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Supersolid gap soliton in a Bose-Einstein condensate and optical ring cavity coupling system
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The system of a transversely pumped Bose-Einstein condensate (BEC) coupled to a lossy ring cavity can
favor a supersolid steady state. Here we find the existence of supersolid gap soliton in such a driven-dissipative
system. By numerically solving the mean-field atom-cavity field coupling equations, gap solitons of a few
different families have been identified. Their dynamical properties, including stability, propagation, and soliton
collision, are also studied. Due to the feedback atom-intracavity field interaction, these supersolid gap solitons
show numerous new features compared with the usual BEC gap solitons in static optical lattices.
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I. INTRODUCTION

Due to the effect of dispersion, a wave packet would suffer
a spatial spreading during its time evolution. However, when
there also exists appropriate nonlinearity in the system, the
dispersion spreading can be suppressed and give rise to a
nonspreading localized wave packet—soliton [1]. In a Bose-
Einstein condensate (BEC) system, the nonlinearity due to
attractive interatom contact interaction can well balance the
dispersion spreading and support a matter wave soliton, which
is particularly called a “bright soliton” [2–8]. While for the
repulsive interaction, instead of a nonspreading wave packet,
it only supports a localized atomic density dip (i.e., absence
of atoms) on the background BEC density profile, which is
usually named as dark soliton [9–15] (these solitons are orig-
inally studied in the field of nonlinear optics, so according
to the brightness of the light pulses, they are described by the
words “bright” and “dark” [16–18]). When BEC is loaded into
a periodical optical lattice potential, its dispersion property
can be substantially changed, as a result, even for the repulsive
interaction there can also exist a bright soliton. Since the
chemical potential of such a soliton falls into the energy gaps
of the optical lattice potential, it is given the name of gap
soliton [19–39]. In passing, we also mention that although
gap solitons usually refer to the bright ones, there do exist
dark gap solitons [40–43] which are not the concerns of this
paper.

Supersolid is an unusual state of matter that simultaneously
behaves as both a crystalline solid and a superfluid [44–48].
Originally, it was predicted for helium as early as the mid-
dle of the 20th Century [49–53], but until now it still has
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not been observed undoubtedly [54–58]. In recent years, the
highly controllable atomic quantum gas brings new vitality
to the supersolid studies. It has been experimentally realized
in several different types of systems. The ground state of a
spin-orbit coupled BEC can fall into a stripe phase exhibiting
supersolid properties [59–61]. In dipolar BEC, the balance
between long range dipole-dipole interaction and short range
contact interaction gives rise to the emergence of arrays of
quantum droplets, i.e., dipolar supersolid [62–68]. The cavity-
mediated interaction also can lead to BEC supersolid. Two
different schemes have already been experimentally reported,
one of them couples the BEC to two crossed linear optical
cavities [69,70], while the other one uses a ring cavity [71,72].

In this work, we are interested in the driven-dissipative
supersolid BEC realized by the ring cavity scheme, for details
of the physical model see Sec. II or the original paper [71].
In this scheme, the BEC collectively scatters the pumping
photons into the cavity, and results in a super-radiant optical
lattice, which backwardly drives the BEC into a supersolid
state. As having been pointed out in the first paragraph of this
section, the simultaneous existence of an optical lattice and
interaction nonlinearity would lead to gap solitons in BEC.
In this vein of thought, we propose that there would exist
supersolid gap solitons in a BEC and ring cavity coupling
system. The main objectives of this work are finding out such
soliton solutions, and studying their basic properties.

The rest contents of this paper are organized as follows:
In Sec. II, we briefly describe the considering system, and
present the theoretical formulas to handle its steady state
and dynamical evolution. The next Sec. III shows the main
results of this paper. It is split into four subsections, which
deal with the gap soliton solutions (Sec. III A), their stability
(Sec. III B), mobility (Sec. III C) and collision (Sec. III D)
properties, respectively. At last, we summarize the paper in
Sec. IV.
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FIG. 1. Schematic diagram of the considering atomic BEC and
optical ring cavity coupling system. A quasi-one-dimensional BEC
is loaded in an optical ring cavity along its axis. By transversely
pumping the BEC using a standing wave laser (pumping strength η),
light fields are built up in the cavity due to super-radiant scattering of
pumping photons into the two counterpropagating ring cavity optical
modes (â±e±ikcx), and reach a steady state on account of the cavity
loss (loss rate κ). Interference between lights of the two cavity modes
forms an optical lattice. Backwardly, this optical lattice drives the
BEC to a supersolid gap soliton state [71].

