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Rotors of reaction and diffusion are phase singularities that give rise to spiral waves of chemical activity,
which are very similar to spatiotemporal patterns observed across several excitable media. Here we carry out
experiments with the Belousov-Zhabotinsky reaction system and numerical simulations based on a reaction-
diffusion model to show the possible interactions of multiple spiral rotors. When the cores of two spirals come
very close to each other, they could either repel, attract, or remain stationary, depending on their relative chirality,
phase, and distance separating them. Multiple pairs of spiral waves, in proximity to each other, could alter the
paths of the individual rotors. A spiral core will be influenced most by the rotor that is closest to it, depending
on the nature of the corresponding spiral wave arm. We observed rotors lying within a limiting distance of each
other attract and annihilate. Otherwise, they push each other away until they reach a critical distance, beyond
which all interactions seem to cease. We have established a relationship of this critical distance to the properties
of the spiral wave. We also observed spontaneous symmetry-breaking instability for a system of up to eight
rotors. Our experiments with the Belousov-Zhabotinsky reaction have successfully demonstrated the validity of
the numerical results. A thorough understanding of the dynamics of several spiral rotors within a small area

could help us perceive the nature of such excitation waves in cardiac tissue and cell membranes.
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I. INTRODUCTION

Two-dimensional spiral waves and their three-dimensional
counterparts, scroll waves, are responsible for arrythmia oc-
curring in cardiac systems. The presence of such re-entrant
waves are harbingers of tachycardia and fibrillation in the atria
and ventricles of the heart, usually leading to fatal cardiac
arrest [1-5]. These spiral rotors of electrophysiological activi-
ties share similar physics with spiral waves that occur in other
excitable systems that span across physics, chemistry, biology,
and geology [6-9].

The three-dimensional spatiotemporal dynamics of the
heart is accompanied by a measurable scalar electrical value
which can be recorded with an electrocardiogram (ECG). A
rapidly drifting electrical rotor in the ventricles of the rabbit
heart gives rise to complex excitation patterns manifested in
an ECG as ventricular fibrillation (VF). A spiral rotor that
gets pinned to an unexcitable heterogeneity will be akin to
monomorphic ventricular tachycardia [10]. It has been shown
that a single drifting rotor can cause fibrillation in smaller
hearts. The human heart is, however, much larger, and VF
occurs only in the presence of several such rotors. Hence, the
interaction of multiple spiral rotors and the control of their
dynamics is of interest to scientists across disciplines.

To date, numerous studies have been performed to achieve
the repositioning and annihilation of spiral rotors [11-15].
The removal of spiral tips from an excitable media by non-
invasive methods is a feat worth accomplishing. If one can
remove rotating spiral and scroll waves from the cardiac sys-
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tem, it will enable the medical community to better control
the diseases related to these waveforms [16]. Existing studies
have tried to control the dynamics of spiral waves by mod-
ifying the excitability of the system and applying external
gradients and target waves [17]. Light [11,12] and electric
field [13] have been used to move the tips of the spirals
in a two-dimensional reaction-diffusion system, sometimes
leading to annihilation of the waves. High-frequency wave
trains have been successfully used to force spirals into defect
drifts [18]. Using multiple wave fields, several rotors could
even be localized to a particular position. The interaction of
rotors in both two and three dimensions with system inhomo-
geneities have also been a subject of intense study. Theoretical
as well as experimental investigations have revealed how the
frequency, position, phase, and nature of spirals can get mod-
ified in the presence of inhomogeneities [19-22].

There are some examples of spiral interaction in existing
literature. Experimentally, instances of suppression and ex-
pulsion of one spiral tip by another were observed in the
aggregation of Dictyostelium amoebae [23]. Some studies
of the interaction of phase singularities (spirals) in the car-
diac model are also available [24]. This study demonstrated
that a spiral competition instability was responsible for the
symmetry breaking of the spiral pair. Numerical studies on
the FitzHugh-Nagumo model showed that both like as well
as unlike charged spiral vortices (topological charges) can
form bound pairs possessing either an axis or a center of
symmetry [25]. This charge is attributed to the chirality or
the sense of rotation of spiral waves. Corotating spirals are
considered to have like charges, and counterrotating spirals
are said to be oppositely charged. In yet another study with the
complex Ginzburg-Landau equations, it was established that
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the interaction between well-separated spirals in the particular
system is exponentially weak and does not depend on the
topological charges [26]. Symmetry-breaking instabilities in
a bound state of a spiral pair can also induce the expulsion
of one spiral [27], sometimes leading to its elimination at
the system boundary [28]. A numerical study of the light-
sensitive BZ medium demonstrated how light intensity can
modulate the behavior two counterrotating spirals [29]. In a
recent numerical study of the Ferroin-catalyzed BZ system,
it was shown that a spiral wave interacting with its axis-
symmetric mirror image undergoes attraction when within
close distances leading to annihilation, followed by repulsion
and finally a region of extremely slow drift, as the distance
separating them increases [30]. However, such studies on the
interaction of spiral rotors are mainly limited to a pair of
spirals. Numerical studies on model systems were also ex-
panded to multiarmed vortices [31]. Weijer et al. demonstrated
from extensive simulations that spirals having same chirality,
with tips less than one wavelength apart, can form multiarmed
spirals [32].

In three dimensions, experiments with coplanar scroll rings
demonstrated that their filaments undergo crossover collision
and reconnect when they are within a core length of each
other [33,34]. On the other hand, the filaments repelled when
placed over one another. In yet another study of straight,
parallel scroll waves, it was established that the filaments
repelled only when the interfilament distance was shorter than
the wavelength of the scroll waves [35]. When this distance
was almost equal to the wavelength, the two scroll waves
synchronized.

A detailed study on the interaction of multiple (more than
two) spiral vortices with identical frequencies, showing spon-
taneous annihilation and repulsion, and also establishing the
exact distances at which the nature of the interaction changes,
is yet to be carried out. It remains to be seen if the limiting
distances for the interaction of several spiral rotors are exactly
the same as that for a pair of spiral tips, or they differ [30].
If they do differ, we aim to understand the causes of such
variation.

