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Dynamical reciprocity in interacting games: Numerical results and mechanism analysis
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We study the evolution of two mutually interacting pairwise games on different topologies. On two-
dimensional square lattices, we reveal that the game-game interaction can promote the cooperation prevalence
in all cases, and the cooperation-defection phase transitions even become absent and fairly high cooperation is
expected when the interaction becomes very strong. A mean-field theory is developed that points out dynamical
routes arising therein. Detailed analysis shows indeed that there are rich categories of interactions in either
the individual or bulk scenario: invasion, neutral, and catalyzed types; their combination puts cooperators at
a persistent advantage position, which boosts the cooperation. The robustness of the revealed reciprocity is
strengthened by the studies of model variants, including the public goods game, asymmetrical or time-varying
interactions, games of different types, games with timescale separation, different updating rules, etc. The
structural complexities of the underlying population, such as Newman-Watts small world networks, Erdős-Rényi
random networks, and Barabási-Albert networks, also do not alter the working of the dynamical reciprocity. In
particular, as the number of games engaged increases, the cooperation level continuously improves in general.
However, our analysis shows that the dynamical reciprocity works only in structured populations, otherwise the
game-game interaction has no any impact on the cooperation at all. In brief, our work uncovers a cooperation
mechanism in the structured populations, which indicates the great potential for human cooperation since
concurrent issues are so often seen in the real world.
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I. INTRODUCTION

The rise of human civilization is built upon the widespread
cooperation in almost every corner of socioeconomical and
other activities [1]. Its decay, by contrast, generally leads to
regress of human welfare or even wars. The recent decades
have witnessed some imminent crises such as global warming,
trade wars, and more recently COVID-19 [2]. Solutions to any
of them require multilateral cooperation, and a throughout un-
derstanding of what motivates cooperation and how it evolves,
and why it fails, is then needed. According to the classic
Darwinism, however, natural selection favors the fittest, and
those who are altruistic incur a cost to themselves, leading
to less chance to survive. Cooperation is not a reasonable
option by logic. Revealing the hidden mechanisms behind it
is therefore of fundamental importance and has been listed as
one of the grand scientific challenges in this century [3].

Within the framework of evolutionary game theory, much
important progress has been made [4,5]. By analyzing canoni-
cal models such as the prisoner’s dilemma (PD), the snowdrift
game (SG), the public goods game (PGG), the collective-
risk dilemma, etc., valuable insights are obtained and several
mechanisms are revealed. These include direct [6] and indirect
reciprocity [7], kin [8] and group selection [9,10], spatial or
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network reciprocity [11], reward and punishment [12], social
diversity and hierarchy [13–15], and others. In particular, it is
found that the presence of population structures, either static
or dynamic, is able to promote cooperation compared to the
well-mixed scenario, because cooperators form clusters that
can prevail against the invasion of defectors. This so-called
network reciprocity has been extensively studied in the past
few decades [16,17].

Alongside these theoretic insights, recent behavioral ex-
periments also expand our understanding of cooperation [18].
As an alternative paradigm, the recruited volunteers are con-
figured with some given topologies and rules, and they are
well motivated to play the games. But due to complexities
like human psychology, cultures, or personalities, inconsis-
tencies with theoretic predictions are often unveiled [19]. For
example, experiments with a static structured population do
not find their advantage in promoting cooperation in general
as the network reciprocity predicts [20–22]. Some extra con-
ditions regarding the game experiment settings have to be
satisfied for cooperation to thrive [23]. These facts imply that
some essential factors could be missing in most of the cur-
rent game-theoretic models, and an experiment-driven model
improvement effort is required in the future.

As a common practice, most of the existing works mainly
focus on a single game scenario, with a belief in mind that
when the dynamics of a single game is well understood, the
wisdom obtained is supposed to be applicable to many other
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situations, even with more games being evolved. The underly-
ing philosophy is reductionism essentially. In the real world,
however, entities are generally involved in multiple games
simultaneously, where they could influence each other’s evo-
lution. For example, colleagues potentially work in a couple
of concurrent projects, and nations are involved in multiple
issues such as trade, security, and culture. In these contexts,
the progress or conflicts in one issue are likely to affect the
evolution of others; they have a stake in each other explicitly
or implicitly. In nonhuman species, field research has made
similar observations. For example, in chimpanzee societies,
their activities such as grooming, hunting, sharing meat, sup-
porting one another in conflicts, and border patrols are found
to be closely correlated with each other; e.g., a male chim-
panzee with good hunting skill is more likely to be groomed
by others and vice versa [24].

Till now, only a few models have considered the multiple
games, but with different emphases. One line is along the
multigame dynamics. An early conceptually related work is
the study by Cressman et al. [25] where two two-strategy
games are played and the eventual states can be described by
the dynamics of the separate game. Later research showed that
the fate of a single game generally cannot be determined with-
out incorporating the messages of other games [26–28], e.g.,
persistent cycles could arise within coupled one-equilibrium
games. These works are done in a mean-field sense and
consider only a one-shot game scenario where the potential
reciprocity in evolution is beyond their scope.

Another line is within the framework of interdependent
networks, where different games are played on different layers
of networks and they are coupled by means of the payoff or
utility function [29–37]. Zhen et al. [29] consider two PGGs
being played on two symmetrically connected lattices, and
the utility function includes not only the contribution of the
payoff of the focal site plus its neighborhood’s payoffs, but
also the contributions of the neighborhood in the other lattice.
They found that as the neighborhood’s contribution in both
lattices increases, the cooperation level is promoted. Gómez-
Gardenes et al. [30] extend the study to arbitrary number
of layers where they adopt Erdős-Rény random graphs and
PD for each layer, and the net payoff is through the equal
contribution among all layers used for the strategy updating.
Their work shows a resilience of cooperation for extremely
large values of temptation to defect, and this resilience is
intrinsically related to a nontrivial organization of cooperation
across different layers. Asymmetrical game settings are also
studied [33,34] where different games are unfolded on differ-
ent layers. For example, Santos et al. [33] consider PD and
SG being posed on two layers of regular random networks re-
spectively, individuals imitate neighbors from the same layer
with a probability, and neighbors from the second layer with
a complementary probability. Therefore the strategy transfer
is allowed between layers, and they find that while such cou-
pling is able to promote the cooperation in the PD layer, it
is detrimental for the cooperation in the SG layer. Within
the framework of interdependent networks, its specific con-
struction matters [31,32,35,36]. In particular, the link overlap
across different layers is shown to be crucial [35]; there is no
benefit for cooperation if without any structural correlation.
The impact of other topological effects such as degree mixing

is also studied in [36], and some other dynamical processes
like spontaneous symmetry breaking between different layers
are uncovered in [37]. All these promotions are attributed to
the interdependent network reciprocity [29], a subcategory of
network reciprocity. Intuitively, one can view it as an efficient
construction of population relationship that tends to maximize
the previously uncovered network reciprocity.

Other relevant work include the scenarios where the diver-
sity of the payoff matrix is cooperating [38,39] or the mixture
of pairwise and multiplayer games [40]. But note that in these
works, each player plays actually only one game, with differ-
ent parameters or game types. There are also works focusing
on the diversity of strategy updating rules [41–43], and these
sorts of mixing are also found to bring additional complexities
for the evolution of cooperation.

The most relevant work is by Donahue et al. [44], where
they propose a framework termed multichannel games. Each
channel represents a repeated game, and players interact over
multiple channels and these channels are dependent with
each other. Based on two donation games, they uncovered
the evolutionary advantage of cooperation due to the game
linkage. This finding acts as a good starting point towards a
fundamental category of reciprocity—dynamical reciprocity,
as a counterpart of the well-studied network reciprocity. It
emphasizes that the reciprocity stems from the game-game
dynamics rather than the underlying topology of population.
Many fundamental questions, however, remain unanswered:
What is the typical evolutionary dynamics when more games
are engaged? How robust is the dynamical reciprocity? What
mechanism is behind this new type of reciprocity? These
questions are what we are trying to answer in this work.

The aim of the present paper is to introduce and formalize
the interacting games and systematically investigate the im-
pact of game interplay on the cooperation prevalence. Games
do not interact directly, they affect each other through a per-
ceived payoff by players, a function of payoffs in all games.
To our surprise, not only are we able to see the cooperation
promotion, but also the cooperation-defection phase transi-
tions could disappear, where an absorbing state of nearly full
cooperation is approached. More numerical studies show this
sort of promotion is quite robust, confirmed by variants with
both different game dynamics (the types of game, the updating
rule and synchronicity, the game coupling, etc.) and different
underlying topologies. A mean-field treatment indicates that
alternative dynamical routes towards cooperation come into
play, which is confirmed by detailed mechanism analysis.
There, apart from the invasion category of interaction that
is also present in the single-game case, two other categories
of interactions—neutral and catalyzed—are identified. Work-
ing together, these three categories of interactions lead to a
persistent advantage of cooperators over the defectors. The
promotion is further enhanced when more games are engaged,
where the revealed mechanism still holds.

The paper is organized as follows: In Sec. II we formulate
the interacting games of arbitrary number. In Sec. III the
preliminary results of two symmetrically interacting games on
a two-dimensional (2D) regular lattice are shown. In Sec. IV
we present a mean-field treatment within the framework of
replicator equations to see what dynamics would arise in the
presence of game-game interactions. In Sec. V the dynamical
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mechanism of the revealed reciprocity is discussed in detail
by classifying all interacting pairs. More numerical results
regarding the robustness of the revealed reciprocity are pro-
vided regarding dynamical variations in Sec. VI and structural
variations in Sec. VII. More games are considered in Sec. VIII
to extrapolate what would be expected when the number of
games increases. Finally, some concluding remarks are given
in Sec. IX, together with the implications and some open
questions being listed.

II. GENERAL FORMULATION

We formulate the interacting games within the evolu-
tionary framework where m games are denoted as G =
{G1, G2, . . . , Gm}, and they are played simultaneously in a
population of size N sharing the same underlying topology.
The corresponding strategy set is denoted as Sm. Assume
that each player could be in one of two states in each game:
cooperation (C) or defection (D), i.e., S1 = {C, D}. By com-
bination there are 2m elements in Sm, e.g., the strategy set
for m = 2 is S2 = {XY |CC,CD, DC, DD}, where X , Y cor-
respond to the state in game G1, G2, respectively.

In our study, we adopt the general pairwise game (GPG)
and public goods game (PGG). The GPG is defined as follows:
when both players cooperate, each gets a reward R; when
both defect, then each gets a punishment P; and the mixed
encounter yields a temptation T for the defector while the co-
operator becomes a sucker with a payoff S. Different rankings
of the four payoffs lead to different game types. Specifically,
four types of games are defined in the S-T parameter space
by fixing R=1 and P=0: (1) 1 < T < 2 and 0 < S < 1 for
the snowdrift game (SG); (2) 0 < T < 1 and 0 < S < 1
for the harmony game (HG); (3) 0 < T < 1 and −1 < S < 0
for the stag hunt game (SH); and (4) 1 < T < 2 and −1 <

S < 0 for the prisoner’s dilemma (PD). The PGG can be
considered as an extension of PD where an arbitrary number
of players can play together in a group. It is defined as follows:
in each round, every player in the group chooses either to
contribute one to the common pool as a cooperator, or nothing
as a defector; the sum of the contribution is then multiplied
by a gain factor r > 1, reflecting the synergetic effect; finally,
the resulting amount of benefit is equally shared among all
members in the group, including those defectors. Therefore
the net payoff of cooperators have to subtract one from the
shared amount, whereas the defectors don’t need to do so. If
without any mechanism, defection is preferred.

