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The betweenness centrality (BC) is an important quantity for understanding the structure of complex large
networks. However, its calculation is in general difficult and known in simple cases only. In particular, the
BC has been exactly computed for graphs constructed over a set of N points in the infinite density limit,
displaying a universal behavior. We reconsider this calculation and propose an expansion for large and finite
densities. We compute the lowest nontrivial order and show that it encodes how straight are shortest paths and
is therefore nonuniversal and depends on the graph considered. We compare our analytical result to numerical
simulations obtained for various graphs such as the minimum spanning tree, the nearest neighbor graph, the
relative neighborhood graph, the random geometric graph, the Gabriel graph, or the Delaunay triangulation. We
show that in most cases the agreement with our analytical result is excellent even for densities of points that are
relatively low. This method and our results provide a framework for understanding and computing this important
quantity in large spatial networks.
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I. INTRODUCTION

There are many centralities for characterizing the impor-
tance of a node in a network [1]. Among those, local quantities
fail to give interesting information about global structures
while path-related measures are more relevant to describe
the large-scale organization of networks. In particular, the
betweenness centrality (BC), introduced in Ref. [2] is a good
probe of the structure of a network. Also, if one assumes
that (i) individuals or goods travel on shortest paths in the
network, and (ii) the demand is uniform (each pair of nodes
constitutes an origin-destination couple), then the BC of a
node (or an edge) corresponds to the local traffic that can be
found at this node (or edge). In reality, the two assumptions
are not always satisfied and how much of the real traffic the
BC can explain is a debated question [3–5]. In general, highly
congested points are signaled by very large values of the BC
and this is relevant not only for transportation networks but
also for communication networks such as the Internet where
information packets can experience congestion problems at
routers. In a router-based communication network, all nodes
are connected to it directly and the BC is irrelevant in this case.
A new direction for modern design of physical layer networks
is to construct “wireless ad hoc networks,” where routers are
absent and packets of information are routed in a multihop
fashion between any two nodes [6–8]. This design allows for
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much larger and flexible networks and are nowadays realized
under Wi-Fi direct standards. For these decentralized systems,
the BC is a very relevant quantity and can be used as a criteria
for identifying cluster nodes [9] or to identify the vulnera-
bility backbone of the network [10]. Still in communication
networks, it is intuitive to think that the traffic between nodes
tends to go through a small core of nodes. In this case, the
shortest paths are somehow curved inwards and it has been
suggested that this is related to the global curvature of the
network [11,12]. A natural way to measure the impact of the
structure on the load in the network is then to understand
how the maximum traffic—approximated by the maximum
BC—depends on various graph properties and scales with the
system size measured by the number of nodes [11]. Narayam
and Saniee [11] studied empirically various networks and
found essentially two families characterized by different val-
ues of the exponent that governs this scaling. These authors
proposed the idea that this behavior is controlled by the cur-
vature of the network and this was justified mathematically by
Jonckheere et al. [12].

The BC is of interest for spatial networks (planar or
not) and real-world applications such as transport net-
works [13–16]. For street networks in cities, studies unveiled
the presence of crucial nodes with very large BC [13,16,17]
and the localization of these congested points can reveal inter-
esting features about the organization of the network [16,17]
and its large-scale organization [14,16,18]. More recently, an
empirical study on almost 100 cities worldwide demonstrated
that the empirical BC distribution seems to be an invariant in
world cities [19]: its structure results from the superimposition
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of a backbone tree (corresponding to the minimum spanning
tree) and redundant streets in agreement with the picture
proposed in Ref. [20] for synthetic networks. The interest in
the BC also lies in the fact that it is correlated with some
economic features such as the density of retail stores [21–26]
(we note that another analysis about Buenos Aires challenges
this relation [27]).

