenvalue ξ(N−1)/2 scales with an O(
√

τ ) term, which is not the case for
even-sized networks. We have not found any physical or intuitive reasoning why this is the case.

c. Case 3: Even size N and ε∗ = 1

In this case, we construct the M-matrix for k 
= N/2,

M =
(

Mkk Mk,N−k

MN−k,k MN−k,N−k

)
,

where

Mk,N−k =
N∑

m=1
m 
=k

m 
=N−k

Wk,mWm,N−k

ξ
(0)
k − ξ

(0)
m

.
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We find

Mkk = k(N − k)(N + 1)

(2k − N − 1)(2k − N + 1)
+ k + α2 k2 + (N − k)2 + N

(2k − N − 1)(2k − N + 1)
.

In most cases, Mk,N−k = 0 because the product Wk,mWm,N−k is only nonzero for m = k − 1 or m = k + 1, and m = N − k + 1
or m = N − k − 1. Hence, the product is only non-zero if k = N

2 − 1. Thus, for k 
= N
2 − 1, the second-order correction of the

eigenvalues is unique and the eigenvalues follow as

α2ξk = −k(N − k) − α2N + α2

(
k(N − k)(N + 1)

(2k − N − 1)(2k − N + 1)
+ k + α2 k2 + (N − k)2 + N

(2k − N − 1)(2k − N + 1)

)
+ O(α3).

Using α2 = 1
τ

, we find the following relationship for the eigenvalues:

ξk = −τk(N − k) + k − N + k(N − k)(N + 1)

(2k − N − 1)(2k − N + 1)
+ O

(
1√
τ

)
. (E6)

For k = N
2 − 1, additional work is required because the off-diagonal terms are nonzero. The M-matrix is in this case

M =
⎛
⎝ 1

12 (N − 2)(N2 + 3N + 8) N
2

(
N
2 + 1

)√(
N
2 − 1 + α2

)(
N
2 + α2

)
N
2

(
N
2 + 1

)√(
N
2 − 1 + α2

)(
N
2 + α2

)
1

12 (N + 2)(N2 − N + 4)

⎞
⎠

whose eigenvalues are

ξ
(2)
k = N3

12
+ N2

12
+ N

6
− 1

3
±
√

1 +
(

N

2

)3(N

2
+ 1

)2(N

2
− 1

)

thus the total eigenvalue expansion equals

ξk = −τ

(
N

2
− 1

)(
N

2
+ 1

)
+ N3

12
+ N2

12
− 5N

6
− 1

3
±
√

1 +
(

N

2

)3(N

2
+ 1

)2(N

2
− 1

)
.

d. Case 4: Odd size N and ε∗ = 1

For the case k 
= N−1
2 , the eigenvalues follow from (E6)

and the result for k = N−1
2 is described in (E5).

Finally introducing k̃ = k + 1, such that the index k̃ runs
from 1 to N + 1, finalizes the proof.

3. Limit ε∗ → 0

For self-infection rates ε∗ < 1
N , Gershgorin’s circle theo-

rem leads to a tight bound for the smallest eigenvalue ξN+1.
The case τ > τc appeared earlier in Ref. [48] (Corollary 3).

Proof. We denote the (not necessarily ordered) eigenvalues
ξ1, . . . , ξN+1 of the transition matrix P from Eq. (2). Given
the scaled birth rate λ̃k and death rate μ̃k , Gershgorin’s circle
theorem provides the following bounds for the eigenvalues:

|ξk + λ̃k + μ̃k| � λ̃k−1 + μ̃k+1.

Substituting the scaled birth rate λ̃k = (τk + 1)(N − k) and
the scaled death rate μ̃k = k, we find

f (k) � ξk � 1 + ε∗ + τ (2k − N − 1), (E7)

where the lower bound f (k) equals

f (k) = −τ [(k − 1)(N − k + 1) + k(N − k)]

− ε∗[2N − 2k + 1] − [2k + 1]. (E8)

The lower bound f (k) is negative for all k = 1, . . . , N +
1. The upper bound is most negative for k = 1, hence
mink ξk � 1 + ε∗ − τ (N − 1). Using τ = xτ (1)

c = x
N−1 , we

find mink ξk � 1 − x + ε∗ < 0 above the epidemic threshold

(x > 1). For the remaining eigenvalues ξk , the upper bound
is larger than zero, which is not confining. Simulations also
indicate that the upper bound is very loose. Instead, we focus
on the lower bound f (k).

a. Above the epidemic threshold

The lower bound f (k) is the smallest when d f
dk = 0, and

we find8

d f

dk
(k̂) = −τ (2N − 4k̂ + 2) + 2ε∗ − 2 = 0. (E9)

Solving for k̂ gives

k̂ = 1 − ε∗

2τ
+ N + 1

2
.