The system is initialized with random conditions if not
stated otherwise where each player randomly chooses to co-
operate or defect in each game. The evolution follows the
standard Monte Carlo (MC) procedure. At an elementary step,
a random player x is chosen and a random game g ∈ G is
played; then we compute its payoff �x according to the game
setting. Next, one of its neighbors y ∈ �x is picked randomly,
and its payoff �y is computed. Last, player x adopts y’s strat-
egy according to some function W (sg

y → sg
x ) = W (�x,�y)

that translates their payoff difference into the learning propen-
sity. In our study, the Fermi rule [45,46] is adopted as

W (sg
y → sg

x ) = 1

1 + exp[(�̂g
x − �̂

g
y)/K]

, (1)

where K is a temperature-like parameter, measuring the uncer-
tainties in the strategy adoption, its inverse can be interpreted
as the selection pressure. K is fixed at 0.1 throughout the work
if not stated otherwise. �̂

g
x is the effective payoff perceived by

player x in game g defined below that is used to update its
strategy. A full MC step comprisses m × N such elementary
steps, meaning that every player is going to update its strategy
once for each game on average.

The effective payoff �
g
x is formally defined as

�̂g
x = E (�G1

x ,�G2
x , . . . ,�Gm

x ; Pg(θ1, θ2, . . . , θm)), (2)

by which the game-game interactions come into play. It cap-
tures the fact that the decision making of a given game g
would be based upon a perceived payoff through integrating
payoffs in all games instead of simply the one under play.
Here θi ∈ [0, 1] is the contribution weight of game Gi. The
distribution Pg(θ1, θ2, . . . , θm) then determines how m games
influence the perceived payoffs in game g.

Note that the implemented MC simulation procedure
is to mimic the continuous-time evolution as in the real
world, where the strategy updating is asynchronous. We
also consider a synchronous updating (SU) scheme as fol-
lows. All m games are repeatedly played in circular order
G1, G2, . . . , Gm, G1, . . . for a given game, and all players
simultaneously compute and compare their payoffs to one ran-
domly chosen neighbor and make a strategy update according
to Eq. (1). m such discrete steps in the SU scheme guarantee
that every game is precisely played once for each player.

Four more different updating rules [47]—the Moran-like
rule, replicator rule, multiple replicator rule, and uncondi-
tional rule—are also investigated in Sec. VI for robustness
studies.

We adopt 2D square lattices with a size of N = L × L as
the underlying structure for most studies, where each indi-
vidual plays the games with its four nearest neighbors, and
the periodic boundary condition is assumed. We will also
study Newman-Watts networks, Erdős-Rényi networks, and
Barabási-Albert networks in Sec. VII. As noted above, all
games are assumed to share the same set of links, but this is
not very realistic, of course, since many games are unfolded
on their own sets of connections, as in the multiplex networks.
However, these structural intricacies in multiplex networks
would bring additional complexities that will confound our
understanding of the reciprocity purely from the dynamical
part; therefore we would like to avoid them.

III. PRELIMINARY RESULTS FOR TWO INTERACTING
GAMES ON A 2D SQUARE LATTICE

In this section, we shall discuss only the case of two inter-
acting games G = {G1, G2} with the symmetrical interaction
setting; they are unfolded on a 2D square lattice (see Fig. 1). A
simple linear combination is used for the effective payoff as

�̂G1,2
x = (1 − θ )�G1,2

x + θ�G2,1
x , (3)

where the right-hand side of Eq. (2) is a linear function,
and PG1 (θ1, θ2) = {1 − θ, θ} and PG2 (θ1, θ2) = {θ, 1 − θ} are
also symmetrical in Eq. (2). Here we interpret the contribution
weight θ as the game-game interaction strength. The larger
the value of θ , the the stronger impact of the other game is
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(a) (b)

G1
G2

Player y

G1
G2

Player x

x

y

effective
payoffs

FIG. 1. Modeling two interacting games. (a) Consider a group
of networked players: they play two games G1,2 simultaneously, and
two payoffs are obtained accordingly, which can be interpreted as
the fitness in their evolution. (b) When two neighboring individuals,
say, players x and y, are to update their strategies with respect to a
given game (e.g., game G1 here), the update depends on not only the
payoffs obtained in G1 (with weight 1 − θ ) but also the one in the
other game G2 (with θ ), and this combination is termed the effective
payoff; see Eq. (3).

posed. The case of θ = 0 reduces the model to two inde-
pendent games, while the other extreme θ = 1 corresponds
to the cross-playing scenario where the decision making of
a given game is entirely determined by the payoffs in the
other game. More often cases in reality are supposed to occur
in between. These constitute a parsimonious model of two
interacting games.

A typical example of GPG is two symmetrically interacting
PD games reported in [48], which adopt the weak prisoner’s
dilemma parameters with R = 1, P = S = 0, T = b > 1 for
both games (see Fig. 2). When θ = 0, a narrow region is seen
where the cooperators survive, which has been previously
reported in [46]. As the interaction strength θ increases, a
monotonic promotion of cooperation is observed. As the case
of cross-playing is adopted, the cooperation prevalence be-
comes independent of the game parameter b. The time series
support these observations, and in particularly show that the
decay in the initial stage also becomes less when θ becomes
larger. This means that, even before clusters are formed, the
game interactions provide some protections for cooperators
from being exploited by defectors compared to the case of
the independent game case, where the cooperators are invaded
and go extinct for the given parameter in Fig. 2(b).

The reason why no dependence on b is seen for θ = 1
in Fig. 2(a) lies in the fact that as time goes by, both f G1,2

c

increase till many locally absorbing states (full cooperation
regarding either games) are reached, e.g., full cooperation
regarding G1 for a given location; the evolution of the other
game at that location afterwards becomes neutral, because
the effective payoff according to Eq. (3) is �̂G2 = �G1 = 4R,
identical for CD or CC players, and thus the cooperation frac-
tion regarding G2 stays unchanged at large later. And since the
parameter b plays no role at this stage, no b dependence is thus
expected. We have to note that, although the cross-playing
scenario brings the best of cooperativeness, it is so extreme
that we cannot expect its occurrence in the real world. More
reasonably, this scenario can be taken as an ideal case for
reference, the results of which provide the highest level of
cooperation that can be expected.

We further show that this promotion is universal for all
game types within the GPG formulation; see Fig. 3. When

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1(b)

FIG. 2. The evolution of two symmetrically interacting PD
games on the 2D square lattice. (a) The phase transitions of cooper-
ation prevalence regarding game G1 ( f G1

C = fCC + fCD) for different
interaction strengths θ , and the temptation b is the control parameter.
(b) Time series for b = 1.1. Note that f G2

C ≈ f G1
C due to the symmetry

and is not shown. Parameters are L = 1024 and K = 0.1, the random
initial condition for both games, and each point is averaged over 50
ensembles after transient in (a).

θ = 0, the case is reduced to the classical single-game case,
whose phase diagram has been reported, e.g., in [47]. As θ

increases, the defection region shrinks. In particular, when
θ → 1, the cooperation is maintained at a fairly high level
(>0.8) for the whole parameter S-T space, and the difference
among the four games nearly disappears. A close look, how-
ever, identifies that there is a singularity at the top boundary
S = 1, where the cooperation level is lower than the other
region, which will be discussed in Sec. V.

In fact, a similar observation is also made in two sym-
metrically interacting PGGs. Figure 4 shows the prevalence
of cooperation within a two-parameter space. While a larger
value of normalized gain factor r̂ tends to raise the cooperation
propensity, a stronger interaction strength θ generally facili-
tates cooperation as well. Together with Fig. 3, we conclude
that as the game-game interaction becomes stronger, coopera-
tion continues to improve, and fairly high cooperation is seen
as θ → 1, irrespective of the game type.

IV. A MEAN-FIELD ANALYSIS

In theory, the evolutionary games can be described by a
mean-field treatment based on the replicator equation (RE)
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FIG. 3. Color-coded fraction of cooperators regarding the first game ( f G1
C = fCC + fCD) for the general pairwise game within the S − T

parameter space with θ = 0, 0.5, and 1 on the 2D square lattice, respectively shown in (a)–(c). Due to the symmetry, f G2
C ≈ f G1

C . Four quadrants
correspond to four different games (defined in Sec. II). Parameters: R = 1, P = 0, L = 128.

[47], which was introduced in 1978 by Taylor and Jonker [49].
RE characterizes the evolution of frequencies or fractions of
different species in the population by taking into account their
mutual influence on each other’s fitness. Mathematically, it
successfully captures the selection process and provides a
bridge between the Nash equilibrium in a static payoff matrix
and the evolutionary stable strategies in evolution.

However, there are some assumptions required explicitly
or implicitly in the derivation of RE as follows: (1) the pop-
ulation is infinitely large; (2) the population is well mixed so
that each individual interacts with an equal probability with
everyone else; (3) no mutation is allowed for the strategies,
and their frequency changes are due only to the reproduction;
and (4) the evolution of frequencies is linearly proportional to
their fitness difference. Derivations from the finite-size effect
or from the structured property in the real population are
expected according to assumptions (1) and (2).

With these assumptions, let’s consider a population with m
games; their evolution can formally be described as

ḟs = fs(�s − �̄), (4)

FIG. 4. Color-coded fraction of cooperation prevalence f G1
C in

θ − r̂ parameter space for two symmetrically interacting public
goods games. r̂ = r/(k + 1) is the normalized gain factor, and k + 1
is the number of games the individual is evolved. Also f G2

C ≈ f G1
C

due to the symmetry. Here L = 128 and K = 0.5.

where fs is the frequency or fraction of population within state
s ∈ Sm, �s is its fitness �s = ∑

g∈G �
g
s , and �̄ = ∑

s fs�s is
the average fitness of the whole population. The species with
a high fitness tends to increase its fraction, the one with a low
value tends to reduce it instead. At first glance, the Fermi rule
in Eq. (1) is a nonlinear function and does not meet the last
assumption for Eq. (4). However, when the population is not
far from the equilibrium state, one can make a Taylor expan-
sion of Eq. (1) and will find that the net transition probability
is linearly proportional to their payoff difference. Thus, the
RE treatment is expected to be able to describe the evolution
based on Eq. (1) around the equilibrium state.

A. A single pairwise game

Let’s first recall the well-known single pairwise game case,
where m=1 and S1 ={C, D}. fC,D are the fraction of co-
operators and defectors, respectively, with fC + fD = 1. By
applying the payoff matrix given in Sec. II, the RE is then

ḟC = fC fD[ fC (R − T ) + fD(S − P)]

= fC (1 − fC )(�C − �D), (5)

where �C = R fC + S(1 − fC ) and �D = T fC + P(1 − fC ).
There are three fixed points:

f ∗
C = 0, 1,

P − S

R + P − T − S
, (6)

which correspond to full defection, full cooperation, and a
mixed strategy, respectively. Their stabilities are determined
by doing linearization of Eq. (5) and computing the corre-
sponding eigenvalues around these fixed points. Only negative
eigenvalues guarantee a stable solution. Well-known facts of
the stable solution are as follows [50]: full defection for PD,
mixed strategy for SD, coexistence of full cooperation and full
defection for SH depending on the initial condition, and full
cooperation for HG.