II. MODEL

As schematically shown in Fig. 1, in this work we consider
an atomic BEC and optical ring cavity coupling system. The
BEC is loaded in the ring cavity along the cavity axis, and is
tightly trapped in the transverse (y, z) direction, such that only
the longitudinal (x) direction dynamics need to be considered.
When transversely illuminating a standing-wave laser on the
BEC atoms (Rabi frequency �0 and detuning �a), light fields
are built up in the cavity due to the scattering of pumping
photons into the two counterpropagating ring cavity optical
modes (â±e±ikcx with â± being the annihilation operators and
kcbeing the wave number). Backwardly, the induced cavity
light fields will also interact with the BEC atoms (strength
G0). Such a system can be described by Hamiltonian [71]

Ĥ = − h̄�c(â†
+â+ + â†

−â−) +
∫

ψ̂†(x)Haψ̂ (x)dx

+ 1

2

∫
ψ̂†(x)ψ̂†(x′)V (x − x′)ψ̂ (x′)ψ̂ (x)dxdx′, (1)

where h̄ is the Planck constant, �c is the detuning between
the cavity modes and pump laser, ψ̂ is the field operator of
the BEC. The first term describes the two counterpropagating
cavity modes. The last term describes the interaction be-
tween BEC atoms. Considering the one-dimensional effective
contact interaction [73], it is V (x − x′) = gδ(x − x′), where

g = 2h̄ω⊥as describes the interaction strength, with as being
the s-wave scattering length, ω⊥ referring to the frequency
of transverse confinement harmonic potential. When g < 0,
it represents an attractive interaction, while for g > 0 it is
a repulsive interaction. In this work, we consider the case
of repulsive interaction. The middle term accounts for the
kinetic and optical potential energy of the BEC, Ha is the
corresponding single particle Hamiltonian

Ha = p̂2
x

2m
+ V̂ac + V̂ap, (2)

with

V̂ac = h̄U [â†
+â+ + â†

−â− + (â†
+â−e−2ikcx + H.c.)], (3)

V̂ap = h̄η(â+eikcx + â−e−ikcx + H.c.). (4)

Here, m is the atomic mass, p̂x = −ih̄∂x is the momentum
operator along the x direction, hence p̂2

x/(2m) is the kinetic
energy term. The optical potential can be split into two parts.
The part caused by two-photon scattering between the two
cavity modes is denoted as V̂ac, its strength is h̄U = h̄G0/�a.
The other part V̂ap is caused by two-photon scattering between
pump and cavity modes, and its strength is h̄η = h̄G0�0/�a.
In other words, this term describes the pumping of the system,
so η would also be called an effective pumping strength. In the
following contents, we will use the natural unit m = h̄ = kc =
1 for simplicity of formulas.

Within the mean-field theory [74], the quantum operators
are approximated by their mean values. The dynamical equa-
tions governing these mean-field variables can be obtained by
taking mean values of the corresponding Heisenberg equa-
tions, and they are

i
∂

∂t
α± = (−�c + UN − iκ )α± + UN±2α∓ + ηN±1, (5)

i
∂

∂t
ψ =

[
−1

2

∂2

∂x2
+ Veff (x)

]
ψ + |ψ |2ψ, (6)

with

N =
∫

|ψ (x)|2dx, (7)

N±1 =
∫

|ψ (x)|2e∓ixdx, (8)

N±2 =
∫

|ψ (x)|2e∓2ixdx, (9)

Veff (x) = Vac(x) + Vap(x), (10)

Vac = U (|α+|2 + |α−|2) + U (α∗
+α−e−2ix + c.c.), (11)