From a more theoretical point of view, however, few
general results are known about the BC [28–30]. Particular
geometries such as branches and loops are well under-
stood [31] while more involved geometries were studied only
recently [32]. Yet, a major theoretical result concerns planar
graphs constructed on random points embedded in a bounded
set. In this generic case, when there is an infinite number
of points in the domain (usually a square or a disk), the
shortest paths on the graph will likely be straight lines and
the BC of any point can be computed exactly as a function
of its position [33]. We note here that how the shortest path
deviate from the straight line is interesting itself [34] and more
generally, the shape of shortest paths is an important prob-
lem [35] in relation with the first passage percolation problem,
a well-known subject in statistical physics (see, for example,
Ref. [36] and references therein). Here, we extend this infinite
density calculation to the case of large but finite densities and
the organization of this paper is as follows. We will first define
the BC and recall some of its general properties and results
(in particular for simple graphs). We will then present the
perturbation expansion around the infinite density limit and
test these results for various graphs constructed over a set of
points in the plane.

II. THE BETWEENNESS CENTRALITY

A. Definition and generalities

The betweenness centrality for a node i in a graph G with
N nodes is defined as [2]

g(i) = 1

N
∑
s �=t

σst (i)

σst
, (1)

where σst is the number of shortest paths from node s to node
t and σst (i) the number of these shortest paths that go through
node i. The quantity N is a normalization that we choose here
N = (N − 1)(N − 2) so that the BC is in [0,1]. We can define
in a similar way the BC g(e) for an edge e using the quantity
σst (e) which is the number of shortest path from node s to
node t going through the link e.

It can be shown that the BC averaged over all nodes
g = 1/N

∑
i g(i) is proportional to the average shortest path

� [28,29] (which is the shortest distance between two nodes
in the graph, averaged over all pairs of nodes). This allows in
particular to understand that adding a link to the graph will de-
creases the average BC. More precisely, it can be shown [29]
that if we add to a graph of size N a link of shortest path length
d , the average BC transforms according to

g → g − 2(d − 1)

N
. (2)

We note here that if the BC decreases on average, it does not
imply that the BC of all nodes decreases when adding new

links. Locally, we can observe a increase of the BC of some
points.

B. One and two dimensional grids

For one-dimensional lattices with N nodes, it is easy to
show that the BC of node i (i ∈ �1, N�) is given by

g(i) = i

N

(
1 − i

N

)
. (3)

The barycenter of all nodes ib = N/2 is then also the most
central node. There are other results available in 1D and
we mention here the example of the random geometric
graph [37].

For a two-dimensional square grid, it is easy to express the
BC of a node as a sum of combinatorial factors that count the
number of paths. The number of paths between points (a, b)
and (i, j) with a < i and b < j being

(i+ j−a−b
i−a

)
, the centrality

of the node (i, j) on the grid �−L, L� × �−L, L� is

g(i, j) = 1

4L2

∑
σ∈{−1,1}

i∑
a=−L

j∑
b=−L

×
L∑

c=i

L∑
d= j

( j−b+σ (i−a)
σ (i−a)

)(d− j+σ (c−i)
σ (c−i)

)
(c+d−a−b

σ (c−a)

) , (4)

where σ = ±1 corresponds to nodes with j < 0 and j > 0,
respectively. This expression is difficult to analyze, but we can
resort to the simple approximation described in Fig. 1(a). We
assume that the number of paths going through the node (i, 0)
is proportional to the product of areas described in gray in
Fig. 1, normalized by the total number of paths (we have to
multiply the result by a factor 2 by symmetry). We thus obtain

g(i, 0) ∝ L(L − i) × (i + L)L/L4 = 1 −
( i

L

)2

. (5)

We compare this approximation to the exact numerical result
showing a very good agreement [Fig. 1(b)]. The discrepancy
appears essentially for i ≈ L where the approximation pre-
dicts g(L) = 0 which is exact for L � 1. Using this same
argument, we find that for any node located at (i, j), the BC
reads

g(i, j) � (1 − i2)(1 − j2). (6)

We compare this expression to the exact result and show in
Fig. 1(c) the relative error. Here also the most important errors
appear at the boundary of the square but, despite its simplicity,
the approximation is very good in the bulk of the square.