B. Two interacting pairwise games

Now let’s extend the RE treatment to the case of
two symmetrically interacting pairwise games, where S2 =
{CC,CD, DC, DD}. The four fractions satisfy

∑
s fs = 1, s ∈

S2. The overall fitness of a given state s is �s = ∑
g �

g
s =

�G1
s + �G2

s . Along the setup in numerical simulations, the two
games are symmetrical in both the game parametrization and
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interactions. Without game interactions, the fitness of the four
species in the two games are⎛

⎜⎜⎝
�

G1
CC

�
G1
CD

�
G1
DC

�
G1
DD

⎞
⎟⎟⎠ =

⎛
⎜⎝

R R S S
R R S S
T T P P
T T P P

⎞
⎟⎠

⎛
⎜⎝

fCC

fCD

fDC

fDD

⎞
⎟⎠ (7)

and ⎛
⎜⎜⎝

�
G2
CC

�
G2
CD

�
G2
DC

�
G2
DD

⎞
⎟⎟⎠ =

⎛
⎜⎝

R S R S
T P T P
R S R S
T P T P

⎞
⎟⎠

⎛
⎜⎝

fCC

fCD

fDC

fDD

⎞
⎟⎠. (8)

With these, we define the effective fitness analogously as(
�̂G1

s
�̂G2

s

)
=

(
1−θ θ

θ 1−θ

)(
�G1

s
�G2

s

)
, (9)

corresponding to the effective payoffs as in Eq. (3) in the
numerical simulations. The RE (4) is then rewritten as

ḟs = fs(�̂s − �̄), (10)

where �̂s = ∑
g �̂

g
s = �̂G1

s + �̂G2
s , and the mean fitness is

�̄ = ∑
s fs�̂s.

With some algebra (see Appendix A for details), we can
derive the evolution of cooperator fraction with regard to
either game, say, game G1 ( f G1

C = fCC + fCD), as follows:

ḟ G1
C = f G1

C f G1
D

(
�

G1
C − �

G1
D

)
+ ( fCC fDD − fCD fDC )

(
�

G2
C − �

G2
D

)
, (11)

where �
G1
C =�

G1
CC =�

G1
CD, �G1

D =�
G1
DD = �

G1
DC , �G2

C = �
G2
CC =

�
G2
DC , and �

G2
D = �

G2
DD = �

G2
CD. The first term of the r.h.s. is

exactly the same as in the single game dynamics shown in
Eq. (5). It means that the cooperator fraction in game G1

tends to increase when �
G1
C > �

G1
D . The new dynamics lies

in the second term, which captures the game-game interaction
via the interaction pairs of CC-DD and CD-DC. Specifically,
when CC individuals meet up with DD ones, if their fitness
satisfies �

G2
C > �

G2
D the advantage of cooperators in game G2

transfers DD to CD due to the game correlation. By contrast,
when CD individuals meet up with DC ones, this advantage
is instead to reduce the cooperation prevalence, transferring
CD to DD. But for the other way around (i.e., �

G2
D > �

G2
C ),

however, the advantage of defectors in game G2 leads to the
growth of cooperators in G1, transferring DC to CC, which is
unexpected when games evolve independently. Therefore, the
above equation explicitly captures the cooperation dynamics
from both intra- and intergame interactions. Note that, by
the exchange of game label 1 and 2 in Eq. (11), the equa-
tion describes the cooperator fraction evolution of game G2,
i.e., f G2

C = fCC + fDC . By analytically solving the mean-field
Eqs. (10) (see Appendix B), we found that the stable solutions
are exactly the same as the single-game case, meaning the
game-game interaction brings no impact on the cooperation
evolution at the mean-field level. The two games are decou-
pled essentially in the well-mixed scenario. This means that
the dynamical reciprocity from the game-game interaction
should go hand in hand with network reciprocity—it works
only in the structured population. Numerical simulations of

FIG. 5. The cooperator fraction f G1
C for the two interacting pair-

wise games in the well-mixed population within S − T parameter
space for θ = 0.5. The resulting cooperation prevalence exactly cor-
responds to the solution of single game; the less significant bistability
in SH game is simply due to the random initial conditions, where
fC ≈ fD ≈ 1/2. Due to the symmetry, f G1

C ≈ f G2
C in all cases, except

very few case along the line S = T − 1 in SH, depending on their
initial conditions. Other parameters: R = 1, P = 0, N = 214.

two interacting PD games in a fully connected population
confirm this conclusion as shown in Fig. 5 for θ = 0.5, where
by starting from random initial conditions, mixed strategies,
full cooperation, coexistence of full cooperation and full de-
fection, and full defection are respectively seen in quadrant
I to IV, the same as in traditional single-game case. When
θ is altered, the phase diagram shown in Fig. 5 remains
unchanged, in accordance with our analytical results. In the
following section, however, we show that the second term in
Eq. (11) does play a role in the structured population, which
brings fundamentally different dynamical routes towards co-
operation.

V. DYNAMICAL MECHANISM

A. The category of interactions for two games

To understand the physics behind Eq. (11), and the dynam-
ical reciprocity better, let’s list all possible interactions in the
two interacting games on 2D square lattices and classify them
into different categories according to the net effect in their
offspring reproduction (see Table I). For simplicity, we focus
on the cross-playing case (θ = 1) in pairwise games, where
the classification is most clear, but qualitatively the following
analysis can also be applied to the cases with θ < 1.

Before proceeding, we need to distinguish two interact-
ing scenarios—individual and bulk interactions. Consider two
neighboring players x and y, and assume sx �= sy. In the in-
dividual scenario, we compute only the payoffs of the two
players through the interacting pair x-y. This scenario applies
to the context when their surroundings are unknown, like the
random initial condition case, where the information of their
neighbors is stochastic. Instead, when players of the same
state are well bulked, their payoffs can be explicitly estimated
by incorporating both the intra- and interbulk gaming. Specif-
ically for player x, its payoff is assumed to include the payoffs
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TABLE I. Categories of interactions in two interacting PD games within the cross-playing scheme (θ = 1). Six pairwise interactions are
classified into three categories in either individual or bulk scenarios.

Individual interaction Bulk interaction

Invasion type CC + DD
G1/G2−−−→ DC/CD + DD CC + DD

G1/G2−−−→ CC + CD/DC

CC + DC
G1−→ 2CC or 2DC CC + DC

G1−→ 2CC or 2DC

CC + CD
G2−→ 2CC or 2CD CC + CD

G2−→ 2CC or 2CD
Neutral type

DD + CD
G1−→ 2DD or 2CD DD + CD

G1−→ 2DD or 2CD

DD + DC
G2−→ 2DD or 2DC DD + DC

G2−→ 2DD or 2DC

Catalyzed type CD + DC
G1/G2−−−→ CD/DC + CC CD + DC

G1/G2−−−→ DC/CD + DD

from its three neighbors with s = sx (intrabulk) and the one
from x-y gaming (interbulk). These two scenarios are two
extreme cases occurring in a structured population; the actual
evolution should occur somewhere in between.

Since there are four different types of individuals, there are
six interacting pairs by combination, which can be classified
into the following three categories for either individual or the
bulk interactions; see Table I.

(1) Invasion type. For the individual interaction, DD dom-
inates over CC for either game, thus the CC individual tends
to become CD or DC; while when bulk CCs meet up with
bulk DDs, CCs at the interface have higher payoff than DDs
(typically 3R > T for the lined up interface), and CC bulks
are supposed to invade into DD regions. In either case, the
two cannot coexist and invasion happens, where the one at the
disadvantageous position will be invaded and become CD or
DC.

(2) Neutral type. For both scenarios, there is a neutral
outcome, where statistically no net change in cooperation
is expected. Consider the CC-CD interface as an example,
where the two individuals are of identical state regarding
game G1, �

G1
CC =�

G1
CD =R and 4R for individual and bulk

interactions, respectively. And since the evolution in game G2

is determined by the difference in �̂
G2
CC,CD(= �

G1
CC,CD), �̂G2

CC −
�̂

G2
CD = 0 means that the evolution of the CC-CD interface is

neutral W (CD → DC)=W (DC → CD)=1/2 according to
Eq. (1), and a random-walk-like movement of their boundaries
is expected. This argument is applicable to the other three
interfaces alike.

(iii) Catalyzed type. When a CD meets up a DC and
they play game G1, accordingly �̂

G1
CD =�

G2
CD = T and �̂

G1
DC =

�
G2
DC = S with T > S, and the DC individual is then likely

to become CC by learning (i.e., CD + DC
G1−→ CD + CC).

Analogously, when they play game G2, the CD individual

tends to become CC (i.e., CD + DC
G2−→ CC + DC). As a con-

sequence, CC individuals are continuously produced. In the
bulk scenario, however, the situation is reversed. When bulk
CDs and bulk DCs meet up, at the lined-up interface �̂

G1
CD =

�
G2
CD = T and �̂

G1
DC = �

G2
DC = 3R with T < 3R, CD individ-

uals then tend to become DD, while DC remains unchanged

when playing game G1 (i.e., CD + DC
G1−→ DD + DC). And

DC individuals likewise are likely to become DD when play-

ing game G2 (i.e., CD + DC
G2−→ CD + DD). Therefore, DDs

are continuously produced instead for bulk interactions. In all

these cases, the advantage or disadvantage regarding a given
game is not directly translated to any strategy update in the
game per se, but the state changes in the other game. This is
reminiscent of catalyzed reactions in chemistry. The presence
of one game is to “catalyze” the evolution of the other game.
They mutually catalyze each other’s evolution.

With this classification, it’s straightforward to understand
the impact of game-game interactions, or more specifically the
second term in mean-field equation Eq. (11). First, since the
four neutral interactions give rise to null net effect, no related
term is included. Second, the CC-DD and CD-DC interact-
ing pairs do have a net effect in the cooperation evolution;
therefore they appear in the equation, but because they al-
ways have the opposite impact on cooperation in either the
individual or bulk scenario, they have opposite signs. Third,
the mean-field treatment assumes a well-mixed setup, which
actually corresponds to the individual scenario, where the
CD-DC pairs contribute to the increase of cooperation while
the CC-DD pairs do the opposite because the cooperators are
at a disadvantage position, i.e., �

G1,2

C − �
G1,2

D < 0.

B. Numerical evidence for the two scenarios

To validate the arguments of the three categories, some
numerical experiments are conducted. To prepare the two
scenarios, we respectively start with random and half-half
patched initial conditions to mimic the individual and bulk
circumstances respectively, and focus on the early stage of
evolution, since longer evolution is going to ruin the random-
ness or compactness. Each time we place only two species on
the 2D square lattice for clarity.