In the current paper we revisit the problem of spiral wave
interaction and extend it further. By employing numerical
as well as experimental methods, we explore the dynamics
of multiple spiral rotors around each other. We show with
experimental evidence spontaneous annihilation of vortices
(without employing any external force). We carry out detailed
simulations with the Barkley model, for one, two, and four
spiral pairs, by varying the mutual distances between them.
It is observed that, with increasing distance between the ro-
tors, attractive potentials become repulsive. Our simulations
reveal different interaction zones with a transition from an
attractive to a repulsive zone and a further transition from
this repulsive zone to a zone of no interaction. The important
role of the wave connecting two rotors has also been estab-
lished. We additionally carried out experiments in thin layers
of a chemical reaction-diffusion system. We have chosen the
Ferroin-catalyzed Belousov-Zhabotinsky (BZ) [7] reaction for
the study of the spiral dynamics. Several experiments have
been carried out, varying the distances between pairs of spiral
tips. Our experimental results corroborate well with the nu-
merical predictions. The phenomena of spiral repulsion and

spiral attraction leading to annihilation have been successfully
demonstrated, for a system of up to eight rotors. Additionally,
several intriguing observations have been made for a system
of multiple spiral tips, like spontaneous symmetry breaking.

II. NUMERICAL MODEL

The generic two-variable Barkley model is often employed
for the study of reaction-diffusion systems [36]. We have cho-
sen this model for our study as it is quite versatile and can be
applied to different experimental systems. It has been widely
used to explore the dynamics of spiral and scroll waves in the
BZ system [13,37,38]. The Barkley model is also closer to
the FitzHugh-Nagumo model, often used to model the cardiac
waves.

In the presence of diffusion, the Barkley model can be
written as

du _ l[u(l — u)(u - ﬂ)} + D, Vu, (D
a € a

aa—’: = (u—v) + D,V?v. )
Here u is the activator and v the inhibitor. In the BZ sys-
tem, u and v are qualitatively related to the concentrations of
bromous acid and the oxidized form of ferroin, the catalyst,
respectively. D, = D, = 1.0 are the diffusion coefficients
of the two species. For our simulations, we have chosen the
parameter values of @ = 0.84, b =0.07, and € = 0.02. In
chemical reactions, most species diffuse with approximately
the same diffusion coefficient [36], supporting our choice of
equal diffusion coefficients. This, along with our parame-
ter set, describes a system in which spiral and scroll waves
undergo rigid rotation [20,39], as is the case with our ex-
perimental system for the chosen chemical recipe. A time
interval of Ar = 0.012 time units and a step size of Ax = 0.35
space units were chosen. We employed no-flux (Neumann)
boundary conditions on all sides.

The two-dimensional space (of area 105 x 105 space units)
was divided into 300 x 300 cells, of dimension 0.35 x 0.35
(space units) each. A five-point Laplacian stencil was used to
discretize the space. For initiating a pair of spiral waves, the
concentrations of u and v are taken to be 0.0 across the entire
space, except for a thin strip in the middle. Here three long
strips of isoconcentration lines (with a width of two cells or
0.7 space units each), representing the front (v = 0.9, v =
0), middle (u = v = 0.7), and back or refractory area (u =
0, v = 0.9) of the wave, are taken as the initial conditions
for starting a plane wave. The length of the strip was varied
from experiment to experiment and ranged from 10 cells or
3.5 space units to 110 cells or 38.5 space units. Our rotors are
initiated far from the system boundary.

Using an explicit finite difference method for space we
converted the system of partial differential equations into or-
dinary differential equations and proceeded to integrate them
by employing the fourth-order Runge-Kutta method. Simu-
lations were repeated using a nine-point stencil, yielding the
same results. This choice of parameter values and identical
diffusion coefficients can initiate and sustain stable, nonme-
andering spirals, with a circular core of diameter d; = 1.8
space units. The average wavelength of the spirals (1) far
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FIG. 1. Interaction between the two cores of a spiral pair.
(a) Snapshot of an initial waveform at 0.48 time units after initiation.
It is a grayscale image of the activator u, as shown in the color
bar. Hence, the white regions represent areas of heightened wave
activity. (b) Attraction leading to annihilation for / = 6.65 space
units, and (c) repulsion between the spiral rotors, for / = 9.25. (d) No
motion of the rotors for over 1000 rotations for / = 19.75. (e) Phase
diagram of interaction between the two cores in a spiral pair. The
open triangles depict the type of interaction for a given simulation
with fixed / value. Blue left-pointing triangles portray attraction and
annihilation [like in (b)], gray downward-pointing triangles depict
repulsion [like in (c)], and the open red upward-pointing triangles
represent the absence of any interaction between the two rotors [as
in (d)]. d. depicts the critical distance of interaction.

from the core is around 18.2 space units, while the average
time period is 5.3 time units. The wavelength (as well as
the time period) is measured from the time-space plot, by
averaging over several wavelengths (periods) [17]. The spiral
tip is defined as the intersection of the isoconcentration lines,
u=05andv =a/2 —b=0.35[18,36].

III. NUMERICAL RESULTS AND DISCUSSIONS

We begin our simulations with the simplest case: a single
spiral pair. These are two counterrotating spirals, with the
same initial phases, and they arise out of a single plane wave.
Please refer to Fig. 1(a) for visualizing the initial wave form
and Fig. 1(c) for one such pair of counterrotating spirals,
generated from this initial plane wave. We refer to these two
spiral rotors as initially joined by a wave.