Vap = η(α+eix + α−e−ix + c.c.), (12)

being some auxiliary quantities to make the dynamical equa-
tions compact. Here, we have introduced the cavity loss with
rate κ phenomenologically. And, we also have scaled the BEC
wave function with the interatom interaction character length
l = ω⊥asm/(2h̄k2

c ), ψ → ψ/
√

l , therefore in Eq. (6) the co-
efficient before the nonlinear interaction term is simplified to
1. Under such a scaling, the normalization constant N should
be interpreted as a scaled atom number. However, without
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FIG. 2. Examples of spatially periodical supersolid states. Only
one spatial period is considered here. Chemical potentials corre-
sponding to these states are, respectively, μ = −3.10 (a), −3.04 (b),
0.55 (c), and −1.31 (d), i.e., the same as those in Figs. 3(b) and 3(f),
and Figs. 4(b) and 4(e). Parameters used are �c = −1, U = −0.5,
κ = 10, η = 15 (this set of parameters will be used all along this
paper).

leading to any misunderstanding, literally we will still call it
“atom number” for convenience in the following contents.

Due to the balance between the pumping and cavity loss,
the system will reach a steady state which can be mathemati-
cally obtained by letting ∂tα± = 0, and ψ (x, t ) = ψ (x)e−iμt

with μ being the chemical potential. Inserting them into
Eqs. (5) and (6), one gets the following time-independent
equations for steady state

μψ (x) =
[
−1

2

∂2

∂x2
+ Veff (x)

]
ψ (x) + |ψ (x)|2ψ (x), (13)

α+ = − (−�c + UN − iκ )ηN+1 − ηUN+2N−1

(−�c + UN − iκ )2 − U 2N−2N+2
, (14)

α− = − (−�c + UN − iκ )ηN−1 − ηUN−2N+1

(−�c + UN − iκ )2 − U 2N−2N+2
. (15)

We see that the BEC feels an optical lattice potential from
the light fields. Since we are considering a running wave ring
cavity, the location of this optical lattice is not predetermined
by the cavity mirrors, and spontaneously breaks the contin-
uous translation symmetry. This optical lattice will further
modulate the BEC atomic density, that is, it will drive the BEC
to a spatially periodical supersolid state [71,72]. For some
examples of such states, one can see Fig. 2.

It is well known that when BEC with repulsive contact in-
teraction is loaded in an optical lattice, even though the system
is not well bounded, a kind of localized wave packet, i.e., gap
soliton, can also exist due to the balance between repulsive
interaction and anomalous dispersion [22]. Here, a supersolid
optical lattice is also built up, thus we guess that gap soliton

would also exist in the now considering supersolid system.
Next, we try to find such supersolid gap soliton solutions, and
examine their stability, mobility, and collision properties.

III. RESULTS

A. Gap soliton solutions

We find gap soliton by numerically solving the discretized
version (the derivative is approximated by second-order cen-
tral difference) of Eqs. (13), (14), and (15), starting from
an initial guessing wave function ψ0 = ∑

i=1,I Aisech[(x −
xi )/σi], where Ai, xi, σi and I are numerically tunable param-
eters. I determines the number of subwave packets (peaks) of
the soliton, xi, σi, Ai are the location, width, and amplitude of
each subwave packet. We expect that each subwave packet
will fit in a lattice site, thus σi is typically set to a value
several times smaller than the spatial period of the optical
lattice (since the dimensionless optical lattice period is 2π ,
we typically set σi in the range of 0.3 ∼ 2). Parameter Ai

is typically set to a value in the range of 0.1 ∼ 1, such that
the contact interaction is obvious, but smaller than the depth
of optical lattice, and a self-bounded bright soliton solution
would be possible. The same typical physical parameters
�c = −1, U = −0.5, κ = 10, η = 15 will be used all along
this paper.