Figure 6 shows the time series for all six binary combi-
nations in the individual scenario. Category (1) corresponds
to Fig. 6(a), a mixture of CC and DD individuals. As can be
seen, the fraction of CC decreases rapidly at the early few
steps, and DDs’ density doesn’t increase either, instead the
partial cooperators CD and DC show considerable increases.
This is line with our argument that CC has no advantage
against DD individually, and CD and DC are produced. In the
evolution at the later stage, the well mixture is ruined and the
CC players gain their strength to increase. Figures 6(b)–6(e)
report the evolution of category (2). We observe that only the
two prepared species are present, and the others are of zero
density. This is because a partial absorbing state is reached,
e.g., CC–CD in Fig. 6(b), game G1 is in the absorbing state
with full cooperation, and the fraction of DC or DD continues
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FIG. 6. Time series of all four fractions for two symmetri-
cally cross-played (θ = 1) PD games starting from random initial
conditions. All six binary compositions are included: (a) CC-DD,
(b) CC-CD, (c) CC-DC, (d) CD-DD, (e) DC-DD, (f) DC-DC. (a),
(b)–(e), and (f) correspond to category (i)–(iii), respectively. Param-
eters: S = 0, T = 1.1, R = 1, P = 0, L = 1024 for the 2D square
lattice.

to be zero. The remaining two fractions fluctuate around 1/2,
and the neutrality of their evolution is then confirmed. Cate-
gory (3) is illustrated in Fig. 6(f), where CD and DC players
are randomly blended. As expected, in the first few steps, the
fraction of CC rapidly increases together with some DD indi-
viduals, and the fractions of CD and DC themselves decease.
Later, the fraction of CC individuals continues to increase
as all the other three fractions decrease, but the population
by then is not well-mixed anymore and some clusters are
formed.

Figure 7 shows the evolution in the bulk circumstance.
Category (1) is shown in Fig. 7(a), where the evolution of the
two fractions is now qualitatively different from Fig. 6(a)—
bulk CC individuals are now in an apparent advantage position
over DDs, and its fraction continues to increase and the fac-
tion of DD decreases until distinction. The fractions of CD
and DC stay at relatively low densities. Typical spatiotem-
poral snapshots for this case are shown in Fig. 3 in CSL
[48]. Category (2) is illustrated in Fig. 7(b)–7(e). As can be
seen, the dynamical evolution is qualitatively the same as
shown in Figs. 6(b)–6(e), all fluctuating around 1/2. Category
(3) is shown in Fig. 7(f), which is fundamentally different
from the process in Fig. 6(f), but in line with our arguments
above. It shows that once CD and DC meet up in bulk, the
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1
(a) (b)

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1
(c) (d)

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1
(e) (f)

FIG. 7. Time series of all four fractions for two symmetrically
cross-played (θ = 1) PD games starting from half-half patched initial
conditions. (a) CC-DD, (b) CC-CD, (c) CC-DC, (d) CD-DD, (e) DC-
DD, (f) CD-DC. (a), (b)–(e), and (f) correspond to category (i)–(iii),
respectively. Parameters: S = 0, T = 1.1, R = 1, P = 0, L = 1024
for the 2D square lattice.

payoffs from the intracluster gaming reverse the advantages,
favoring the DD individuals. As a result, the fractions of
CD and DC continue to decrease and the density of DD
monotonically increases without any CC individuals being
seen.

Put together, the numerical experiments in Fig. 6 and Fig. 7
perfectly justify the classification of the three categories.

C. Dynamical realities on 2D square lattices

However, these above two initial conditions are peculiar
and correspond to two extreme circumstances and last only
for a short-term time window. What really happened to these
diverse interactions along the whole time evolution? Figur-
ing out these facts is the key to understanding the working
of dynamical reciprocity, since the invasion and catalyzed
types of interaction always produce the opposite results;
the classification itself cannot explain why cooperation is
preferred.

Here, by adopting random initial conditions, we monitor
the long-term evolution for both θ = 0.5 and 1, and the dy-
namical processes typically experience two stages.

At early stage t < tc (tc ∼ 10 MC steps for the size of
1024 × 1024), no sizable clusters are supposed to be present
in the system. Hence the individual interaction scenario
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FIG. 8. Time evolution of interacting pair proportions for two
symmetrically interacting PD games. Both random (a, c) and half-
half patched (b, d) initial conditions are considered. Panels (a) and
(b) and panels (c) and (d) correspond to θ = 0.5 and 1, respectively.
Pr = PCD−DC/PCC−DD to compares the relative proportion for CD–
DC and CD–DD pairs. Parameters: S = 0, T = 1.1, R = 1, P = 0,
L = 1024 for the 2D square lattice.

applies. Statistically, as Figs. 8(a) and 8(c) show, there is a
detectable quantity difference in CC-DD and CD-DC pairs
that the proportion PCD−DC > PCC−DD, meaning the catalyzed
interactions occur more frequently. Net production of cooper-
ators is thus expected. Though this stage is relatively short.

When t > tc, clusters are gradually formed. Once the clus-
ter property is strengthened, the bulk interaction scenario
comes into play. Interestingly, a proportion crossover is found
now that PCD−DC < PCC−DD, whereby cooperation is again en-
hanced since net cooperators are also favored in this scenario
according to Table I.

Figures 8(a) and 8(c) further show that the four neutral
interacting pairs have the major proportions in most of the
time for both cases, though they bring no net production of
cooperators or defectors. The difference between Figs. 8(a)
and 8(c) is that an equilibrium state of coexistence is reached
for the case of θ = 0.5, while an absorbing state regarding
G1 is approached for θ = 1 where four interfaces except for
CC-CD and CC-DC are vanishing.

Put together, for the entire processes, the system self-
organizes into states with different relative proportions of
invasion and catalyzed interaction type that make cooper-
ators continuously be produced, no matter if clusters are
formed or not. Looking back to Eq. (11), we are now
sure that it also captures the cooperation mechanism within
the structured population. When the strategies are not clus-
tered, defectors dominate, i.e., �

G1,2

C − �
G1,2

D < 0, but due
to the number difference of the interacting pairs, fCC fDD −
fCD fDC < 0, the second term in Eq. (11) is thus posi-
tive. When the strategies are clustered, the opposite is true
�

G1,2

C − �
G1,2

D > 0, fCC fDD − fCD fDC > 0, and again the sec-
ond term is positive and cooperation is enhanced. This means

that the game-game interactions prefer cooperation in the
whole evolutionary process and thus explains the dynamical
reciprocity.

A simpler case is starting from half-half patched initial
conditions, where the bulk scenario sets in from the very
beginning; see Fig. 8. We can see that the interface propor-
tion of CC–DD decreases and all others increase, but the
inequality PCD−DC < PCC−DD holds along the whole process;
no crossover as in Figs. 8(a) and 8(c) is seen. The ensuing
dynamics exhibits insensitivity to the initial conditions, and
the evolution is qualitatively the same as in Figs. 8(a) and 8(c)
in the long term. This means that in the absence of the first
stage, the dynamics in bulk scenario is still sufficient to yield
high level of cooperation.

Note that these analysis based upon the three-category
classification (Table I) are valid when S < R, as most cases
we studied. In the extreme case, however, we need to move
beyond this two-type interaction framework and more types
of interaction are necessary to explain the evolution, e.g.,
S = R = 1 in Fig. 3(c), where the dynamical reciprocity
loses its strength, and the cooperation prevalence is much
reduced.

D. Cluster size and compactness analysis

To validate the appropriateness of the two-scenario divi-
sion in the random initial condition case, we further conduct
cluster size and compactness analysis. While the former is
easy to understand and often adopted, the latter is to measure
how compact clusters are, which is defined as the fraction of
neighbors with an identical state regarding the central player
(here we adopt the Moore neighborhood with eight neigh-
bors); its average characterizes the overall compactness of
clusters. The situation with both large average cluster size and
compactness provides an ideal circumstance for bulk interac-
tion scenario to play, and the individual interaction scenario
works for just the opposite case. There may also be cases that
the average size is large but with small compactness or the
way around, which are between the two interaction scenarios
discussed above.

Figure 9 provides the statistical properties of the cluster
size for both θ = 0.5 and 1. As can be seen, the initial size
of clusters is pretty small, but they become larger as time
evolves and get saturated in the case of θ = 0.5 at around
t � tc [Fig. 9(a)]. For the cross-play case (θ = 1), however,
the cluster sizes continue to increase except the DD players
[Fig. 9(b)]. The PDF shown in Figs. 9(c) and 9(d) shows that
the cluster size could typically reach an order of 102 at the
late stage but not for CC or DD clusters in the case of θ = 1,
where they are either too huge or too small.

Figure 10 shows the corresponding compactness analysis.
Figures 10(a) and 10(b) show similar profiles of time series
when compared with Figs. 9(a) and 9(b). Note that the peaks
of DD species in both Fig. 9(a) and 9(b) and Figs. 10(a)
and 10(b) are simply due to the invasion of defectors at
the initial stage for t < tc. The PDF shows quite a few in-
dividuals are of high compactness, especially for the case
of θ = 1, where there are some considerably large clusters
(expect DD clusters) within the population. These observa-
tions justified our the two-scenario division, whereby the
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FIG. 9. Cluster size distribution for two symmetrically interact-
ing PD games starting from random initial conditions. (a) and (b) are
time evolution of the average cluster size of the four species for
θ = 0.5 and 1, respectively. (c) and (d) are probability function
distributions of cluster size at t = 1000 for θ = 0.5 and 1, respec-
tively. In (d), there is a giant CC cluster with the size comparable
to the population size (∼N), which is not shown. Parameters: S = 0,
T = 1.1, R = 1, P = 0, L = 1024 for the 2D square lattice.

above mechanism analysis of the dynamical reciprocity seems
reasonable.

VI. ROBUSTNESS STUDIES

In this section, we turn to provide more evidence to exam-
ine the robustness of the dynamical reciprocity by studying
different variants of the above model, such as asymmetrically
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FIG. 10. Cluster compactness analysis. (a, b) Time evolution of
compactness of the four species for θ = 0.5 and 1, respectively. (c, d)
Probability function distributions of cluster compactness at t = 1000
for θ = 0.5 and 1, respectively. Same settings as in Fig. 9.

interacting games, games of the timescale separation, various
updating rules, etc.

A. Asymmetrically interacting games

The first relaxation of the above model is to remove the
symmetry assumption by using asymmetric settings, which
could be more realistic. One variant could be that the two
games are identical, while their impact on each other is as-
sumed to be asymmetric. The effective payoffs defined in
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FIG. 11. Color-coded cooperation prevalences for two asymmet-
rically interacting PD games on a 2D square lattice within θ1 − θ2

parameter space; (a) and (b) are for game G1,2, respectively. Other
parameters: S = 0, T = 1.1, R = 1, P = 0, L = 128.

Eq. (3) are then naturally written as(
�̂G1

x
�̂G2

x

)
=

(
1−θ2 θ2

θ1 1−θ1

)(
�G1

x
�G2

x

)
, (12)

where the interaction strengths θ1,2 ∈ [0, 1] represent the con-
tribution fraction of game G1,2 in the other game’s effective
payoff. If a game is more important for the other game than the
way around, then generally θ1 �=θ2. Note that θ1,2 are not nec-
essarily negatively or positively correlated; both could view
the other game as important or unimportant in their decision
making, up to the specific context.