The distance between the centers of the two circular cores
of the spirals, measured after the first rotation, is considered to
be the initial length /. When (/) is quite large, e.g., [ = 19.75
space units in Fig. 1(d), the two spirals keep on rotating
around their circular cores. There is no visible or measur-
able movement of the spiral cores, even after thousands of
rotations. As the cores are brought closer, we can observe an
immediate repulsion between them, which pushes them apart,
till the distance between them is a little less than one wave-
length. Here they continue rotating around a fixed circular
orbit. Figure 1(c) shows one such experiment, where the initial

value of [ is 9.25. However, in this case the right tip travels a
little lower than the left one, breaking the symmetry slightly.
As we keep decreasing the initial distance between the cores,
this repulsion phenomenon is observed until / = 8.2, below
which there is a sudden change from repulsive behavior to an
attractive one. In Fig. 1(b), an example of attractive interaction
between the cores of a spiral pair, which are initially 6.65
space units apart, is seen. The two vortices are observed to
trace a curved path that brings them close together and finally
annihilate. It is to be noted that 1.8 space units is the diameter
of a noninteracting spiral core for the chosen parameter range.
Hence, we observe for this numerical experiment [Fig. 1(b)]
that though the value of / is many times the core diameter
| > 3.6 x dj, still the spiral rotors do attract each other and
eventually annihilate. The annihilation of two counterrotating
spirals that lie within one core length of each other had been
previously observed in the literature [25]. However, in our
study, we find that the spirals attract even when they are farther
away, as long as they are less than 8.2 space units apart. When
the distance between the spiral tips is less than 4.9 space units,
the spiral rotors do not complete one full rotation. Instead,
their strong mutual attraction forces them to annihilate before
that. In all our simulations, we measure the value of ! by
considering the position of the centers of the individual rotors,
if an invisible boundary existed between the two tips, stopping
their interaction.

A phase diagram constructed on the behavior of two in-
teracting spiral cores is shown in Fig. 1(e). There are three
clearly marked regions in the phase diagram, one of attraction
leading to annihilation (8.2 > [), repulsion (16.4 > [ > 8.2),
and no interaction (I > 16.4). Interestingly, we may observe
that when / > A — d; = 16.4, the spirals do not interact. Let
us call this value the critical distance, d.. On the other hand,
the interaction changes from repulsive to attractive at exactly
half of this critical value, i.e., [ = %(A —d,) = 8.2. Two coun-
terrotating spirals initiated from the same wave begin to rotate
at a maximum distance (/.x = [ + d; = 20), and then come
closer to each other as the two tips rotate in. This means
that the maximum distance /;,,x between the two spiral tips
must be more than one wavelength (A = 18.2 space units)
for there to be no interaction between them. In our numerical
system, whenever there was any motion of the spiral core, that
happened from the beginning (right after initiation) till that
time when the spiral rotors attracted each other and eventually
got annihilated, or reached a distance where the movement
ceased. This is similar to the observations made in [30] where
the authors report that a spiral attracts its mirror image on a
no-flux boundary when the distance between them is less than
0.28A, they repel beyond that till a distance of 0.82A, and then
there is a very slow drift. Additional spiral-tip dynamics, of
the examples shown in Fig. 1, elucidating the change of the
tip position with time can be observed in the Supplemental
Material Fig. S1 [40].

Next, we carry out simulations with two spiral pairs (a four-
rotor system). We initiate this system of four rotors, by placing
two plane parallel waves, with their refractory zones or wave
tails facing each other [Fig. 2(a)]. As the wave expands, two
pairs of counterrotating spirals are formed. The two spirals
which are created at either ends of a plane wave are referred
to as spiral twins, and the initial distance between the centers
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FIG. 2. Interaction of two spiral pairs showing attraction and
annihilation. Snapshots of spirals along with tip trajectories at t =
(a) 0.48, (b) 7.2, (c) 18.0, (d) 31.2, in normalized time units. The
colored curves are the tip trajectories. Each tip has been assigned a
unique color for better visualization. The initial horizontal intertip
distance / = 7.4 (yellow horizontal straight lines) and initial vertical
distance between cores d = 7.0 (yellow vertical straight lines) are
marked in (b). Area of each snapshot is 35 space units x 35 space
units.

of their cores is defined as “/” [Fig. 2(b)]. The initial distance
separating a spiral core from its nearest neighbor (other than
the twin) is defined as “d.” For the case of two spiral pairs or
four rotors, we place the two plane waves along the horizontal
(hence [ is the horizontal distance between two neighboring
rotors and d the vertical distance). We can also place / along
the vertical direction and still obtain exactly same results, as
is demonstrated by plots of trajectories of some additional
simulations (see Fig. S2 [40]).

For studying a system of four spiral rotors, we initiate a
completely symmetrical arrangement so that the lines joining
the centers of every rotor to its nearest neighbors will form
a rectangle (square for equal / and d values). We carried
out several simulations by varying the initial horizontal dis-
tance between the cores (/) and the vertical nearest-neighbor
distance (d). By doing so, we observed different kinds of
synergistic phenomena between the spiral tips.

Figure 2 depicts an example, where mutual collapse occurs
between the cores of a spiral pair, due to annihilation along
[. We later refer to this kind of annihilation as horizontal
annihilation, for a system of two spiral pairs. The trajectories
superimposed on the snapshots are the paths traced out by the
tip of the spiral waves. It helps us get an idea of the movement
of the spiral rotor. As time progresses, the tips get closer,
indicating an attractive interaction between the two cores of
the initially formed spiral pairs.

An individual spiral tip is influenced by all rotors close
to it. For a system with two spiral pairs initially facing each
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FIG. 3. Interaction between pairs of spirals. Tip trajectories su-
perimposed on the snapshots (chosen from the later half of the
trajectory) showing (a) vertical annihilation for both pairs, where
initially, / = 15.75 and d = 6.3. (b) Simultaneous repulsion be-
tween one pair and annihilation between the other, for / = 14.35
and d = 7.0. (c) Repulsion between all rotors when / = 10.15 and
d = 9.8. (d) No interaction for / = 19.3 and d = 21.2. Movies of the
simulations are available in the Supplemental Material [40] (Mov3a-—
Mov3d).

other, there are two rotors nearest to an individual spiral tip:
one placed along /, that is, at the far end of the initial mother
wave, and the other rotor is placed along d, that belongs to a
neighboring spiral wave pair. In this example, / = 7.4 space
units and d = 7.0 space units, both smaller than the limiting
distance, ‘17 = 8.2. Here, even though [ is larger than d, the
spirals choose to attract horizontally, along the distance .
This unexpected dynamics of the spiral tips requires more
exploration.