C. Loops, branches, and more complex graphs

More complex graphs have also been studied from the
perspective of the BC. In particular, in Ref. [31] a toy model
made of a star network with Nb branches of size n and links of
weight 1, superimposed to a loop at distance � from the center
and with links of weight w was considered. The BC at the
center and on the loop were computed and it can be shown that
the loop can be more central than the center if w < wc where
the threshold scales as wc ∼ n/Nb. This sheds some light on
empirical results about road networks where ring roads can be
more central than the spatial center of the system.
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FIG. 1. (a) Approximation for computing the BC for the 2D grid:
the BC at node (i, 0) is proportional to the product of shaded areas
(up to a factor two accounting for the white squares). (b) Comparison
of the approximation of Eq. (5) to the analytical formula of Eq. (4)
computed numerically for L = 15. (c) Relative error of the approxi-
mation of Eq. (6) on the square grid.

Also recently, a more complex structure was considered
in Ref. [32]. In this study, the authors introduce a family of
planar graphs composed by a square grid connected to an
arboreal periphery. The BC was then computed at the center
of the grid and some other important points such as the ones
connecting the square grid to the peripheral trees.

In general, for complex networks that are not planar, the
BC is increasing with the degree of the node as a power law
g(k) ∼ kη with an exponent η that is in general less than 2.
The main reason for this bound is that the number of possible
paths through a node of degree k is k(k − 1) which scales as
k2 for large k. This is then what we would obtain for the BC if
all neighbors lead to regions with roughly the same number of
nodes. If it is not the case, then some neighbors will be more

important than others and then not all the k(k − 1) paths are
important and therefore η < 2.

D. Distribution of the BC in planar graphs

The distribution P(g) of the BC was discussed recently in
Ref. [19] where it was shown on almost 100 different road
networks for worldwide cities that it is invariant. This invari-
ance is a consequence of a bimodal regime where the high
BC nodes belong to the underlying tree structure of the graph,
and the low BC nodes to loops that provide alternate paths.
More precisely, if we rescale the centrality by the number N
of nodes g̃ = g/N , then we obtain the invariant distribution as

P(g̃) ∼ e−g̃/γ

g̃α
, (7)

where the exponent α ≈ 1 can be explained with a simple tree
model [19] and where γ depends on the specific graph. This
invariance in particular suggests that the interesting informa-
tion about the BC lies not in its statistical properties but rather
in its spatial distribution, and where the high BC nodes are
located [16,19] which depends in general on details of the
structure of the graph.

III. BETWEENNESS CENTRALITY IN DENSE
AND QUASIDENSE GRAPHS

A. Graphs constructed over a set of points

We will consider here different graphs constructed over a
set of points in a bounded domain. We consider a Poisson
process where N points are distributed randomly in a plane
domain D of area V (which will be a disk or a square). The
density of nodes is denoted by ρ = N/V . There are multiple
ways to connect these points to each other and we will con-
sider here various graphs.

First, we will consider graphs that are constructed by
connecting a node to its k-nearest neighbors (k-NN with
k = 7), the random geometric graph (RGG) that connects
points closer than a threshold distance d (we choose
d = 2/

√
ρ, which is the typical distance for which the graph

is connected), the minimal spanning tree (MST) that connects
all the vertices together, without any cycles and with the
minimum possible total edge weight, the Delaunay triangu-
lation (DT) that gives a triangulation such that no point is
inside the circumcircle of any triangle of the triangulation,
the Gabriel graph (GG) which is the subgraph of DT where
any two distinct points P and Q are adjacent precisely when
the closed disk having PQ as a diameter contains no other
points, and finally the relative neighborhood graph (RNG)
which connects two points P and Q by an edge whenever
there does not exist a third point R that is closer to both P
and Q than they are to each other. These graphs represent
many important cases and are widely studied in mathematics
(see, for example, Refs. [34,38,39]), in statistical physics (see
Ref. [28] and references therein), or for wireless network
applications [40]. Understanding the BC for these cases thus
represents an important step toward a general theory of the BC
in spatial networks.
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B. Perturbation around the infinite density