Figures 11(a) and 11(b) show respectively the cooperation
levels for the two games within the θ1-θ2 parameter space,
where the symmetrical case studied above is along θ1 =θ2.
The overall trend is qualitatively the same as the symmetrical
case that a high level of cooperation is expected when θ1,2

become large. In particular, a high cooperation level of a given
game, e.g., game G1, is more likely to happen when the other
game’s contribution θ2 is large given its own contribution
is not too small (θ1 � 0.4); and nearly full cooperation is
reached when θ2 approaches one. But due to the asymmetry,
however, the two cooperation prevalences could be very dif-
ferent.

B. Interacting games composed of two different types

Another variant is to remove the symmetry in the two
games per se. Interacting games in the real world more often
involve different issues, which should be modeled by different
types of game. Thus, here we study the case of interacting
games composed of two different pairwise games, i.e., one
is PD game, the other is SD, but with the same interaction
strength θ .

To reduce the parameters, a convenient way to do it is
as follows [33,34]: the two games share three identical pa-
rameters R, P, T , but with opposite signs in S, since 0 <

S < 1 for SD and −1 < S < 0 for PD are required by def-
inition. Figure 12 shows three typical interaction strengths
in S-T parameter space. Without game interaction, they are
independent, and almost no cooperation is expected for PD.
As the interaction becomes stronger, both cooperation levels
are promoted. Significant promotion is possible when the
scenario becomes cross-playing, and again high cooperation
prevalences arise for the whole parameter space. Due to the

FIG. 12. Color-coded cooperation prevalence in S − T parame-
ter space for two interacting games; one is PD and the other is SD, on
the 2D square lattice, for θ = 0, 0.5, 1 (a–c). They have opposite sign
in S, e.g., the SD at top left corner (T = 1, S = 1) interacts with PD
with (T = 1, S = −1) at the bottom left. Other parameters: R = 1,
P = 0, and L = 128 for the lattice.

difference of the two games, now the cooperation levels are
not homogeneous, but with a certain nontrivial distribution in
the parameter space, which remains for further investigation.

Note that here the game-game interaction promotes co-
operation in both games, which is superior to the previous
results within the framework of an interdependent network.
In [33,34] the PD and SD are placed on two interdependent
networks, and they are coupled through network interdepen-
dency. They show that with the increment of coupling, the
cooperation promotion in PD is at the expense of cooperation
decline in SD.

A counterintuitive observation in Fig. 12(c) is the presence
of lowered fractions of cooperation for increasing the sucker’s
payoff. This is because the parameter difference in S for the
two games is too big, their increasing rates of fC differ so
much, that when the PD game reaches the absorbing state
fC = 1, the value of fC for SD is still around 0.5. And ac-
cording to Eq. (3), its evolution later becomes neutral, and
therefore a low cooperation prevalence is seen for SD. Again,
this scenario is too extreme; we probably will not see its
occurrence in the real world.

C. Interacting games with timescale separation

An underlying assumption in the above studies is that
the timescales of involved games are comparable, and their
updating rates are assumed to be identical. A further relaxed
condition is to allow for different timescales, or even timescale
separation—some of them are fast games while others are
slow ones. This could be the case in reality since different
each issue by nature has its own pace and hence is reasonably
of a different timescale.

To see the impact of the timescale separation, we study
two interacting PD games: one is fast, the other is slow. The
timescale separation is characterized by the timescale ratio
Tr � 1: when the slow game is updated by one generation
for each player, the fast game is updated Tr generations on
average. Apparently, the case of Tr = 1 is reduced to identical
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FIG. 13. The impact of timescale separation of the two interact-
ing PD games. The cooperation prevalence fc vs the timescale ratio
Tr for θ = 0.5 (a) and θ = 1 (b). No cooperation is seen for θ = 0
for the given parameters. Other parameters: S = 0, T = 1.1, R = 1,
P = 0, L = 1024 for the 2D square lattice.

timescale scenario as studied above; and as Tr increases, the
timescale separation becomes stronger.

Figure 13 shows the cooperation prevalence for a wide
range of timescale separation for θ = 0.5 and 1. In both cases,
the cooperation prevalence in the slow game monotonically
declines, while the cooperation level for a fast game keeps
largely unchanged or even increases within Tr < 10 in the
case of θ = 0.5. As Tr further increases, the declines of both
games are observed in Fig. 13(a), while the cooperation level
for slow game stays around 0.5 and full cooperation for the
fast game in Fig. 13(b). These results mean that a fairly
high level of cooperation is still able to be maintained when
the timescales are not very much separated. A systematic
account of timescale separation’s impact will be presented
elsewhere.

D. Different updating rules and sychronicities

The update rule determines how exactly the strategy of
individuals evolves in time. There is a variety of update rules
that have been adopted in the literature, each being conceived
in different backgrounds, and sometimes they yield fairly dif-
ferent cooperation outcomes. For completeness, here we also
examine four other often used updating rules [47].

(i) Replicator rule, also known as the proportional im-
itation rule, is inspired by the replicator dynamics. The
procedure is similar as the Fermi rule case that we randomly
pick one node x and one of its neighbors y, and the imitation
probability linearly depends on the payoff difference as

W g
xy ≡ W

(
sg

y → sg
x

) =
{

(�̂g
y − �̂

g
x )/�̂g

0, �̂
g
y > �̂

g
x,

0, �̂
g
y � �̂

g
x,

(13)

where �̂
g
0 = k[max(1, T ) − min(0, S)] to ensure the proba-

bility W g
xy ∈ [0, 1].

(ii) Multiple replicator rule is a variation of the replicator
rule, where we now check simultaneously the whole neigh-
borhood of x, and therefore it is more probable to change
the strategy of x. With this rule, the probability of player x
maintaining its strategy is

W
(
sg

x → sg
x

) =
∏
y∈�x

(
1 − W g

xy

)
, (14)

where W g
i j is given by (13). The more neighbors an individual

has, the less likely to maintain its strategy.
(iii) Moran-like rule, also know as death-birth rule, is

inspired by the Moran process in biology. With this rule,
an individual randomly picks one site in its neighborhood
including itself, with the imitation probability defined as

W
(
sg

y → sg
x

) = �̂
g
y − �̂

g
0∑

i∈�∗
x
(�̂g

i − �̂
g
0)

, (15)

where �∗
x = �x ∪ {x}, and the constant �̂

g
0 is to guarantee the

numerator positive, �̂
g
0 = max j∈�∗

x
(k j ) min(0, S) for pairwise

games.
(iv) Unconditional imitation rule, also known as follow-

the-best rule, is a deterministic rule. At each time step, every
player adopts the strategy of the individual who has the high-
est payoff in its neighborhood, given this payoff is greater than
its own.

Another complication of the model study is the synchronic-
ity of the strategy update. As described in Sec. II, the one used
above is the random sequential updating, or simply termed
asynchronous updating (AU). We also examine synchronous
updating (SU), where each individual is updated simultane-
ously; thus each player is updated exactly once per generation.
Previous studies show that the synchronicity issue is often
relevant for the cooperation outcome [47]. In what follows,
we investigate the cooperation dynamics of two interacting
PD games using the above four updating rules, with both AU
and SU.

Figure 14 presents the cooperation prevalence of two inter-
acting PD games for the above four updating rules, for AU.
Without game interaction, the phase diagram are very simi-
lar, except the unconditional imitation rule case [Fig. 14(j)],
where its phase diagram differs significantly from the others.
As game-game interaction is engaged and becomes stronger,
the overall cooperation is promoted in general, and this
promotion reaches maximal as θ → 1, the cross-playing sce-
nario, in line with the Fermi rule studied above. In this
scenario, however, there are some alternative dynamical fea-
tures emerging. The most significant distinction is that there
is no monotonic dependence of cooperation on the temp-
tation T , an intermediate value of T yields a cooperation
valley for the replicator rule, multiple replicator rule, and un-
conditional imitation [Figs. 14(c), 14(f), and 14(l)]. Besides,
many “defection islands” arise within the parameter space
for the the Moran rule [Fig. 14(i)]. Furthermore, the coop-
eration prevalence in some quadrants instead decreases, like
HG and SH.

SU doesn’t alter the overall phase diagram of cooperation,
as shown in Fig. 15. The cooperative behaviors are qualita-
tively the same as the cases with AU, and values are even
slightly larger compared to Fig. 14, where the monotonic
dependence of T and “defection islands” in the cross-playing
scenario remain. Detailed analysis requires inspecting the evo-
lutionary game dynamics, which will be presented elsewhere.

Taken together, the observations in Fig. 14 and Fig. 15
mean that the dynamical reciprocity is robust against different
rules and the synchronicity of the strategy updating.
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FIG. 14. Cooperation phase diagram for f G1
C with other four update rules with AU, for θ = 0, 0.5, 1. The update rules are the following:

replicator rule (first row, a–c), multiple replicator rule (second row, d–f), Moran rule (third row, g–i), and unconditional imitation (bottom
row, j–l). Random initial conditions are adopted. The four numbers are the average cooperation prevalence for the corresponding quadrants.
f G2
C ≈ f G1

C due to the symmetrical settings. Parameters: R = 1, P = 0, and L = 128 for the 2D square lattice.

VII. INTERACTING GAMES ON COMPLEX NETWORKS

While the above robustness studies focus on the variations
in dynamical aspects, we now turn to the impact of structural
complexities, since the underlying connectivities of real pop-
ulations are far more complex than the regular lattices we
studied. The stylized models for complex networks include
Erdős-Rényi (ER) random networks, small-world (SW) net-
works, and scale-free (SF) networks, the impact of which on
cooperation in the single-game case has been studied exten-
sively [16], both theoretically and experimentally. Here we
are not aiming to examine exhaustedly different topologies,
rather we study three only of them and focus on the question
Can the structural complexities alter qualitatively the working
of dynamical reciprocity?

A. Small-world networks

We adopt the Newman-Watts network for the SW networks
[51], which are derived from a d-dimensional square lattice
(here d = 2) by adding some additional random links. This
SW model is thought to be better behaved than the origi-
nal network model [52], such as the exclusion of detached
possibility. Instead of rewiring, shortcuts are added with a
probability φ corresponding to each bond of original lattice,
so that there are dNφ shortcuts on average. The average
degree is then 〈k〉 = 2d (1 + φ). By tuning the parameter φ,
the topology can vary continuously from the regular lattice to
small-world networks, and to random networks in principle.

Figure 16(a) provides phase transitions for a couple of in-
teraction strength θ for φ = 0.01, showing that as θ increases,
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FIG. 15. Cooperation phase diagram with other four update rules but with SU, for three interaction strengths θ = 0, 0.5, 1. Other settings
are exactly the same as in Fig. 14.

the cooperation prevalence is continuously promoted; when
θ → 1, the phase transition disappears, and a fairly high level
of cooperation is also observed, irrespective of the control
parameter b. Figure 16(b) shows the cooperation dependence
on the network parameter φ for three b. While a higher tempta-
tion b reduces the cooperation prevalence as expected, a larger
φ generally enhances the cooperation for large T . However,
when the temptation is small (e.g., b = 1.1), there is an opti-
mal φ that promotes the cooperation to the largest degree. This
observation is in line with previous findings in the single game
case that a moderate amount of randomness in small-world
networks is found to best enhance cooperation [53].

B. Random networks

Erdős-Rényi random networks [54] represent a class of
topologies found in nature. Their construction start with an

ensemble of N isolated individuals, and any two nodes are
then connected with a given probability. In such a way, the
degrees of the resulting networks follow a Poisson distribution
around the mean value 〈k〉.