In Fig. 3, we show some examples of fundamental soliton
wave functions in the first [Figs. 3(a1)–3(c1)] and sec-
ond [Figs. 3(e1)–3(g1)] energy gaps, together with their
corresponding effective optical lattice potentials [Figs. 3(a2)–
3(c2); 3(e2)–3(g2)] and energy band structures [Figs. 3(a3)–
3(c3); 3(e3)–3(g3)]. When the soliton’s chemical potential lies
deep in the energy gap, its wave function is well localized in
only one lattice site [Figs. 3(b1) and 3(f1)]. As the chemical
potential moves toward the edge of the energy gap, oscillating-
decay tails grow out on both sides of the central peak of
the wave function. When the chemical potential becomes
very close to the gap edge, the tail grows very heavy, see
Figs. 3(a1), 3(e1) and 3(c1), 3(g1). Compared with the close
to top gap edge case [Figs. 3(c1) and 3(g1)], near the bottom
edge of the energy gap, we found that the tail decays much
slower, so that the height of the tail peaks becomes almost as
high as the central main peak [Figs. 3(a1) and 3(e1)].

The relation between chemical potential and atom number
plays an important role in studying gap solitons. It is the basis
for classifying gap solitons—a distinct family of gap solitons
is usually identified by a continuous N-μ curve [21,26]. For
the usual gap solitons in a static optical lattice, this relation
is very simple. As the atom number increases, the repulsive
interaction leads the chemical potential to grow gradually, i.e.,
μ is a monotonic increasing function of N [21,26]. Here, the
optical lattice potential is built up by pumping the atomic
BEC. When the quantum state of BEC changes, the optical
lattice potential also changes accordingly. The potential en-
ergy will also have an affection on the chemical potential.
Therefore, we found that the relationship between N and
μ becomes more complex, see Figs. 3(d) and 3(h). For the
well-localized soliton with chemical potential deep in the
energy gap [Figs. 3(b) and 3(f)], a deep optical lattice is
produced (hence the corresponding energy gap is relatively
wide), the potential energy makes the chemical potential take
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FIG. 3. Fundamental gap solitons in the first (a)–(d) and second (e)–(h) energy gaps. Panels (a1)–(c1) and (e1)–(g1): wave functions ψ (x)
of the fundamental gap solitons. In panels (b1), (f1), the black points represent the periodical supersolid states [which have previously been
shown in panels (a), (b) of Fig. 2] with the same chemical potential. Panels (a2)–(c2) and (e2)–(g2): corresponding effective optical lattice
potentials Veff (x). Panels (a3)–(c3) and (e3)–(g3): corresponding energy band structures. The gray filled region is the semi-infinite energy gap,
the light-green filled region is the first energy gap, the light-blue filled region is the second energy gap, while the unfilled regions are the energy
bands (some of the energy bands and gaps are too narrow to be seen very clearly). The colored points mark the chemical potential μ of the
corresponding solutions. In panels (a), (e), the chemical potentials lie close to the lower edge of the gap; in panels (b), (f), they lie deep in the
gap; and in panels (c), (g), they lie near the upper edge of the gap. Panels (d) and (h): relation between chemical potential μ and atom number
N for fundamental gap soliton in the first (d) and second (h) energy gaps. The values of (N, μ) corresponding to solutions of panels (a)–(c) and
(e)–(g) are marked on the curve with the colored points which have point style the same as those in panels (a3)–(c3) and (e3)–(g3) and at the
same time also explicitly labeled.

a large negative value. Near the edges of the energy gap
[Figs. 3(a), 3(e) and 3(c), 3(g)], the soliton wave function
extends much wider. According to Eqs. (8)–(15), this will
lead to smaller values of N±1,±2, consequently a shallower
optical lattice (hence the corresponding energy gap becomes
narrower) and close to zero chemical potential. Therefore,
roughly speaking the N-μ curve takes a “V” shape, as shown
in Figs. 3(d) and 3(h). In both these two panels, the right
arms of the “V” shapes have a positive dependence of μ on
N . This can be understood by the fact that as N increases
the repulsive interaction becomes stronger, and at the same
time as moves towards the gap edge, the lattice potential
also becomes shallower. These two mechanisms both lead to
the positive dependence of μ on N . However, in these two
panels, the left arms of the “V” shapes have opposite slopes. In
Fig. 3(d), as N increases the repulsive interaction energy will
increase accordingly. Meanwhile, the induced optical lattice
becomes deeper, which leads to a decrease of potential energy.
Since the atom number N is small in this regime, it is the
decrease of potential energy that plays the main role, thus in
total μ has a negative dependence on N . In Fig. 3(h), even
for the left arm, the atom number is also considerably large,
so this time the repulsive interaction energy dominants the
potential energy, and the chemical potential μ will increase
with the atom number N . Last, we emphasize that the above
discussions are only roughly valid, the dependence of μ on N
is in fact very complex, in detail, we also found that the N-μ

curves may anomalously bend near the gap edge [the right end
of Fig. 3(d), and the left end of Fig. 3(h)]. This anomalous
bent reflects the nonlinear feature of the super-radiant optical
lattice, the similar phenomenon also happens for matter-wave
solitons in other nonlinear optical lattices [25].