We compute the BC of nodes in D in the quasidense limit
(1 � ρ < ∞). We aim at finding an expression for the BC
that depends on the absolute position of points in the plane
only and not on the specific graph. In Ref. [33], it was shown
that in the dense limit (ρ = ∞) on a disk, the BC of a node
depends on its distance to the center only, whatever the spe-
cific graph. This approximation relies on the fact that shortest
paths in this limit are essentially straight lines, which explains
the universality of the result. However, for finite densities, the
shortest paths display significant transversal deviations and
we expect nonuniversal corrections.

We present here a perturbation expansion at the lowest
nontrivial order of this previous result when the density is
finite. We denote by (i, j, κ ) random nodes (among N nodes
of a graph G) inside a disk domain D of area V . The quan-
tity SP(i, j) = {xi j1 , ..., xi jm , ..., xi jn} denotes the shortest path
between points i and j (that we assume to be unique, which
for spatial networks is expected—a degeneracy would imply
exactly the same distance between two nodes which is very
unlikely, in contrast with the topological distance which is an
integer that counts the number of jumps).

We define the indicator function

σi j (κ ) = 1κ∈SP(i, j) =
∑

m

1κ=xi jm
. (8)

This indicator function σi j (κ ) is equal to unity if κ is in
SP(i, j) and zero otherwise. The betweenness centrality for
the node κ is then

g(κ ) = 1

2

∑
i

∑
j

σi j (κ )

σi j
, (9)

where i and j are nodes of the graph. For large ρ, we use a
continuous approximation and write

σi j (κ ) =
∫ t j

ti

dt δ[κ − x(t )], (10)

where the shortest path {x(t ) ∈ SP(i, j)} is parametrized by
t ∈ [t1, t2] where t1 and t2 correspond to the endpoints (δ is
the Dirac δ function). The BC for κ is then

g(κ ) = 1

2V 2

∫
D

dri

∫
D

dr j σi j (κ ). (11)

In the continuous limit [33] ρ → ∞, the shortest paths
are straight segments and the indicator reads as σi j =
δ[x cos(φ) + y sin(φ) − p], where κ = (x, y) and where the
segment (i, j) is parametrized by p and φ (for this type of
parametrization, see, for example, Ref. [41]). This means that
κ is in SP(i, j) if and only if κ is on the line between i and j.
In particular, it is easy to check that

∫
D dκ σi j (κ ) = |t2 − t1|

as expected.
In the quasidense limit (1 � ρ < ∞), we define the aver-

age betweenness centrality for κ as the expectation the BC for
κ ,

g(κ ) = EG[g(κ )], (12)

where EG denotes the average over all the graphs (for a
given connection rule) constructed over an ensemble of points

κ
θi

θj

εij

ri

rj

i

j

O

FIG. 2. Sketch of the system considered and notations. The ori-
gin of the polar system is κ and the nodes i and j have the coordinates
(ri, θi ) and (r j, θ j ) in this system. The deviation of the two segments
(i κ ) and (κ, j) from the straight line is characterized by the angle
εi j = θi − θ j + π .

realizations. We then obtain

g(κ ) = 1

2V 2

∫
D

dri

∫
D

dr j EG[σi j (κ )]. (13)

The quantity σi j (κ ) is an indicator function and its average is
then a probability

EG(σi j (κ )) = Prob[κ ∈ SP(i, j)] (14)

which we will denote by χi j (κ ) = Prob[κ ∈ SP(i, j)]. In the
dense limit, shortest paths are straight lines and we have

χi j (κ ) = δ[x cos(φ) + y sin(φ) − p]. (15)

When the density is finite, the shortest paths deviate from the
straight line and we define the angular deviation εi j from the
straight line (i, j) in the frame of origin κ: εi j = θi − θ j + π

(see Fig. 2). Due to the statistical isotropy of the problem, it
is enough to consider the node at distance κ from the center
and at polar angle θ = 0 and here and in the following we will
work with the polar coordinate centered on this point.