The evolutionary outcome of two interacting PD games
on ER networks is shown in Fig. 17(a). Due to the struc-
tural disorder, the prevalence of cooperation is higher than
the case of a 2D square lattice in the absence of game
interaction. By increasing θ , a continuing promotion of
cooperation is observed as well, with the cross-playing sce-
nario being the optimal case likewise. Figure 17(b) shows
the dependence of cooperation prevalence on the average
degree 〈k〉, where there is an optimal 〈k〉 for each case,
further increasing the value of degree results in a coop-
eration decline. This is because the case of 〈k〉 → N −
1 is equivalent to the well-mixed populations, where no
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FIG. 16. Two symmetrically interacting PD games on Newman-
Watts small-world networks. (a) The cooperation prevalence fc vs
the temptation T = b for a couple of interaction strengths θ . (b) fc vs
φ for three temptation values b with θ = 0.5. f G2

C ≈ f G1
C due to the

symmetrical settings. Parameters: P = S = 0, R = 1 for both games,
the network size N = 220 with φ = 0.01.

cooperation is expected according to the above mean-field
analysis.

C. Scale-free networks

We adopt Barabási-Albert (BA) networks [55] for the sim-
ulations on the scale-free network. The construction is via the
growth and preferential attachment. The network is started
with a small fully connected graph as the initial core, and
every newly added node is going to connect 〈k〉/2 existing
nodes, with a probability proportional to their degrees. The
generated networks follow a power-law degree distribution
with an exponent −3.

Different from the SW or ER random networks, which
are taken as homogeneous networks, scale-free networks are
typical heterogeneous networks. This heterogeneity is able to
boost cooperation considerably, yielding a fairly high level of
cooperation even for a single game. The reason lies in the fact
that the hubs are easily able to form cooperator backbones that
drive the whole network to be cooperative [13]. This boost is,
however, based upon the accumulated total payoffs, whereby
the hubs are very likely to have higher payoffs and thus be the
model players. Once the accumulated payoff is replaced by
the average payoff (i.e., �̄x = �x/ki), which is argued more
reasonable in reality in some previous studies [15,56,57], the
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FIG. 17. Two symmetrically interacting PD games on Erdős-
Rényi random networks. (a) The cooperation prevalence fc vs the
temptation T = b for a couple of interaction strengths θ . (b) fc

vs the average degree for three temptation values b with θ = 0.5.
f G2
C ≈ f G1

C due to the symmetrical settings. Parameters: P = S = 0,
R = 1 for both games, the network size N = 220 with 〈k〉 = 4.
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FIG. 18. Two symmetrically interacting PD games on BA scale-
free networks. The cooperation prevalence fc vs the temptation
T = b for a couple of interaction strengths θ . f G2

C ≈ f G1
C due to the

symmetrical settings. Parameters: P = S = 0, R = 1 for both games,
the network size N = 220 with 〈k〉 = 4. K = 0.025 due to the average
payoff scheme; the flipping noise pf = 0.01.

heterogeneity-induced enhancement is much less significant.
Here we adopt the average payoff scheme in our simulations
of two interacting games.

As can be seen in Fig. 18, without game interaction (θ =
0), the enhancement effect of heterogeneity is very much
inhibited—a low level of cooperation is seen. As the game
interaction θ increases, the cooperation curve is monotoni-
cally lifted, also the cross-playing scenario works best. Here
an abnormal dependence of cooperation on the value of b is
seen for θ = 1, where the value of fC unexpectedly increases
for the increasing temptation. The reason lies in the fact that
for BA networks the cluster property is weaker than the lattice
case, and the individual interactions account for most cases;
in such context, the catalyzed interactions thus improves the
cooperation, and the probability becomes larger for increasing
b. For a large value of b, the CC players are more likely to
occupy the hubs that drive the whole networks to a higher
level of cooperation. Actually, a similar observation is also
seen in ER networks in Fig. 17(a), just to a lesser extent due
to the homogeneous network nature. Note that, in the scale-
free network case, a flipping noise in posed to inhibited the
strong fluctuations caused by the strong degree heterogeneity
in the following way: in each elementary step, with a small
probability p f to flip the state of the focal player, and with
1 − p f to conduct the standard MC procedure as in Sec. II.
With flipping noise, the absorbing state is thus avoided, and it
can be interpreted as the deviation from the logic of imitation
due to the irrationality.

In brief, additional complexities in the underlying networks
of population, as shown in this section, bring only some quan-
titative difference compare to the lattice case; the dynamical
reciprocity still works in the complex networked populations.

VIII. MORE GAMES

Given the results of two interacting games, one natu-
rally wants to see the trend if more games are engaged,
since in the real world there are many more issues unfolded
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FIG. 19. Three interacting games. (a) Phase transitions of the
three cooperation prevalences vs the interaction strength θ ′ by assum-
ing θ ′

1 = θ ′
2 = θ ′. (b) Color-coded fraction of cooperators regarding

game G1 ( f G1
C = ∑

X,Y ∈S1
fCXY ) within the interaction space θ ′

1-θ ′
2.

Due to the restriction of θ ′
1 + θ ′

2 � 1, the upper right half is unphys-
ical. Note that the cooperation prevalence for the three games f

G1,2,3
C

is approximately identical due to the symmetrical setting, as shown
in (a). Other parameters: S = 0, R = 1, P = 0, T = 1.1, L = 1024
for the 2D square lattice.

simultaneously. The question of interest is What could be
expected if the number of games involved increases, whether
the above mechanism still holds?

In [48], we have shown that by assuming equal contribution
for each game, the phase transitions and typical time series
show clearly that a higher level of cooperation is expected
when more games are involved (m = 1, 2, 3). Based upon
these observations, one can reasonably extrapolate that a con-
tinuing promotion in cooperation is expected when more and
more games are engaged. Here we plan to study the three-
game case in a bit more depth.

The effective payoffs following the linear combination for
the three interacting games are now written as⎛
⎝�̂G1

x
�̂G2

x
�̂G3

x

⎞
⎠=

⎛
⎝1−θ2−θ3 θ2 θ3

θ1 1−θ1−θ3 θ3

θ1 θ2 1−θ1−θ2

⎞
⎠

⎛
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x
�G2

x
�G3

x

⎞
⎠,

(16)

where the interaction strength θ1,2,3 are respectively the con-
tribution weights of G1,2,3 in other games’ effective payoffs.
To reduce the number of parameters, here we adopt a circular
parametrization as⎛
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x
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x
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(17)

where θ ′
1,2 ∈ [0, 1] and θ ′

1 + θ ′
2 � 1. By varying these two

interaction strengths, we can systematically study the case of
three interacting games.

The simplest case where θ ′
1 =θ ′

2 =θ ′ is shown in
Fig. 19(a). When θ ′ � 0.25, cooperators cannot survive within
the population for the given parameters, and further increasing
the interaction strength, a continuous phase transition is seen
and the cooperation prevalence goes to be fairly high when
θ ′ → 1/2, which corresponds to a cross-playing scenario in
the three interacting game case.

Figure 19(b) provides the more general case where θ ′
1,2

can be different. We see that a stronger game interaction
leading to better cooperation holds in general; in particular,
as θ ′

1 + θ ′
2 → 1, the cross-playing scenario, fairly high coop-

eration is seen. This result shows that as the sum of interaction
strength (i.e., θ ′

1 + θ ′
2 here) becomes larger, the cooperation is

higher; when the sum is fixed, the asymmetry of interaction
strength distribution deteriorates the cooperativity, and the
symmetrical distribution θ ′

1 ≈ θ ′
2 case yields the best outcome,

as can be seen in Fig. 19(b). Our further numerical comparison
shows what really matters for the cooperation level is the
sum of interaction strength not the number of games; when
this sum is fixed, increasing the number of game does not
necessarily improve the cooperation level.

For the three-games case, the mechanism behind the pro-
motion is the same as the case of the two interacting games,
and the above classification still holds. Specifically, there are
now eight different states and 28 pairwise interactions by
combination, even though these interactions can still be classi-
fied into the above three categories also within a cross-playing
scenario θ ′

1 =θ ′
2 =1/2 for simplicity, as listed in Table II.

Overall, also two scenarios are considered—individual and
bulk interactions. And all interacting pairs can similarly be
classified into invasion, neutral, and catalyzed categories.
While no net production in cooperation is expected in the
neutral category, cooperators are either yielded or ruined in
the other two categories, and the net effect is opposite in two
scenarios. Additional complexities here, however, are that for
a given pairwise interaction, it could be classified into differ-
ent categories for different games; e.g., DCC-CDD belongs
to catalyzed type when playing game G1, but is of neutral
type when playing game G2 or G3. All classifications are also
confirmed by numerical experiments (not shown).

IX. SUMMARY AND DISCUSSION

In summary, motivated by the fact that different games are
often coupled in the real world, we formulate their evolution
in the framework of interacting games. We show that this
game-game interaction generally boosts the propensities of
cooperation in all evolved games. To our surprise, the optimal
promotion occurs when the decision making of the games is
completely blind to their own payoffs. A mean-field treat-
ment reveals that two routes to cooperation arise, which are
confirmed by further analysis. All these findings suggest a al-
ternative mechanism for cooperation—dynamical reciprocity.
Exhaustive numerical evidence for variants in both dynamical
and structural aspects has verified the robustness of the dy-
namical reciprocity.

While the network reciprocity is to facilitate the growth of
cooperator clusters via the structured connectivities [16,58],
the mechanism to increase cooperation in the dynamical reci-
procity is through the game-game correlation instead, more
specifically through the invasion and catalyzed types of in-
teractions. In this sense, the dynamical reciprocity manifests
itself as a mechanism from an entirely different source.
Nonetheless, as shown in the well-mixed case, the interacting
games do not show any improvement compare to the single
game case. This means that the dynamical reciprocity works
only in the structured populations; it alone cannot constitute
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TABLE II. Categories of interactions three interacting PD games G1,2,3 within a cross-playing scheme (θ ′
1 = θ ′

2 = 1/2 in Eq. (17)). C2
8 = 28

pairwise interactions by combination can still be classified into three categories in either individual or bulk scenarios.