Figure 3 shows all other kinds of possible interactions be-
tween spiral pairs, as the / and d values are varied. Figure 3(a)
is another instance of annihilation of vortices, between two
spiral pairs facing each other. Two spiral tips that initially
belong to different spiral pairs start attracting each other,
along the vertical distance d, until they finally annihilate each
other. This event is later referred to as vertical annihilation.
The spiral rotors may have chosen a vertical annihilation over
the horizontal in this example, because of the very low value
of d (=6.3) as compared to [ (=15.75), the latter 2.5 times the
value of d.

Figure 3(b) illustrates some remarkable phenomena. Here
! =14.35 and d = 7.0. Even though [ is still quite larger
than d (I =2.05 x d), we can observe an initial attraction
along /, for both spiral pairs. After covering a certain distance,
however, the spiral rotors become strongly repulsive, and start
moving in the vertical direction, away from the middle. For
the bottom pair, this results in a complete U turn, as the two
spiral tips initially approach each other, turn in the negative y
direction, and after a while again start moving horizontally
apart. On the other hand, in the top pair, after initially at-
tracting horizontally for a while, they start moving away in
parallel (like a bound state) towards the positive y direction,
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FIG. 4. Phase diagram of interaction between two pairs of
spirals. The triangles, diamonds, and squares depict the type of
interaction for a given simulation with fixed [ and d value.
Open magenta diamonds depict vertical annihilation, the open
blue left-pointing triangles depict horizontal annihilation, gray
downward-pointing triangles depict repulsion, and the cyan-filled
black-bordered upward-pointing triangles depict no interaction be-
tween any rotor. The red squares are the cases where one of the
pairs attracts and annihilates, while the other pair repels and moves
away from each other. The various regions have been separated by
solid lines, which are only qualitative in nature. The shaded region
denotes the occurrence of the complicated dynamics of spiral tips
as in Figs. 3(b) and S3 [40]. Four numerical experiments have been
traced here, with the changing / and d value of their spiral cores
depicted by closed colored circles of a unique color. It shows how
the rotors move from different zones of repulsive interaction, into
the noninteracting zone. The red and olive arrow mark the d = 18.2
and / = 18.55 lines, respectively.

before attracting each other once again, finally leading to the
annihilation of the spiral pair. This is a very good example
of a symmetry-breaking instability. It indicates a cooperative
effect among the spirals. It is noteworthy that the value of
d here is smaller than %dc, which would point towards an
attractive interaction in the vertical direction, in a simpler sit-
uation (a single spiral pair). Nonetheless, for a system of four
rotors, the tip of a spiral wave is influenced by multiple rotors.
This modifies its trajectory, and we often end up with such
complicated dynamics and spontaneous symmetry breaking.

In Fig. 3(c), I =10.15 and d = 9.8, both values greater
than % Here initially the repulsion is vertical, but after some
time the tips start tracing almost diagonal trajectories away
from their initial positions. With very high d and [ values,
the dynamics of the waves become independent of each other
(no interaction), as seen in Fig. 3(d), where / = 19.3 and d =
21.2, both greater than the critical distance d,.

Figure 4 summarizes the results of all our numerical exper-
iments with two spiral pairs. As was observed in the results of
Figs. 2 and 3, spiral tips are influenced by all rotors lying in
their vicinity, leading to a plethora of tip dynamics. Since we
start with two identical spiral wave pairs, facing each other, so

we try to compare between the attraction or repulsion faced
by a rotor due to its spiral twin and the other rotor closest
to it, which belongs to a different pair of spirals. This phase
diagram gives us a better understanding of the interactive
effects between the spiral rotors. When the distance between
two rotors is very low, they show strong attraction towards
each other leading to mutual annihilation. Depending on the
values of / and d, they attract either horizontally or vertically.
It is observed that for all d values less than 4.9 space units,
the spirals undergo vertical annihilation. As mentioned earlier,
this is the minimum distance of separation of a spiral rotor
from its neighbors, to complete one full rotation. As the plane
waves start curling in, one spiral rotor encounters its neighbor
from the other spiral pair, before it comes into the vicinity
of its own twin. So, when the d distances are low (<4.9),
they annihilate vertically even before they can complete the
first rotation (see Fig. S4 for a representative example of tip
trajectory in this case [40]).

With increasing [ and d values, there is a transition from
attractive zone to the repulsive zone. However, the phase
diagram is asymmetric, along a diagonal line (broken line
in Fig. 4) drawn across [ = d. This can be attributed to the
difference in the strength of interaction, specifically attraction
(as the noninteractive zone is symmetric along the diagonal),
between the two kinds of neighbors. As the system transitions,
the highest value of d for which vertical annihilation is found
is seven space units, whereas horizontal annihilation was ob-
served for [ values as large as 12.25. The higher limiting
values of [ as compared to d for attraction leading to annihila-
tion (horizontal and vertical, respectively) indicate some kind
of stronger attractive power between spirals that are initially
joined by the same wave and warrant further investigation.