We now express the probability χi j (κ ) that κ is in SP(i, j)
for a given value of εi j , and the average BC can then formally
be rewritten as the 5D integral

g(κ ) = 1

2V 2

∫
D2

dridr j

∫ ∞

0
dεi jδ(θi− θ j + π− εi j )χi j (κ|εi j ),

(16)

where χi j (κ|εi j ) is the probability that {κ ∈ SP(i, j)} condi-
tioned by εi j . The δ function δ(θi − θ j + π − εi j ) ensures the
definition of the angle εi j .

In the infinite density limit, we know from Ref. [33] that
this conditional probability is given by

χi j (κ|εi j, ρ = ∞) ∝
(

1

ri
+ 1

r j

)
δ(εi j ), (17)

and motivated by this case we assume the following general-
ization

χi j (κ|εi j ) =
(

1

ri
+ 1

r j

)
χ (εi j ), (18)
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where χ (ε) is an unknown function. Denoting εi j by ε, we
assume that χ (ε) is independent of (i, j, κ ). This is a strong
assumption that we empirically show to be correct for the
k-NN, RGG, DT, and GG graphs [as we will further discuss
below, this approximation is incorrect in the two cases of the
MST and the RNG graphs and suggests that for these graphs
the assumption that χ (ε) is independent of (i, j, κ ) is not
correct]. Indeed, we show empirically that for these graphs,
the function

χ (ε) = χi j (κ|ε)(
1
ri

+ 1
r j

) (19)

can be fitted by a decreasing exponential function of ε with
parameter ε0,

χ (ε) = ε0(ρ)e−ε/ε0(ρ), (20)

where ε0(ρ) is assumed to be a power law (see Fig. 3 and for
the values of the fitting parameters for the different graphs,
see Table I) of the form

ε0(ρ) = Aρ−β. (21)

Using the form of Eq. (18), we obtain

g(κ ) = 1

2V 2

∫ ∞

0
dε χ (ε)

∫
D

dri

∫
D

dr j

×
(

1

ri
+ 1

r j

)
δ(θi − θ j + π − ε). (22)

In the dense limit, we have χ (ε) = δ(ε) and we recover the
known result of Ref. [33]. To go beyond this infinite density
result, we expand this function χ (ε) around 0 to the second

FIG. 3. Writing χ (ε) = ε0(ρ )e−ε/ε0(ρ ), we show that ε0 is a
smooth decreasing function of the density ρ, validating the shape
of χ (ε) for k-NN, RGG, DT, and GG graphs (the vertical error
bars correspond to the dispersion). The graph suggests a power law
relation of the form ε0(ρ ) � Aρ−β with β � 0.5 ± 0.1. We note that
the exponent is not the exact same for all graphs, nor is the prefactor,
thus making some types of graphs converging faster toward the dense
regime than others.

order in εo

χ (ε) = ε0(ρ)e−ε/ε0(ρ)

� [
δ(ε) − ε0(ρ)δ′(ε) + ε2

0 (ρ)δ′′(ε)
]
. (23)

Here, we used the distributional derivative of the Dirac δ

function, which is defined so that for any compactly supported
smooth test function φ, we have∫

dxφ(x)δ′(x) = −
∫

dxφ′(x)δ(x). (24)

Inserting the expansion of Eq. (23) into the expression
Eq. (22), we get

g(κ ) = 1

2V 2

∫ ∞

0
dε

[
δ(ε) − ε0(ρ)δ′(ε) + ε2

0 (ρ)δ′′(ε)
] ∫

D
dri

∫
D

dr j

(
1

ri
+ 1

r j

)
δ(θi − θ j + π − ε)

= 1

4V 2

∫ 2π

0
dθi r(θi )r(θi + π )[r(θi ) + r(θi + π )] − ε0(ρ)