Individual interaction Bulk interaction

CCC + DDD
G1/G2/G3−−−−−→ DCC/CDC/CCD + DDD CCC + DDD

G2/G3−−−→ CCC + CDD/DCD/DDC

CCC + DDC
G1/G2−−−→ DCC/CDC + DDC CCC + DDC

G1/G2−−−→ CCC + CDC/DCC

CCC + CDD
G2/G3−−−→ CDC/CCD + CDD CCC + CDD

G2/G3−−−→ CCC + CCD/CDC

Invasion type CCC + DCD
G1/G3−−−→ DCC/CCD + DCD CCC + DCD

G1/G3−−−→ CCC + CCD/DCC

DDD + CCD
G1/G2−−−→ DDD + DCD/CDD DDD + CCD

G1/G2−−−→ CDD/DCD + CCD

DDD + DCC
G2/G3−−−→ DDD + DDC/DCD DDD + DCC

G2/G3−−−→ DCD/DDC + DCC

DDD + CDC
G1/G3−−−→ DDD + DDC/CDD DDD + CDC

G1/G3−−−→ CDD/DDC + CDC

CCC + DCC
G1−→ 2CCC or 2DCC CCC + DCC

G1−→ 2CCC or 2DCC

CCC + CDC
G2−→ 2CCC or 2CDC CCC + CDC

G2−→ 2CCC or 2CDC

CCC + CCD
G3−→ 2CCC or 2CCD CCC + CCD

G3−→ 2CCC or 2CCD

DDD + CDD
G1−→ 2DDD or 2CDD DDD + CDD

G1−→ 2DDD or 2CDD

DDD + DCD
G2−→ 2DDD or 2DCD DDD + DCD

G2−→ 2DDD or 2DCD

DDD + DDC
G3−→ 2DDD or 2DDC DDD + DDC

G3−→ 2DDD or 2DDC

CCD + DCD
G1−→ 2CCD or 2DCD CCD + DCD

G1−→ 2CCD or 2DCD

CCD + CDD
G2−→ 2CCD or 2CDD CCD + CDD

G2−→ 2CCD or 2CDD

CDC + CDD
G3−→ 2CDC or 2CDD CDC + CDD

G3−→ 2CDC or 2CDD
Neutral type

CDC + DDC
G1−→ 2CDC or 2DDC CDC + DDC

G1−→ 2CDC or 2DDC

DCC + DDC
G2−→ 2DCC or 2DDC DCC + DDC

G2−→ 2DCC or 2DDC

DCC + DCD
G3−→ 2DCC or 2DCD DCC + DCD

G3−→ 2DCC or 2DCD

CCD + DDC
G1−→ CCD + CDC or DCD + DDC CCD + DDC

G1−→ CCD + CDC or DCD + DDC

CCD + DDC
G2−→ CCD + DCC or CDD + DDC CCD + DDC

G2−→ CCD + DCC or CDD + DDC

DCC + CDD
G2−→ DCC + CCD or DDC + CDD DCC + CDD

G2−→ DCC + CCD or DDC + CDD

DCC + CDD
G3−→ DCC + CDC or DCD + CDD DCC + CDD

G3−→ DCC + CDC or DCD + CDD

CDC + DCD
G1−→ CDC + CCD or DDC + DCD CDC + DCD

G1−→ CDC + CCD or DDC + DCD

CDC + DCD
G3−→ CDC + DCC or CDD + DCD CDC + DCD

G3−→ CDC + DCC or CDD + DCD

CDC + DCC
G1/G2−−−→ CDC/DCC + CCC CDC + DCC

G1/G2−−−→ DDC + DCC or CDC + DDC

CCD + CDC
G2/G3−−−→ CCD/CDC + CCC CCD + CDC

G2/G3−−−→ CDD + CDC or CCD + CDD

CCD + DCC
G1/G3−−−→ CCD/DCC + CCC CCD + DCC

G1/G3−−−→ DCD + DCC or CCD + DCD

CDD + DCD
G1/G2−−−→ CDD/DCD + CCD CDD + DCD

G1/G2−−−→ DCD/CDD + DDD

Catalyzed type DCD + DDC
G2/G3−−−→ DCD/DDC + DCC DCD + DDC

G2/G3−−−→ DDC/DCD + DDD

CDD + DDC
G1/G3−−−→ CDD/DDC + CDC CDD + DDC

G1/G3−−−→ DDC/CDD + DDD

DCC + CDD
G1−→ CCC + CDD DCC + CDD

G1−→ DCC + DDD

CDC + DCD
G2−→ CCC + DCD CDC + DCD

G2−→ CDC + DDD

CCD + DDC
G3−→ CCC + DDC CCD + DDC

G3−→ CCD + DDD

a self-contained mechanism. However, since most popula-
tions in the real world are structured, this precondition is
easy to meet. Therefore, the two reciprocities are expected
to go hand in hand to maintain high levels of cooperation in
reality.

In the present work, we have treated only the linear game
interaction case as shown Eq. (3). There the effective payoffs
perceived is a linear combination of payoffs for different
games, and the interaction strength is encoded within the
combination weights. This is of course a simplified formu-
lation for the real cases; more realistic modeling could be
more complex functions of the payoffs and the weights. In

addition, the effective payoff should also probably incorpo-
rate a memory of past history for all evolved games, which
implies that a non-Markovian model [59,60] seems more
proper.

The five strategy updating rules used in this work es-
sentially belong to the outward learning, where they imitate
those who are better off. This is the mainstream approach of
modeling updating. However, a paradigm proposed recently
[61,62] is through the inward learning, where the decision
making of individuals is through introspective actions based
on their histories. With the help of machine learning [63], they
also model the evolution of cooperation, but this is limited to
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the single-game case. It would be interesting to see if more
games are played in this shifted paradigm, does the dynamical
reciprocity still work?

As the next step, maybe the most important open ques-
tion is to verify the dynamical reciprocity in behavioral
experiments. But due to the great complexities in human
beings, the experiment needs to be carefully designed to be
convincing. Ideally, the game-game correlation is tunable;
also the comparison of interacting games within structured
and unstructured populations is necessary according to our
results.

Returning to the real world, the implications of our works
are at least two facets. On one hand, since different issues are
often interweaved in the real world, and highly cooperative
behaviors are abundant, the dynamical reciprocity seemingly
provides a natural causality explanation for these two observa-
tions. On the other hand, to handle those cooperation failures
in some vital issues, such as global warming and trade war,
our work suggests that the players should get involved in as
many games as possible, whereby a significant cooperation
should be expected as a result. This advice could be applicable
to different contexts from international affairs to interpersonal
relationships.

Finally, our work may also provide an inspiration for the
complexity science. In complexity science, many systems are
studied within the framework of structure plus dynamics (i.e.,
the function), where the structure and its impact on dynamics
have been extensively studied with the rise of network science.
Our findings suggest that the dynamics-dynamics interactions
may also harbor a great number of complexities, which have
largely been underestimated before. Another good example of
“more is different” [64] in dynamics is modeling the spread
of multiple infectious diseases [65–68], where the physics re-
vealed is fundamentally different from the single one case. We
hope the related communities could put more attention to the
potential complexities arising from the dynamics-dynamics
interactions in the future.
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APPENDIX A: DETAILED MEAN-FIELD TREATMENT

Following Eq. (10) in Sec. IV, we explicitly write the effective fitness defined as �̂
G1,2
s = (1 − θ )�G1,2

s + θ�
G2,1
s , s ∈ S2 that

players perceived and used in their strategy updating, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂
G1
CC = (1 − θ )( fCCR + fCDR + fDCS + fDDS) + θ ( fCCR + fCDS + fDCR + fDDS),

�̂
G2
CC = (1 − θ )( fCCR + fCDS + fDCR + fDDS) + θ ( fCCR + fCDR + fDCS + fDDS),

�̂
G1
CD = (1 − θ )( fCCR + fCDR + fDCS + fDDS) + θ ( fCCT + fCDP + fDCT + fDDP),

�̂
G2
CD = (1 − θ )( fCCT + fCDP + fDCT + fDDP) + θ ( fCCR + fCDR + fDCS + fDDS),

�̂
G1
DC = (1 − θ )( fCCT + fCDT + fDCP + fDDP) + θ ( fCCR + fCDS + fDCR + fDDS),

�̂
G2
DC = (1 − θ )( fCCR + fCDS + fDCR + fDDS) + θ ( fCCT + fCDT + fDCP + fDDP),

�̂
G1
DD = (1 − θ )( fCCT + fCDT + fDCP + fDDP) + θ ( fCCT + fCDP + fDCT + fDDP),

�̂
G2
DD = (1 − θ )( fCCT + fCDP + fDCT + fDDP) + θ ( fCCT + fCDT + fDCP + fDDP).

(A1)

The overall effective payoffs are then

�̂XY = �̂
G1
XY + �̂

G2
XY = (1 − θ )�G1

XY + θ�
G2
XY + (1 − θ )�G2

XY + θ�
G1
XY = �

G1
XY + �

G2
XY = �XY . (A2)

The key observation here is that the interaction strength θ is canceled out due to the linear combination, which is also reasonable
since θ is the contribution weight that adjusts only the payoff values perceived in a specific game but not the overall payoffs.
Specifically, we have ⎧⎪⎪⎨

⎪⎪⎩
�̂CC = (2 fCC + fCD + fDC )R + (2 fDD + fCD + fDC )S,

�̂CD = ( fCC + fCD)R + ( fDC + fDD)S + ( fCC + fDC )T + ( fCD + fDD)P,

�̂DC = ( fCC + fCD)T + ( fDC + fDD)P + ( fCC + fDC )R + ( fCD + fDD)S,

�̂DD = (2 fCC + fCD + fDC )T + (2 fDD + fCD + fDC )P.

(A3)

And the mean fitness is

�̄ =
∑
s∈S2

fs�̂s = fCC�̂CC + fCD�̂CD + fDC�̂DC + fDD�̂DD. (A4)

Inset these terms into Eq. (10), the replicator equations are then⎧⎪⎪⎨
⎪⎪⎩

ḟCC = fCC[ fCD(�̂CC − �̂CD) + fDC (�̂CC − �̂DC ) + fDD(�̂CC − �̂DD)],
ḟCD = fCD[ fCC (�̂CD − �̂CC ) + fDC (�̂CD − �̂DC ) + fDD(�̂CD − �̂DD)],
ḟDC = fDC[ fCC (�̂DC − �̂CC ) + fCD(�̂DC − �̂CD) + fDD(�̂DC − �̂DD)],
ḟDD = fDD[ fCC (�̂DD − �̂CC ) + fCD(�̂DD − �̂CD) + fDC (�̂DD − �̂DC )],

(A5)
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where we used the normalization condition fCC + fCD+ fDC + fDD =1. These equations can be summarized as

ḟs =
∑
s′∈S2

[ fs fs′ (�̂s − �̂s′ )]. (A6)

The structure of Eq. (A6) is similar to Eq. (5), and its meaning is straightforward that the change in fs comes from the interaction
of individuals within state s and s′ and their effective payoff difference. The overall effective fitness differences are as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�̂CC − �̂CD = ( fCC + fDC )(R − T ) + ( fCD + fDD)(S − P),
�̂CC − �̂DC = ( fCC + fCD)(R − T ) + ( fDD + fDC )(S − P),
�̂CC − �̂DD = (2 fCC + fCD + fDC )(R − T ) + (2 fDD + fCD + fDC )(S − P),
�̂CD − �̂DC = ( fCD − fDC )(R − T ) + ( fDC − fCD)(S − P),
�̂CD − �̂DD = ( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P),
�̂DC − �̂DD = ( fCC + fDC )(R − T ) + ( fCD + fDD)(S − P).

(A7)

Now let us consider the evolution of overall cooperator fraction with regard to G1 by adding the first two equations in Eqs. (A5)
and insert the above related terms:

ḟ G1
C = ḟCC + ḟCD

= fCC[ fDC (�̂CC − �̂DC ) + fDD(�̂CC − �̂DD)] + fCD[ fDC (�̂CD − �̂DC ) + fDD(�̂CD − �̂DD)]

= fCC{ fDC[( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P)]+ fDD[(2 fCC + fCD + fDC )(R − T )+(2 fDD + fCD + fDC )(S − P)]}
+ fCD{ fDC[( fCD − fDC )(R − T ) + ( fDC − fCD)(S − P)] + fDD[( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P)]}

= ( fCC fDC + fCD fDD)[( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P)] + fCC fDD[(2 fCC + fCD + fDC )(R − T )

+(2 fDD + fCD + fDC )(S − P)] + fCD fDC[( fCD − fDC )(R − T ) + ( fDC − fCD)(S − P)].