We have already mentioned that change of coordinates
does not change the relationship between the spiral tips. Ad-
ditional simulations by initiating two pairs of spirals in the
vertical direction, where / lies parallel to the y axis, shows that
the phase diagram remains unchanged for any orientation of
the spirals, as long as their relative / and d distances are main-
tained. Comparative results for these two kinds of simulation
can be found in the Supplemental Material (Fig. S2 [40]).
This confirms that our observations do not arise from any
numerical error or bias along a particular direction. Rather,
in both these kinds of simulations (as well as all our experi-
ments reported later), we have initiated a pair of waves, which
have their trailing edges facing each other (see Fig. S5 for a
detailed explanation of the wave motion [40]). This results
in an inhibition of attractive interaction between the initial
waveforms. If the initial waves are horizontally placed, there
would be an inhibition along d. Eventually, when the waves
expand and merge, the new vertical waves move towards each
other, with their leading edges facing one another. This results
in a comparatively stronger attraction of the spiral rotors along
. This is the reason for our observation that one spiral is
more attracted towards its twin (born from same initial wave).
Changing the direction of wave head and its repolarizing tail
would reverse our observations. If the leading edges of the ini-
tial horizontal waves would face each other, they would attract
more along the vertical, resulting in a stronger attractive inter-
action along d. Some examples are given in Fig. S2(c) [40].
For such a system, the spirals will not be more strongly

054213-5



HRISHIKESH KALITA AND SUMANA DUTTA

PHYSICAL REVIEW E 105, 054213 (2022)

attracted by their twin, but by their other nearest neighbor,
hence resulting in a higher limiting value (for attraction fol-
lowed by annihilation) for the vertical d distance than the
horizontal [ distance. We would also expect the phase diagram
(Fig. 4) to change for such a system.

In Fig. 4 the transition from attraction to repulsion cannot
be defined by a sharp (I, d) line; instead it is a thin region
(shaded area in Fig. 4) within a range of / and d values.
The systems in the transition region could have three kinds of
interactions: the spirals may attract and annihilate, they might
all repel, or there could be a case of simultaneous attraction
and repulsion in the system (depicted by the red squares in
Fig. 4). Figure 3(b) is an example of such mixed dynamics.
This unusual dynamics arises due to the symmetry-breaking
cooperative effect of the spiral waves. The relative motion
induced by this effect is quite complicated and may often
give rise to completely unexpected dynamics. Tip trajectories
for one such experiment (I = 12.95, d = 6.65) can be found
in the Supplemental Material [40] (Fig. S3). There are also
some points where / is greater than half the critical distance,
like for / = 10.2 and d = 6.3, where horizontal annihilation is
observed (Fig. S5 [40]). Although for this particular point [ =
1.6 xdand! > ‘17 whereas d < %, still the spirals approach
along / and annihilate. Again this shows that the spiral vortices
feel a stronger attraction for their horizontal neighbor (when
initiated in this way), rather than other neighbors which may
be closer to them. However, the presence of the other spiral
pair enables this horizontal annihilation between the tips of the
spiral wave, which wouLIZd not have been achieved for a single

spiral pair having / > . Barring these few exceptions, for

[ > % andd > %, there exists a large zone of spiral repulsion.
With further increase in the vertical and horizontal distances
(beyond d,), all interaction vanishes. Here, from the repulsive
to no-interaction zone, the transition is very sharp with clear
(I, d) demarcating lines, along the critical distance (16.8 space
units).

We have additionally traced the trajectories of four numer-
ical experiments in Fig. 4 (marked by full circles). All the
points lie in the repulsive zone at their initiation and are traced
till that point, where the relative motion of the tips ceases. One
may observe that the / and d values change spontaneously
toward the zone of no interaction. When both distances are
much smaller than the critical value of 16.4 space units, for,
e.g., the yellow circles which start from (11.55, 9.8), the
vertical as well as the horizontal distance increases, as the
pairs move toward the zone of no interaction (16.4, 16.4).
They, however, do not trace an exact straight line. The vertical
distance (d) increases faster than the horizontal (/), as seen
from the curved path of the yellow circles. This points towards
the stronger repulsion of the trailing edges of the horizontal
waveforms, along the vertical, when the rotors are linked
to the spiral arm of their initial twin, thus separating them
vertically. On the other hand, when one of the initial distances
is beyond the critical distance, e.g., the experiment depicted
by the green circles, where the initial distances are (19.4,
11.2), only the other distance (vertical in this case) increases
all along the path until it reaches the noninteracting zone.

Comparison of the phase diagrams of single and double
spiral pairs [Figs. 1(e) and 4] show some similarities and some

dissimilarities. A careful observation of Fig. 4 reveals that,
for a fairly large value of d (>16.4), the system is in the no-
interaction zone in the vertical direction. Again, for [ > 16.4,
it reaches the no-interaction zone in the horizontal direction.
For both these conditions, the individual pair of spirals that
lie close by behave as they would in the absence of any other
rotors (as in Fig. 1). In the case of the former (d > d.), as
[ increases (for, e.g., along d = 18.2 marked by a red arrow
in Fig. 4), we can observe horizontal annihilation followed
by repulsion and then no interaction. Similarly, in the latter
case (I > d.), vertical annihilation is followed by repulsion
and no interaction, as d value is raised from small to large (for,
e.g., along [ = 18.55 marked by an olive arrow in Fig. 4). The
presence of the neighboring rotors for lower d and ! values
brings about the complicated dynamics observed in the system
[Figs. 3(b), 3(c), S3, and S5]. From this observation, we may
wonder if an increase in the number of interacting spiral cores
might lead to more intricate dynamics.

Towards this aim, we extended our system to eight spiral
cores. We designed a very symmetrical system of spirals, in
order to be able to clearly observe any symmetry-breaking
dynamics. Figure 5(a) depicts such a system. In Fig. 5(b) we
again define our distance parameters / and d as the initial dis-
tance between the cores in a spiral pair, and shortest distance
between two nearest cores belonging to different spiral pairs,
respectively. We initiate four spiral pairs having the exact
same dimensions, and spaced equally apart, forming a kind of
closed system, with a fourfold degeneracy in the initial wave
forms [Fig. 5(a)].

In such a symmetric system, we observe mainly four kinds
of interactions. A sample of each type is illustrated in Fig. 5.
Figure 5(c) shows mutual annihilation between diagonal pairs
of spirals, due to a small d (= 6.9) value, as compared to [ (=
10.1). Here each of the spiral pairs behaves almost symmetri-
cally. In Fig. 5(d), / = 9.0 and d = 7.7. Here both annihilation
as well as repulsion is observed simultaneously. The loss
of symmetry in this case is probably occurring due to a
symmetry-breaking cooperative effect. The spiral pairs travel
like bound states for a distance, before the asymmetry sets
in, making some pairs repel, and others attract and annihilate.
This case is similar to that seen in the case of two spiral pairs
[Fig. 3(b)]. Figure 5(e) shows the repulsion of all the spirals.
Here [ = 9.5 and d = 12.5, both larger than %dc. Although
their direction of transition is quite symmetric, the velocity
is different for different rotors. Some spirals have traveled
larger distances compared to others, in an equal amount of
time. Hence, the repulsion experienced by all the spirals are
not uniform throughout. When the spirals are farther away
from each other, they do not show any visible interaction, as
depicted in Fig. 5(f), where [ = 16.8 and d = 23.2.