∫ 2π

0
dθi r(θi)r

′(θi + π )[r(θi ) + 2r(θi + π )]

− ε2
0 (ρ)

∫ 2π

0
dθi r(θi )r

′′(θi + π )[r(θi) + 2r(θi + π )]. (25)

In the polar coordinate centered at κ , the frontier of the disk is given by r(θ ) =
√

R2 − κ2 sin2(θ ) − κ cos(θ ) and the previous
expressions can be now rewritten as

g(κ ) = 1

4V 2

[
2

∫ 2π

0
dθ (R2 − κ2)

√
R2 − κ2 sin2(θ ) − ε2

0 (ρ)
∫ 2π

0
dθ

κ2(R2 − κ2)(R2(6 sin2 θ − 1) − 5κ2 sin4 θ )

(R2 − κ2 sin2 θ )3/2

]
. (26)

The first order term (coefficient of ε0) is equal to 0 and the first nontrivial term is of second order. We introduce the functions

I0(κ, R) = 2
∫ 2π

0
dθ (R2 − κ2)

√
R2 − κ2 sin2(θ ) (27)

and

I2(κ, R) =
∫ 2π

0
dθ

κ2(R2 − κ2){R2[6 sin2 (θ ) − 1] − 5κ2 sin4 (θ )}
[R2 − κ2 sin2 (θ )]3/2

, (28)
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TABLE I. Details of the fit ε0(ρ ) = Aρ−β for each family of
graphs.

Graph family A β R2

k-NN 1.3 ± 0.2 (for k = 7) 0.3 ± 0.1 0.98
RGG 1.2 ± 0.2 (for r = 2/

√
ρ) 0.4 ± 0.1 0.95

DT 1.7 ± 0.2 0.5 ± 0.1 0.98
GG 2.7 ± 0.2 0.6 ± 0.1 0.98

and the BC can be rewritten as

g(κ ) = 1

4V 2

[
I0(κ ) − ε2

0 (ρ)I2(κ, R)
]
. (29)

In the result of Eq. (29), the infinite density limit which
corresponds to the first term is universal, i.e., independent
from the graph structure. In contrast, the second term [term in
ε0(ρ)] does depend on the graph and encodes the deviation of
shortest paths from the straight line which varies from a graph
to another. This implies that in general (and as expected) the
BC of a graph at finite density is not universal and depends
on the graph considered. In particular, the numerical result of
Fig. 3 suggests a power law relation of the form ε0(ρ) � Aρ−β

with β � 0.5 ± 0.1 (see Table I). We observe that the value of
the exponent β and the prefactor are not exactly the same for
all graphs, implying different rates of convergence toward the
dense regime.

We can express the integrals appearing in Eq. (29) using
special functions and we get

I0(R, κ ) = 8R(R2 − κ2)E
(κ

R

)
(30)

FIG. 4. Comparison of the expansion of Eq. (35) with the numer-
ical result for the DT. The quality of the approximation increases with
the density but is insightful at surprisingly low densities (6 points per
square unit is less than 20 points in the disk). The number of points
is N = ρπ .

FIG. 5. Comparison of the expansion of Eq. (35) with the numer-
ical result for the k-NN. The quality of the approximation increases
with the density but it is already very good for a density ρ = 9 or
larger. The number of points is N = ρπ .

and

I2(R, κ ) = 8R3
[
3
(κ

R

)2
K

(κ

R

)
+ 2K

(κ

R

)
(31)

+ 2
(κ

R

)2
E

(κ

R

)
− 2E

(κ

R

)]
, (32)

where K (x) and E (x) are, respectively, the elliptic integrals of
the first and second kind.