In the second energy gap, other than the fundamental soli-
tons, we also found another family of solitons, see Fig. 4. The
wave function of this type of soliton is very similar to the first
excited state of a (harmonically) trapped particle. It possesses
the odd parity symmetry, at the lattice bottom the wave func-
tion takes a zero value, and there are two main peaks (one is
positive valued, while the other is negative valued) around this
zero point. We distinguish this family of solitons as subfunda-
mental solitons because their wave functions have the same
feature as the subfundamental solitons reported in Ref. [26],
where gap solitons in a static optical lattice are studied. The
(N, μ) data points of this family of solitons form a closed loop,
see Fig. 4(g). The chemical potential of this family of solitons
can not take values very close to the gap edge, therefore their
oscillating-decay tails are always not very heavy. For the same
atom number N , the solitons with chemical potential on the
upper half part of the N-μ curve [Figs. 4(a)–4(c)] are wider,
and at the same time have a heavier oscillating-decay tail,
compared to their lower partners [Figs. 4(d)–4(f)].

There also exist many families of high-order gap solitons,
which have more than one main peaks. In Fig. 5 (first en-
ergy gap) and Fig. 6 (second energy gap), some examples of
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FIG. 4. Subfundamental gap solitons in the second energy gap. Panels (a1)–(f1), (b2)–(f2), (a3)–(f3), and (g) are wave functions, effective
optical lattice, energy band structure, and N-μ curve, respectively, and they are plotted the same way as Fig. 3. In panels (b1), (e1), the black
points represent the periodical supersolid states [which have previously been shown in Figs. 2(c) and 2(d)] with the same chemical potential.
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two, three, and four peaks solutions are shown. Comparing
them with the fundamental and subfundamental solitons, it
is straightforward to conclude that these high-order solitons
can be interpreted as the superposition of fundamental or
subfundamental solitons at different lattice sites.
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(c), (d) fundamental solitons with the same (a), (c) or opposite (b),
(d) phases.

We also compared the spatially periodical supersolid states
and the supersolid gap solitons. As shown in Figs. 3(b1)
and 3(f1), and Fig. 4(e1), when the gap soliton is well local-
ized in only one lattice site, it has almost the same shape as the
periodical supersolid state with the same chemical potential.
This indicates that the periodical supersolid state can be rec-
ognized as a chain of gap solitons. While for gap soliton with
obvious tails around the main peak, its shape will evidently
differ from the corresponding periodical solution, this can
be seen from Fig. 4(b1). Such similarities and differences
between the localized gap soliton and periodical wave have
also been reported in the case of static optical lattices [32–35].

B. Stability

The stability of these gap solitons has been checked by nu-
merically evolving the time-dependent Eqs. (5) and (6), with
a 5% random perturbation being initially added on the soliton
wave function ψ0, i.e., ψ (x, t = 0) = ψ0[1 + 0.05ξ (x)], with
ξ (x) being random numbers uniformly distributed in the range
of (−1, 1). The corresponding atomic density is |ψ (x, t =
0)|2 ≈ |ψ0|2[1 + 0.1ξ (x)], that is the atomic density is per-
turbed by a magnitude of 10%. However, the perturbation
on total atom number is negligible, since the mean value is
〈ξ (x)〉 = 0. We don’t explicitly perturb the cavity optical filed,
it is dynamically determined by the BEC.