Preliminary studies with corotating spirals show similar
trends in their interaction. Spirals with the same sense of
rotation cannot annihilate each other [25,35], as they carry
similar topological charges. When within close proximity,
they interact depending upon their initial phases. Corotating
spiral tips, initiated with the exact same phase, repel each
other, till they are separated by a critical distance, close to
the A value. This is observed even when they lie within one
core diameter of each other. However, when they are initiated
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FIG. 5. Interactions between four pairs of spirals. (a) Snapshot of
one numerical experiment at = 40.8 normalized time units, for / =
10.1 and d = 6.9 normalized space units. (b) System design showing
the initial placement of waves and corresponding definition of d and
[ in these cases. (c) Tip trajectory for / = 10.1 and d = 6.9. (d) Tip
trajectory for / = 9.0 and d = 7.7. (e) Tip trajectory for / = 9.5 and
d = 12.5 (for the purpose of simplicity, only tip positions at intervals
equal to the time period of the spirals, 5.34 time units, are shown
here). (f) Tip trajectory for / = 16.8 and d = 23.2. Movies of the
simulations are available in the Supplemental Material [40] (Mov5c—
Mov5f).

with a significant phase difference, such corotating spirals can
form coupled pairs, often with complicated trajectories [32].

IV. EXPERIMENTAL METHODS

The BZ reaction system provides a convenient way to
study the behavior of spiral waves experimentally. A suitable
concentration range that sustains spirals was chosen for our
experiments. The final concentrations of the reactants are
[H,SO4] = 0.2 M, [NaBrOsz] = 0.04 M, [malonic acid] =
0.04 M, and [ferroin]= 0.001 M. We prepare a homogenous
mixture of 0.8% (w/v, final concentration) agarose gel in
millipore water (having resistivity of 18.2 MQ cm), with
constant stirring and moderate heating. Then it is allowed
to cool slightly with continued stirring so as to keep the
mixture homogeneous throughout. Now the other reactants (in
water) are added to the stirred solution sequentially. When the

mixture is just above the gelling temperature, it is poured into
a Petri dish of 8 cm diameter and is allowed to cool. The
BZ gel layer has a thickness of 2 mm. All experiments are
carried out at room temperature (22 £ 1 °C). The reaction
system was illuminated from below by using a diffused, cold
white light source (Dolan Jenner DC950H). We observe the
reaction mixture from above with a charge coupled device
camera (mvBlueFOX 22a), which is connected to a personal
computer. A blue dichroic filter was attached to the camera for
better imaging. We recorded the images at 2 s intervals. The
spiral tips were detected by analyzing the snapshots using an
in-house interactive program written in the MATLAB platform.
The tips were recognized as the points near the spiral head
with the highest curvature. In the presence of aerial oxygen,
the excitability of the BZ system reduces with time, the waves
become slower, and the time period increases [41]. How-
ever, we have covered our reaction to minimize this effect.
Moreover, we use only experimental data recorded during the
first 3 h after initiating the reaction. During this period, the
wavelength and time period of the waves do not change.

The recipe of the BZ reaction that was chosen for these
experiments generated a rigidly rotating spiral wave with core
diameter d; = 0.09 cm, an average wavelength, A = 0.48 cm,
and a rotation period of 367 s. The wavelength and time
periods were measured just like in the case of the numerical
simulations, as depicted in [17]. A single spiral pair was
generated in the usual way by cleaving a circular wave with
a thin glass plate. In order to generate two pairs of spirals,
first two circular waves are initiated in close proximity of
each other, by dipping two silver wires (Aldrich 99.9% purity)
into the reaction gel for a few seconds. The silver helps in
catalyzing the reaction, and hence initiates a circular target
wave. The waves are allowed to expand and to come closer
together. Finally, they are cleaved in such a way that we
generate two pairs of spirals, facing one another. The system
of spiral waves generated in this manner is similar to what we
obtain for our numerical simulations [Fig. 2(b)]. Though the
initial waveforms in our experiments were curved [Fig. 6(b)],
instead of straight [Fig. 2(a)], the direction of their rotation
is the same as that of our numerical simulations. The leading
edge of the two initial waves move away from each other. The
distance between the circular waves at the time of cleaving has
a special importance as the value of d, or the vertical distance
between the center of the spiral cores, depends on it. One
more important parameter is the horizontal distance between
the centers of the two spiral cores in a pair generated from
a single circular wave, /. Special care was taken to maintain
these distances, by ensuring that the initial target waves are of
the same size, and they are cut almost at the same time, so as
to obtain similar d and [ values between both pairs.

V. EXPERIMENTAL RESULTS

Our simulation results for two spirals (Fig. 1) were veri-
fied by our experiments with a single excitation wave having
two counterrotating spirals at either end. We have designed
a phase diagram for a pair of spirals in an experimental sys-
tem [Fig. 6(a)], in keeping with the results of the numerical
simulations, in order to graphically demonstrate the various
kinds of interactions observed in our experiments. The critical
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FIG. 6. (a) Phase diagram of interaction between the two cores
of a spiral pair in experiments. Blue left-pointing triangles depict an-
nihilation, gray downward-pointing triangles portray repulsion, and
the open red upward-pointing triangles represent the no interaction
between the two rotors. (b)—(e) Annihilation of two pairs of spiral
waves. Snapshots at (b) 8.47 min, (c) 27.28 min, and (d) 32.14 min
after initiation of the reaction. Area of each snapshot is 2.95 cm
X 2.95 cm. (e) Tip trajectories (colored curves) showing attraction
and annihilation. The trajectory of each tip has been given a unique
color for the purpose of clarity. Closed purple circles designate the
initial position of every individual rotor, and the cyan triangles are
the final positions prior to the moment of annihilation (at 27.33 min).
Area shown in box is 0.55 cm x 0.55 cm. Initially, d = 0.14 cm,
! = 0.185 cm. A movie of this experiment is available in the Supple-
mental Material [40] (Mov6).