By replacing fCC fDC + fCD fDD = ( fCC + fCD)( fDC + fDD)−( fCC fDD+ fCD fDC ),

ḟ G1
C = ( fCC + fCD)( fDC + fDD)[( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P)]

+ fCC fDD{[(2 fCC + fCD + fDC )(R − T ) + (2 fDD + fCD + fDC )(S − P)] − [( fCC + fCD)(R−T ) + ( fDC + fDD)(S−P)]}
+ fCD fDC{[( fCD − fDC )(R − T ) + ( fDC − fCD)(S − P)] − [( fCC + fCD)(R − T ) + ( fDC + fDD)(S − P)]}

= f G1
C f G1

D [ f G1
C (R − T ) + f G1

D (S − P)] + ( fCC fDD − fCD fDC )[ f G2
C (R − T ) + f G2

D (S − P)]

= f G1
C f G1

D (�G1
C − �

G1
D ) + ( fCC fDD − fCD fDC )(�G2

C − �
G2
D ).

Similarly, one can also obtain the equation for G2 by adding the first and the third equations in Eqs. (A5):

ḟ G2
C = ḟCC + ḟDC

= f G2
C f G2

D (�G2
C − �

G2
D ) + ( fCC fDD − fCD fDC )(�G1

C − �
G1
D ). (A8)

Equation (11) is then obtained.

APPENDIX B: ANALYTICAL SOLUTIONS

To solve the mean-field equation (A5), we make some rearrangements that lead to⎧⎪⎪⎨
⎪⎪⎩

ḟCC = 2 fCC f G1
D [ f G1

C (R − T ) + f G1
D (S − P)],

ḟCD = fCD(− f G1
C + f G1

D )[ f G1
C (R − T ) + f G1

D (S − P)],
ḟDC = fDC (− f G1

C + f G1
D )[ f G1

C (R − T ) + f G1
D (S − P)],

ḟDD = −2 fDD f G1
C [ f G1

C (R − T ) + f G1
D (S − P)],

(B1)

where f G1
C = fCD + fCC and f G1

D = fDC + fDD by definition. Based on the observations in the numerical simulation as well as
the symmetrical game setting, it’s reasonable to assume f g

CD = f g
DC , g ∈ G. Together with the normalization condition, only two

variables (let’s select fCC and fDD) are independent, and the others can be expressed by

fCD = fDC = 1 − fCC − fDD

2
, (B2)

f G1
C = 1 + fCC − fDD

2
, (B3)

f G1
D = 1 − fCC + fDD

2
. (B4)
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Their equations are⎧⎪⎨
⎪⎩

ḟCC = fCC (1 − fCC + fDD)[
(1 + fCC − fDD)

2
(R − T ) + (1 − fCC + fDD)

2
(S − P)],

ḟDD = − fDD(1 + fCC − fDD)[
(1 + fCC − fDD)

2
(R − T ) + (1 − fCC + fDD)

2
(S − P)].

(B5)

By setting ḟCC = ḟDD = 0, we obtain the four solutions:

(1) fCC = fDD = 0, (B6)

(2) fCC = 1, fDD = 0, (B7)

(3) fCC = 0, fDD = 1, (B8)

(4)
(1 + fCC − fDD)

2
(R − T ) + (1 − fCC + fDD)

2
(S − P) = 0. (B9)

The stability of these solutions is determined by the eigenvalues of the corresponding Jacobian matrix as

J =

⎛
⎜⎜⎜⎜⎝

∂ ḟCC

∂ fCC

∂ ḟCC

∂ fDD

∂ ḟDD

∂ fCC

∂ ḟDD

∂ fDD

⎞
⎟⎟⎟⎟⎠. (B10)

(1) For fCC = fDD = 0,

J =

⎛
⎜⎜⎜⎝

(R + S − T − P)

2
0

0 − (R + S − T − P)

2

⎞
⎟⎟⎟⎠. (B11)

We have λ = ± (R + S − T − P)

2
, the eigenvalues couldn’t be both negative; thus this solution is unstable in any case.

(2) For fCC = 1, fDD = 0,

J =
⎛
⎝−(R − T ) (R − T )

0 −2(R − T )

⎞
⎠. (B12)

We have λ1 = −(R − T ), λ2 = −2(R − T ). Therefore, this solution is stable only when T < R.
(3) For fCC = 0, fDD = 1,

J =
⎛
⎝2(S − P) 0

−(S − P) (S − P)

⎞
⎠. (B13)

We have λ1 = (S − P), λ2 = 2(S − P). This solution is stable only when S < P.

(4) For
(1 + fCC − fDD)

2
(R − T ) + (1 − fCC + fDD)

2
(S − P) = 0, or equivalently f G1

C = P − S

R + P − S − T
,

J =

⎛
⎜⎜⎜⎝

fCC (1 − fCC + fDD)
(R − S − T + P)

2
− fCC (1 − fCC + fDD)

(R − S − T + P)

2

− fDD(1 + fCC − fDD)
(R − S − T + P)

2
fDD(1 + fCC − fDD)

(R − S − T + P)

2

⎞
⎟⎟⎟⎠. (B14)

We have λ1 = 0, λ2 = ( fCC + fDD − f 2
CC − f 2

DD)
(R − S − T + P)

2
. This solution is stable only when (R − S − T + P) < 0,

since fCC + fDD − f 2
CC − f 2

DD > 0.
Put together, the stable solutions of the mean-field equations are exactly recovered to the single pairwise game: the mixed

state [solution (B9)] is stable for the SD game region, full cooperation [solution (B7)] is stable for the HG game region, full
defection [solution (B8)] is stable for the PD game region, and the SH region is bistable (full cooperation or full defection)
because it is the overlapped region for solution (B7) and (B8).
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[45] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).
[46] G. Szabó, J. Vukov, and A. Szolnoki, Phys. Rev. E 72, 047107

(2005).
[47] C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Life Rev. 6, 208

(2009).
[48] Q. Wang, R. Liang, J. Zhang, G. Zheng, and L. Chen,

arXiv:2102.00359 (2021).
[49] P. D. Taylor and L. B. Jonker, Math. Biosci. 40, 145 (1978).
[50] J. M. Smith, Evolution and the Theory of Games (Cambridge

University Press, Cambridge, 1982).
[51] M. E. J. Newman and D. J. Watts, Phys. Rev. E 60, 7332

(1999).
[52] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[53] J. Ren, W.-X. Wang, and F. Qi, Phys. Rev. E 75, 045101(R)

(2007).
[54] B. Bollobás, Random Graphs (Cambridge University Press,

Cambridge, 2001).
[55] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[56] Z.-X. Wu, J.-Y. Guan, X.-J. Xu, and Y.-H. Wang, Physica A

379, 672 (2007).
[57] A. Szolnoki, M. Perc, and Z. Danku, Physica A 387, 2075

(2008).
[58] M. A. Nowak and S. Karl, Science 303, 793 (2004).
[59] W.-X. Wang, J. Ren, G. Chen, and B.-H. Wang, Phys. Rev. E

74, 056113 (2006).
[60] N. Kampen, Stochastic Processes in Physics and Chemistry, 3rd

ed. (North-Holland Personal Library, 2007).
[61] S.-P. Zhang, J.-Q. Zhang, L. Chen, and X.-D. Liu, Nonlinear

Dyn. 99, 3301 (2020).
[62] J.-Q. Zhang, S.-P. Zhang, L. Chen, and X.-D. Liu, Phys. Rev. E

101, 042402 (2020).
[63] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.

Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[64] P. W. Anderson, Science 177, 393 (1972).
[65] W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger, Nat.

Phys. 11, 936 (2015).
[66] P. Grassberger, L. Chen, F. Ghanbarnejad, and W. Cai, Phys.

Rev. E 93, 042316 (2016).
[67] L. Chen, F. Ghanbarnejad, and D. Brockmann, New J. Phys. 19,

103041 (2017).
[68] L. Chen, Phys. Rev. E 99, 022308 (2019).

054302-21

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation reports
https://doi.org/10.1126/science.309.5731.93
https://doi.org/10.1126/science.1133755
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1086/406755
https://doi.org/10.1038/31225
https://doi.org/10.1016/0022-5193(64)90039-6
https://doi.org/10.1038/2011145a0
https://doi.org/10.1038/359826a0
https://doi.org/10.1073/pnas.161155698
https://doi.org/10.1103/PhysRevLett.95.098104
https://doi.org/10.1038/nature06940
https://doi.org/10.1016/j.physa.2020.125726
https://doi.org/10.1016/j.physrep.2007.04.004
https://doi.org/10.1140/epjb/e2015-60270-7
https://doi.org/10.1016/j.tics.2013.06.003
https://doi.org/10.1073/pnas.1210294109
https://doi.org/10.1073/pnas.0912515107
https://doi.org/10.1073/pnas.1206681109
https://doi.org/10.1038/srep00325
https://doi.org/10.1073/pnas.1400406111
https://doi.org/10.1142/S0219198900000081
https://doi.org/10.1006/game.1999.0716
https://doi.org/10.1016/j.jtbi.2006.01.003
https://doi.org/10.1098/rspb.2019.0900
https://doi.org/10.1038/srep01183
https://doi.org/10.1038/srep00620
https://doi.org/10.1088/1742-5468/2012/11/P11017
https://doi.org/10.1038/srep02470
https://doi.org/10.1038/srep04436
https://doi.org/10.1209/0295-5075/107/58006
https://doi.org/10.1088/1367-2630/aa6ea1
https://doi.org/10.1103/PhysRevE.89.052813
https://doi.org/10.1038/srep04095
https://doi.org/10.1209/0295-5075/108/28004
https://doi.org/10.1103/PhysRevE.90.032813
https://doi.org/10.1038/s41598-021-91532-5
https://doi.org/10.1209/0295-5075/121/18002
https://doi.org/10.1103/PhysRevE.97.042305
https://doi.org/10.1016/j.physa.2018.08.007
https://doi.org/10.1038/s41467-020-17730-3
https://doi.org/10.1103/PhysRevE.58.69
https://doi.org/10.1103/PhysRevE.72.047107
https://doi.org/10.1016/j.plrev.2009.08.001
http://arxiv.org/abs/arXiv:2102.00359
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1103/PhysRevE.60.7332
https://doi.org/10.1038/30918
https://doi.org/10.1103/PhysRevE.75.045101
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.physa.2007.02.085
https://doi.org/10.1016/j.physa.2007.11.021
https://doi.org/10.1126/science.1093411
https://doi.org/10.1103/PhysRevE.74.056113
https://doi.org/10.1007/s11071-019-05398-4
https://doi.org/10.1103/PhysRevE.101.042402
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1038/nphys3457
https://doi.org/10.1103/PhysRevE.93.042316
https://doi.org/10.1088/1367-2630/aa8bd2
https://doi.org/10.1103/PhysRevE.99.022308