If κ � R, then we can show that

I2(R, κ ) = 4πR3
(κ

R

)2
+ o

[(κ

R

)2]
, (33)

while if R − κ � R, then

I2(R, κ ) � 16R3
(

1 − κ

R

)
log

(
1 − κ

R

)
. (34)

Normalizing the BC by g(0) = 1
4V 2 × 8πR3, we obtain

g∗(κ ) = g(κ )

g(0)
= 1

4πR3
[I0(κ ) − ε2

0 (ρ)I2(κ, R)]. (35)

If κ � R, then it gives

g∗(κ ) � 1 −
[

5 + 1

2
ε2

0 (ρ)

](κ

R

)2
, (36)

while if R − κ � R, then

g∗(κ ) �
[

4

π
− 2ε2

0 (ρ) log
(

1 − κ

R

)](
1 − κ

R

)
. (37)

We note that under such a normalization we have always
g∗(0) = 1 and g∗(R) = 0 (which can be easily proven). To use
this result and to compare it with the simulations, we need to
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FIG. 6. Comparison of the expansion of Eq. (35) with the numer-
ical result for the RGG. The convergence to the infinite density limit
is faster than for other graphs and the approximation is very good for
densities as low as ρ = 9. The number of points is N = ρπ .

specify the deviation characterized by ε0(ρ) (see below for the
numerical study).

C. Numerical study

We test the analytical result of Eq. (35) on various graphs:
the DT (Fig. 4), the k-NN (Fig. 5), the RGG (Fig. 6), the GG
(Fig. 7), and the MST (Fig. 8). For the numerical simulations,
we sample N random vertices in a disk (we test sizes from
N = 10 to N = 1000) and connect the points according to the
rules of each graph. We then compute the BC of each point

FIG. 7. Comparison of the expansion of Eq. (35) with the numer-
ical result for the GG. The convergence to the infinite density limit is
much faster than for other graphs and the approximation is very good
for densities as low as ρ = 3. The number of points is N = ρπ .

FIG. 8. Comparison of the expansion of Eq. (35) with the numer-
ical result for the MST. The average BC converges toward the dense
regime limit but the second-order approximation we used is not valid
in this specific case.

using the Brandes algorithm [42] and average the results over
5000 runs (we build a new graph at each run).

For the GG, DT, k-NN, and the RGG, we have an excellent
agreement between the analytical result and our numerical
simulations (averaged over 5000 runs) for 1 � ρ. The dis-
crepancies between the quasidense and the dense regime are
larger around κ

R = 0.8. We observe that for these different
graphs the speed of convergence to the infinite density limit
is not the same. The convergence for the GG, RGG, and the
DT is fast while it is slower for the k-NN. In this respect, we
show how the speed of convergence of k-NN graphs varies as
a function of k on Fig. 9 and of the radius cutoff r for RGG
on Fig. 10. For the GG, it is so fast that the infinite regime
approximation is a good approximation for densities as low
as 3 points per square unit (graphs of 10 points). In general,
however, it is hard to predict or to understand why one type
of graph would converge faster toward the infinite limit than

FIG. 9. Comparison of the speed of convergence of k-NN graphs
toward the infinite density limit for different values of k: k = 5 (top
line), k = 15 (middle line), and k = 25 (bottom line). The correction
differs as the empirical fit of the prefactor A in Eq. (21) depends on
the specific value of k.
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FIG. 10. Comparison of the speed of convergence of RGG
graphs toward the infinite density limit for different values of the
radius cutoff r.

the others. For k-NN and RGG graphs, the approximation is
good for densities as low as 6 points per square unit (which
corresponds to less than 20 points in the disk) while the
approximation is valid for smaller densities (about 10 points
in the disk) for DT and the Gabriel graphs (not shown here).
We also note that Gabriel graphs (GG) being subgraphs of DT,
we would naïvely expect that GG converge slower toward the
dense regime limit than DT. This would result from the fact
that the shortest paths are closer to straigth lines (and hence
the dense regime) when more points are added in the network.
This is not true however since the normalized expected BC
of κ depends on both the average BC in κ and the maximal
BC in the graph (in 0). Adding more points to the system can
both decrease the BC on average but increase the maximal
BC, leading to nontrivial behaviors of convergence toward the

FIG. 11. Comparison of the quality of the correction as a func-
tion of point density for the different families of graphs. The quality
is defined as the area between theoretical approximations (the infinite
density limit g∗

∞ and our expansion g∗
th) and the simulated (average)

curves. The quality of both our approximation and the infinite density
limit increases as the density does. As expected, the quality of the
correction is better than the infinite density limit but the difference
vanishes as the density increases.