distance, d. = 0.39 cm, is one beyond which all interactions
cease, and the distance d./2 marks the switch between repul-
sion and attraction. Analyzing with respect to the wavelength
and core size, as we did in our simulations, here the criti-
cal distance of interaction is equal to d, = A —d; = 0.48 —
0.09 = 0.39 cm. So, the intercore distance below which we
should observe annihilation is expected to be %dC =0.195cm.
Here we discuss the systems with a higher number of rotors.
We carried out a series of experiments with two pairs of
spirals, by varying the distances d and [, that allowed us to
observe the different kinds of interactive phenomena predicted
by the simulations. We discuss representative examples of
each kind here. However, the initial conditions were not al-
ways as symmetric as in the case of simulations. For example,

(d)

FIG. 7. Repulsion between two pairs of spiral waves. Snapshots
at (a) 19 min, (b) 88 min, and (c) 174 min after initiation of the
reaction. The area of each snapshot is 3.8 cm x 3.8 cm. (d) Tip
trajectories showing repulsion. The circles and triangles designate
the initial and later (at 72.0 min) positions of the individual rotors,
respectively. Area shown in box is 0.75 cm x 0.75 cm. Initially
d =0.295 cm, [ = 0.31 cm. A movie of this experiment is available
in the Supplemental Material [40] (Mov7).

the distance [ (= 0.185 cm) in the experiment shown in Fig. 6
is an average of 0.17 cm (top pair) and 0.20 cm (bottom
pair). There are several factors for this. The exact instant of
multiple target wave initiation by several silver wires may not
be perfectly coordinated, due to local microscopic inhomo-
geneities in hydrogel density or temperature. Once the waves
are formed and start to expand, they are cleaved using a thin
object. This also involves errors and noise, and however much
care is taken, the two [/ and d values may not be exactly equal
as in a simulation.

Figures 6(b)-6(d) depict the time evolution of two spiral
pairs leading to annihilation. This is similar to the example
shown in Fig. 2. The tip trajectories in Fig. 6(e) portray how
a pair of rotors annihilate along the distance /. Here the initial
distances are d = 0.14 cm and [ = 0.185 cm. It is to be noted
here that attraction leading to annihilation occurs even when
the initial distance between the rotors is more than two times
the core diameter (I = 2.05x core diameter). The same has
been observed in the case of numerical studies too. Even
though the initial distance in the vertical direction d is smaller
than the initial horizontal distance [, the spiral tips attract
along the horizontal, once again establishing the fact that the
force of attraction is much stronger along the direction of
wave motion. In this experiment, however, both [ and d are
less than %dc.

On the other hand, the experiment illustrated in Fig. 7
shows an increasing distance between spiral tips with time.
This experiment is an example of spiral repulsion, as earlier

054213-8



INTERACTION OF MULTIPLE SPIRAL ROTORS ...

PHYSICAL REVIEW E 105, 054213 (2022)

(d)m 79, 185)..' 1’-‘\\

(3.00, 1.87)

0.340
247, 2_2_8.) (3 23,2.12) 5«*
Fos 025/

026 (326,23T)498

0 447,‘*‘"
(2.48, 2 54) 0.394

(2.80, 277)@ %
.06, 277)

FIG. 8. Repulsion between four pairs of spiral waves. Snap-
shots covering an area of 2.95 cm x 2.95 cm, at (a) 6.07 min,
(b) 56.57 min, and (c) 138.93 min, after the initiation of the reaction.
(d) Initial positions of the spiral cores (round curves tracing the dots,
which are the positions of the spiral tip during the first rotation of the
vortex). The coordinates of the center of the circular cores have been
noted in cm (in black), while the distance (in cm) between the center
of the cores is given in red. The cores have also been juxtaposed
over the snapshots. A movie of this experiment is available in the
Supplemental Material [40] (Mov8).

seen in our simulations [Fig. 3(c)]. The values of d and [
are 0.34 cm and 0.25 cm, respectively. Although the d val-
ues are greater than the [ values, the tips repel each other
vertically. Due to a slight asymmetry in the initial conditions
(I = 0.23 cm between the top pair, and 0.27 cm between the
bottom pair and d = 0.32 cm in the left pair and 0.36 cm in
the right pair), the symmetry is further broken in the system, as
the reaction progresses. The tip trajectories [Fig. 7(d)] exhibit
the divergent, yet unsymmetrical, dynamics of the rotors over
time. All initial distances here (d and [) lie between %dc
and d,.. Hence, the repulsion of the tips are in keeping with
our theoretical predictions. Interestingly, one may observe the
simultaneous movement of the top spiral pair away from the
initial positions, just like a bound state [29].

We also carried out experiments with four spiral pairs. We
initiated the waves by cleaving four circular waves generated
adjacent to each other, in a square arrangement. The first
example is Fig. 8 where only repulsive interaction was ob-
served between the spirals. The d values here ranged between
0.34 cm and 0.53 cm, while the / values ranged in the order of
0.21 cm to 0.26 cm. All d values, except one (0.34 cm on the
top right) are greater than the critical distance (d. = 0.39 cm),
while the [ values are all less than d,, but greater than %dc.
One would predict the spiral rotors to repel their twins and
not interact strongly with the other neighbors. However, we
observe that all the spiral rotors move away from the center,

(2.45, 1.89)

(239, 2. 47)

FIG. 9. Annihilation of one pair of rotors following a strong
repulsive interaction between four pairs of spiral waves. Snapshots
at (a) 19 min (b) 116.1 min, and (c) 188.47 min after initiation of
the reaction. Each snapshot covers an area of 2.95 cm x 2.95 cm.
(d) Initial positions of the spiral cores with the coordinates of the
centers mentioned in cm. The distance (in cm) between the center of
each core with its two nearest neighbors is given in red. The initial
cores of the eight rotors have also been superimposed over the snap-
shots. A movie of this experiment is available in the Supplemental
Material [40] (Mov9).

while (almost) maintaining the initial symmetry. As / values
increase very slightly between the tips, the d values are seen to
increase more. The only spiral pair that somewhat breaks this
symmetry is the one initiated at y = 2.77 [shown in Fig. 8(d)],
the right tip [initially at (3.06, 2.77)] of which is probably
pinned to a small bubble that has been formed at its vicinity
seen just below the orange core of the tip in Fig. 8(b)]. This
stops its expected movement in the outward direction like the
other rotors, while the left tip travels downward, and the /
value for this pair increases appreciably.