Character timescales of the considering system are the
dispersion time and cavity loss time. The cavity loss time is
estimated by the inverse of loss rate, τ1 = 1/κ = 0.1. The
dispersion time is the spreading time of a wave packet due to
the kinetic energy term, it is related to the width of the studied
wave packet. Here character width of the gap solitons is about
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FIG. 6. Examples of high-order gap solitons in the second energy
gap. They can be interpreted as combinations of two (a), (b), (e),
(f) or three (c), (d) fundamental (a)–(d) or subfundamental (e), (f)
solitons with the same or opposite phases.

one lattice length σ ≈ π , so that the dispersion time is τ2 =
mσ 2/h̄ ≈ 10. Thus, for checking the stability, in the numerical
simulations, we typically evolve the initial state to a final time
t = 100 (for the stable solitons) which is much longer than
τ1 and τ2, or until the atomic density is substantially different
from its initial profile (for the unstable solitons).

The stability results for fundamental solitons in the first
energy gap are shown in Figs. 7(a1)–7(g1). In Fig. 7(g1), the
overall stability property is summarized on the N-μ curve,
with the solid square points referring to stable solitons, while
the empty squares for unstable ones. For detailed stability
information, in Figs. 7(a1)–7(f1), we show the time evolutions
of the atomic density for some typical solitons. In Figs. 7(a1)–
7(c1), the solitons can maintain their shape during long time
evolution. While, the other ones in Figs. 7(d1)–7(f1) all lose
their initial shape very quickly, however in different ways. In
Fig. 7(d1), the breathing of atomic density between the main
wave packet and the two tail wave packets on its two sides
is excited. In Fig. 7(e1), the soliton suffers a severe spatial
spreading during the evolution. In Fig. 7(f1), the soliton also
suffers an overall spatially spreading, but less severe com-
pared to that in Fig. 7(e1), because the atom density is smaller
(therefore, the repulsive interaction is weaker). Another fea-

ture in Fig. 7(f1) is that the wide main wave packet undergoes
a sudden shrink at the very beginning time [this is emphasized
by an enlarged graph in the top panel of Fig. 8], then the
shrunk narrow wave packet can evolve comparatively stable
for some time.

The numerical results suggest that the stability of these gap
solitons roughly obeys a Vakhitov-Kolokolov (VK) criterion
(a negative slope of the N-μ curve, dμ/dN < 0) [31,36–38].
Here, we say “roughly” because of two reasons. First, for
the points already on the right-half of the N-μ curve, but
still very close to the bottom of the curve, although the VK
criterion is invalid, the solitons also can evolve stably for
quite a long time. This would result from that the density
profile of these solitons changes very slightly during the time
evolution, so that the numerical simulation fails to distinguish.
Second, at the close to gap edge anomalous bent, some points
do have negative slopes, however the solitons are numerically
checked to be unstable. This indicates that the VK criterion
can not capture the unstable mechanism shown in Fig. 7(f1).
We also would like to point out that for the normal repul-
sive interaction supported BEC gap solitons in static linear
optical lattices, their stability obeys the anti-VK criterion by
contrast [31,36–38]. This again makes a definite difference
between the supersolid gap solitons discussed here and the
normal gap solitons in static optical lattices.

The stability results of fundamental solitons in the second
energy gap are shown in Figs. 7(a2)–7(g2). In this case, the
VK criterion (dμ/dN < 0) is fulfilled in two places—the
close to gap edge anomalous bent, and a very narrow range
left to the bottom of N-μ curve, see Fig. 7(g2). Numerically,
we found that for the anomalous bent, the VK criterion again
failed to predict the right stability property, i.e., the solitons
are unstable during the time evolution, for an example, see
Fig. 7(a2). And around the bottom of N-μ curve, agree with
the VK criterion (also roughly, as having been discussed in the
previous paragraph), the solitons are checked to be stable, see
Fig. 7(d2). All the other points on the N-μ curve are checked
to be referring to unstable solitons. On different parts of the
N-μ curve, the unstable mechanisms are different. Close to
the stable region, the solitons are unstable because of the
atomic density breathing, see Figs. 7(c2) and 7(e2). Far away
from the stable region, they suffer a spatial spreading, and
the larger atom number leads to the severer spreading, this
is can be seen from Figs. 7(b2) and 7(f2). These two unstable
mechanisms are similar to that in the first energy gap case.
At last, at the anomalous bent, we also find a new unstable
mechanism. As shown in Fig. 7(a2) and its enlargement in
the bottom panel of Fig. 8, this soliton has a very heavy
oscillating-decay tail, i.e., the density profile contains many
small subwave packets, it is unstable due to the interaction
between two neighboring subwave packets.