FIG. 12. Comparison of the exact numerical result for the 2D
lattice, the approximation Eq. (6), and the result obtained for the
infinite density Eq. (30). We observe here that the infinite density
result does not apply to this case.

dense regime. We sum up the quality of the correction as a
function of density for all families on graphs on Fig. 11.

Finally, we note that our approximation does not work for
MST and RNG graphs since the assumption stating that χ (ε)
is independent of (i, j, κ ) seems not to be valid for these
graphs. The BC however converges toward the infinitely dense
limit result of Ref. [33] (see Fig. 8 for the MST). At this
point, it is an open question how to generalize our result to
understand this behavior.

IV. NOTE: 2d GRID

We note that, somewhat surprisingly, for the 2D
grid the above calculation doesn’t apply. Indeed, we
plot in Fig. 12 the exact numerical result for the 2D
grid, the approximation Eq. (6), and the infinite den-
sity approximation [Eq. (30)]. There are two main
reasons why the infinite density calculation does not
apply here. First, there is a strong degeneracy and
the number of shortest paths is very large in general, and
second, these shortest paths are not straight. The main as-
sumptions used to get the infinite density limit result [33] and
our expansion do not therefore hold and we expect the ob-
served discrepancy. However, the 2D grid case is not really a
problem as we showed with the simple approximation Eq. (6).

V. DISCUSSION

In this paper we extended one of the few theoretical results
about BC in spatial networks to a large number of families
of graphs (k-NN, RGG, GG, and DT) for finite densities. We
proved that for these families it is possible to find an approx-
imation of the average BC of a random point in a bounded
set of the plane as a function of its spatial coordinates. The
infinite density limit which corresponds to the first term of our
expansion is universal and independent from the graph. The
first nontrivial correction encodes the deviations of shortest
paths from the straight line and is therefore not universal.
This approximation is theoretically valid for quasidense sets
of points (ρ � 1) but is empirically correct for planar graphs
with densities as low as a few points per square unit.
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FIG. 13. On average, the BC decreases when constructing a
Gabriel graph from a Delaunay triangulation. This results from the
fact that the GG are subgraphs of DT. We note that the BC change
is negative for all positions of κ except close to the edge of the
disk, due to finite-size effects. These effects get more localized when
increasing the density of points.

This approximation seems however not to be valid for
other families of spatial networks (such as the RNG and the
MST) whose dense limit is still universal but exhibit different
convergence behaviors. The main difference comes from the
way the shortest paths tend to straight lines and further studies
are needed to understand this behavior.

We also observed that adding more points to the network
decreases the BC on average (see Fig. 13) as theoretically

expected. However, locally, some points may be more central
when new points enter the system and it is therefore not
possible to predict the speed of convergence toward the dense-
regime from just an inclusion relation: if G1 ⊂ G2, there are
more edges in G2, but we can still have both a smaller average
BC (due to theorem of Ref. [29]) and a larger maximal BC for
this graph compared to G1. For example, the Gabriel graph
is a subgraph of the DT and we observe that the difference
gDT (κ ) − gGG(κ ) has a sign that can be either positive or
negative according to the value of κ (Fig. 13), implying that
the convergence to the infinite density limit is not “uniform.”

The theoretical work proposed here is a further step toward
the study the BC in spatial networks but many questions are
still open. As we mentioned, it is unclear why the behavior of
the MST and the RNG is so different from the other graphs
studied here. More work is certainly needed to understand
how shortest paths in these systems become always more
straight when the density increases. Also, an open question
concerns the spatial patterns of the BC in disordered spatial
networks and it would interesting to understand from a theo-
retical point of view the effect of disorder.
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