Since we consider the case ε∗ < 1
N , the effective self-infection

rate ε∗ can be neglected,

k̂ = 1

2τ
+ N + 1

2
. (E10)

Hence, k̂ is at least larger than N/2. The lower bound becomes

f (k̂) = − 1

2τ
− 3

2
− N − τN (N − 1)

2
+ ε∗

[
1

τ
− N

]
.

8We assume here that the function f (k) is varying slowly, which
means that the difference between f (k + 1) and f (k) is small for all
k. Since the function f (k) is a quadratic function in k, the function
f (k) indeed varies sufficiently slowly.

054305-23



ACHTERBERG, PRASSE, AND VAN MIEGHEM PHYSICAL REVIEW E 105, 054305 (2022)

Using the normalized effective infection rate x = τ (N − 1),
we approximately find

f (k̂) ≈ −
(

1

2x
+ 1 + x

2

)
N +

(
1

2x
− 3

2

)
. (E11)

The lower bound (E11) holds for all eigenvalues ξk where 1 �
k � N + 1. Thus we may conclude that

ξN+1 � −
(

1

2x
+ 1 + x

2

)
N.

b. Below the epidemic threshold

If τ < τ (1)
c = 1

N−1 , the lower bound f (k) is the smallest for

k̂ = N − 1. We find

f (k̂) = −τ (3N − 5) − 2N + 1.

Using τ = x
N−1 and x < 1, we find approximately

f (k̂) ≈ −2N + 1 − 3x. (E12)

Equation (E12) holds for all eigenvalues ξk , with 1 � k �
N + 1, thus we conclude that

ξN+1 � −2N.

4. The limit τ → 0

If the effective infection rate τ = 0, then the ε-SIS model
reduces to a birth and death process with linear rates that can
be solved exactly for any time t and any number of initially in-
fected nodes [19]. The eigenvalue ratio ρ in the limit of small
effective infection rates τ is approximately ρ = ξ3/ξ2 ≈ 3/2,
because the second-largest eigenvalue ξ2 ≈ −2 and ξ3 ≈ −3.
Thus, metastability cannot be observed for small effective
infection rates τ .

5. Final considerations

Apart from limit cases and bounds, the second-largest
eigenvalue ξ2 can be computed using the following approach.

Theorem E.2 (Van Doorn et al. [35]). The convergence rate
−ξ2 equals

max
d>0

min
1�k�N

αk = −ξ2 = min
d>0

max
1�k�N

αk, (E13)

where d = (d1, . . . , dN ), and di > 0 for i = 1, . . . , N and

αk = τ

[(
dk+1

dk
− 1

)
k2 +

(
1 − dk+1

dk

)
kN + 2k − N − 1

]

+ ε∗
[(

dk+1

dk
− 1

)
k +

(
1 − dk+1

dk

)
N + 1

]

+
[(

1 − dk−1

dk

)
k + dk−1

dk

]

for k = 1, . . . , N and d0 = dN+1 = 0.
Theorem E.2 associates the computation of the second-

largest eigenvalue ξ2 of the transition matrix P to the finding
of a suitable, positive vector d. Equation (E13) illustrates
that choosing any positive vector d directly provides lower
and upper bounds for the convergence rate ξ2. Unfortunately,
simply generating random values for the vector d does not
provide sharp bounds for the second-largest eigenvalue ξ2.

As an example, we consider d = u, where u is the N × 1
all-ones vector. According to Theorem E.2, the convergence
rate ξ2 is then bounded by

−τ (N − 1) + 1 + ε∗ � −ξ2 � τ (N − 1) + 1 + ε∗. (E14)

If the effective infection rate τ is larger than the mean-field
epidemic threshold τ (1)

c = 1
N−1 , the lower bound in (E14) is

negative and therefore not confining. For τ < τc, the lower
bound in (E14) appears to be a loose bound. In the limit τ →
0, the convergence rate equals −ξ2 = 1 + ε∗, which agrees
with Theorem V.1. The upper bound is positive in both cases,
and is at least 1, but it appears to be a loose bound as well.
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