All the subfundamental gap solitons are numerically found
to be unstable, see Fig. 9. Several different unstable mech-
anisms have been found. First, the two main peaks of a
subfundamental soliton can merge into a single peak with a
loss of the atoms, see Figs. 9(d) and 9(e). Second, for large
atom number subfundamental solitons, the strong repulsive in-
teraction can lead to spatial spreading instability, see Figs. 9(c)
and 9(f). Third, in Fig. 9(b), for the soliton on the very top
part of N-μ curve, at first it shrinks to another subfundamental
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FIG. 7. Stability of fundamental gap solitons in the first (a1–g1) and second (a2–g2) energy gaps. Panels (a1–f1; a2–f2): time evolutions
of the atomic density |ψ (x, t )|2 for some example solitons. Panels (g1, g2): stability of the solitons marked on the N-μ curve. The solid square
points represent the solitons that are stable during the time evolution, while the empty square points represent the unstable ones. The (N, μ)
data points corresponding to panels (a1–f1; a2–f2) are specially plotted with red color, and at the same time also have been explicitly labeled.

soliton with two narrower density peaks (similar to its partner
on the lower part of the N-μ curve), then these two narrower
peaks merge into a single one again. Last, in Fig. 9(a), we
found that at the beginning time the two main peaks of the
subfundamental soliton move away from each other, and then
spatial oscillations of the wave packets are excited.

Since the high-order solitons can be seen as superposition
of fundamental or subfundamental solitons at different lattice
sites, we found that they usually have a similar stability fea-
ture as their fundamental or subfundamental components, i.e.,
when the composing solitons are stable, the high-order soliton
is also stable and vice versa. For example, solitons (a), (b), (c),
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x

t
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x
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FIG. 8. Enlargements of Figs. 7(f1) and 7(a2). Originally, in
Fig. 7, to get the overall information, these two panels are plotted
in a wide spatial range. Here, to see the details of interest, they are
plotted within a narrow range of x ∈ [−5π, 5π ].

and (d) in Figs. 5 and 6 are found to be stable, while solitons
in Figs. 6(e) and 6(f) are unstable.

For comparison, we also examined the stability of normal
gap solitons in static periodic potentials whose amplitude and
periodicity are the same as the dynamically created optical
lattice in ring cavity. We found that in such a static lattice
solitons can undergo a stable evolution until the final time
of the numerical simulation. So, we think that the instability
of the supersolid gap solitons found here is caused by the
dynamical property of the optical field.

C. Mobility

In this part, we study mobility of the stable gap solitons.
In a ring cavity, lights of the two counterpropagating modes
can have independent phases, when their phase difference
changes, the optical lattice potential produced by their in-
terference will move. Furthermore, the light field is built up
by pumping the BEC. So, it would be reasonable to expect
that when the BEC wave packet moves, the optical lattice
potential will move accordingly, and will put no extra force
on the moving BEC, such that the BEC can move freely.
However, this has been demonstrated to be only partially true.
More comprehensive studies show that because the light field
can not follow the BEC dynamics instantaneously, the optical
lattice will fall behind the BEC for a certain distance, and
will put a friction force on the BEC, as a result, the BEC will
usually undergo a decelerating motion [75,76].

To verify the above discussions, we studied the moving
dynamics numerically. We give an initial velocity v0 to the
gap soliton by imprinting a phase factor exp[iv0x] on its wave
function, then examining the afterward time evolution. The
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FIG. 9. Stability of the subfundamental gap solitons in the second energy gap. The panels are plotted in a similar way as in Fig. 7. All these
subfundamental solitons are unstable.

results are shown in Fig. 10. In Figs. 10(b) and 10(c), for soli-
tons with chemical potential deep in both the first Fig. 10(b)
and second Fig. 10(c) energy gaps, we do observe a deceler-
ating motion of the soliton wave packet. In Fig. 10(a), for the
soliton with chemical potential near the gap edge, the deceler-
ation is not obvious, it undergoes an almost free motion. This
is because in this case the effective optical lattice is very weak
[see Fig. 3(a2)], as a result, the friction force is also very small,
and its deceleration effect is hard to be obviously observed on
the graph.

D. Collision

At last, we show the collision dynamics of two such su-
persolid gap solitons. In Fig. 11, taking the collisions of two
solitons with chemical potential deep in the first energy gap as
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FIG. 10. Mobility of the stable gap solitons. Time evolutions of
the atomic density |ψ (x, t )|2 for three different solitons with initial
speed v0 = 4.0 are plotted in the three panels. The three solitons
are fundamental soliton near the lower edge of the first energy gap
(a), deep in the first energy gap (b), and deep in the second energy
gap (c), respectively. Their wave functions, effective optical lattice
potential, and energy band structures have previously been shown in
Figs. 3(a), 3(b), and 3(f).

an example, the time evolutions of atomic density are plotted
for different collision velocities. Although a single such gap
soliton is movable (as having been shown in Sec. III C), we
found that when the initial colliding velocity is small, two soli-
tons can not approach each other, they only oscillate around
their initial locations with a small amplitude, see panel (a).
For the medium velocity collision [Figs. 11(b) and 11(c)],
the two solitons strongly interact with each other. After some
time, the two solitons either break into many small pieces
[Fig. 11(b)], or merge into a single wave packet accompa-
nied by a scattering loss of the atoms [Fig. 11(c)]. For the
large velocity collision [Fig. 11(d)], the two solitons collide
similar to two classical particles, however suffering a spatial
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FIG. 11. Collision of two gap solitons (with chemical potential
deep in the first energy gap). Time evolutions of the atomic density
|ψ (x, t )|2 are plotted. From top to bottom, the initial colliding veloc-
ities are set to v0 = 0.5 (a), 2.5 (b), 3.5 (c), and 6.0 (d), respectively.
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spreading. Similar collision phenomena have already been
observed for nonsoliton wave packets in the same model [77],
the explanations also apply here.

Strictly speaking, solitons refers to nonspreading local-
ized wave packets which can interact with other solitons,
and emerge from the collision unchanged, except for a phase
shift [1]. In this sense, the wave packets in this work would
better be called solitary waves. However, in many cases, the
collision requirement is often given up, and the term soliton
may be used instead of solitary wave [78], here we also follow
such a relaxed definition.

IV. SUMMARY

In summary, we predict that there exist supersolid gap
solitons in a BEC and optical ring cavity coupling system.
We studied the system within the mean-field theory, and
numerically found a few families of gap soliton solutions—
fundamental gap solitons in both the first and second energy
gaps, subfundamental gap solitons in the second energy gap,
and high-order gap solitons which consist of several fun-
damental or subfundamental solitons. The stability of these
gap solitons has been checked by numerically simulating
the time-dependent mean-field equations. The numerical re-
sults suggest that, for the fundamental solitons, their stability
roughly obeys the VK criterion, i.e., usually they are stable
when their chemical potential μ is negatively dependent on
the atom number N (dμ/dN < 0), however, with some ex-

ceptions. All the subfundamental gap solitons are found to
be unstable. The high-order gap solitons have similar sta-
bility as their fundamental or subfundamental components.
For the mobility property, given an initial velocity, these
gap solitons usually undergo a decelerating motion due to
the friction force from the light fields (the deceleration may
be unobvious when friction force is weak). We also studied
the two solitons collision dynamics, which are found to be
strongly velocity-dependent. For small velocity collision, the
two solitons can only oscillate around their initial location
with a small amplitude. For medium velocity collision, the
two solitons either break into many small pieces, or merge
into a single wave packet with a loss of atoms. And the large
velocity collision behaves similarly to the collision of two
classical particles, except that the two soliton wave packets
suffer a spatial spreading.

At last, we note that the BEC and optical ring cavity cou-
pling system has already been realized, and supersolid phase
in the system has also been identified [72]. Therefore, the su-
persolid gap solitons and their dynamical properties reported
in this article are ready to be observed experimentally.
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