Figure 9 shows an experiment where a strong repulsive
interaction was observed, followed by annihilation of a wave
pair. The range of d values in this example is 0.139-0.309 cm,
while / ranges between 0.194 cm and 0.265 cm. This system
has an inherent asymmetry right from the initiation [Figs. 9(a)
and 9(d)]. Hence one might expect some very unique dynam-
ics arising out of the wave interactions. A quick glance at
the initial interrotor distances point at only two values (d =
0.139 cm in the top-right corner and / = 0.194 cm for the right
spiral pair) to be in the attractive range. All other distances
are in the repulsive zone. The core initiated at (2.83, 2.01) and
depicted with green, left-pointing triangles is in the attractive
zone of both the cores in its vicinity. So there will be a compe-
tition for attracting this one rotor by its two neighbors. As time
progresses, the spiral wave pair on the right is expelled farther
to the right, by the rest of the rotors [Fig. 9(b)]. This is an
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unexpected movement of the green rotor. Even though it was
very close to its pink neighbor (core depicted by right-pointing
triangles) [Figs. 9(a) and 9(d)], it moved away from it and
traveled with its twin (the core of red diamonds). At this stage,
the three spiral wave pairs that remain at the center of the reac-
tion chamber display a threefold symmetry among themselves
[ Fig. 9(b)]. Subsequently, the spiral wave at the top eventually
rotates (as a pair) in the clockwise direction, as it also moves
away from the center. Meanwhile, the spiral pair which had
been expunged to the right moves farther away, and its two
rotors start experiencing mutual attraction, and the vortices
eventually undergo annihilation at around 138.5 min (after the
initiation of the reaction). This annihilation of the wave may
be attributed to its / value of 0.194 cm, which is marginally
lower than %dc. Refer to the movie of the experiment (Mov9)
in the Supplemental Material to witness the very interesting
wave dynamics of this experiment [40].

VI. DISCUSSION

We have carried out detailed analysis of the interaction of
counterrotating spiral pairs. Through our experiments and nu-
merical simulations, we have confirmed what is known about
the dynamics of two spiral rotors, and further probed whether
it is possible to explain the behavior of more than two spiral
vortices, based on spiral wave-pair interactions. We have been
able to uncover some previously unexplored behavior which
establishes that a simple reduction to spiral pairs fails. Spi-
ral waves, in proximity, would attract each other and finally
annihilate. A slight change in initial distance could make
two attracting rotors highly repulsive. We have successfully
established a critical distance of interaction between the rotor
pairs, whether they have a single or multiple neighbors. While
the transition from attractive to repulsive interaction occurs
across a range of d and [ values for more than two rotors,
for the simplest case of two rotors, this occurs at 8.2 space
units in numerical simulations and 0.195 cm in experiments.
As we increase the initial distance further, beyond a particular
distance, all interactions between the spirals cease to exist.
In numerical simulations the value is 16.4 space units, and
for our experiments it was found to be 0.39 cm. This critical
distance is equal to the difference of the wavelength of the
spiral wave and its core diameter.

Preliminary investigation into the dynamics of interacting
spiral rotors for different parameter values, varying initial
placement of waveforms, and also different model systems,
like the two-variable Oregonator model, have been carried out.
The main results reported in our study hold well in all these
situations. Across the systems we have observed a priority
of attractive interaction between the spiral rotors along the
direction of wave motion. For a similar initial condition as
ours, it has been seen in numerical as well as experimental
experiments that a vortex is being attracted heavily by its
twin, sometimes even when the distance separating it from a
neighboring rotor (belonging to another spiral wave pair) was
much lower (Fig. S7 [40]).

We also observed some very interesting symmetry-
breaking dynamics of the spiral waves. Existing literature
supports the phenomenon of symmetry breaking in two- and
three-component reaction diffusion processes. The dominance

of one spiral over the other in a spiral pair, leading to
symmetry breaking, was earlier demonstrated in numerical
simulations [25,26], as well as in experiments [27]. With
our experiments and simulations, we show that a system
with multiple spirals, all having the same frequency ini-
tially, can also undergo symmetry-breaking dynamics, even
if the initial distances separating them are equal, leading to
an uneven geometry as time progresses. We show that in
our system, the spiral tips keep on rotating with the same
frequency (or time period), while they trace unsymmetrical
trajectories, leading to an overall asymmetry in the sys-
tem, without any necessary dominance of one tip over the
other. Unlike the results shown in [27], the cores of our
spirals remain fixed at the no-interaction zone, and there is
no visible oscillation of the intercore distance. While some
groups [23,29] claim that a three-component model is re-
quired to show the symmetry-breaking instability of spiral
pairs, Ruiz-Villarreal et al. [27] have shown that such an
instability is indeed possible in a two-component FitzHugh-
Nagumo model. The former groups believe that the symmetry
breaking requires the presence of a third field whose feedback
results in strong interaction between the spiral rotors [23].
However, the results presented in our current study seem
to support those by Ruiz-Villarreal et al. [27], as we suc-
cessfully demonstrate the symmetry breaking instability in
a two-variable Barkley model system. The parameter range
through which the two-variable Barkley model displays the
symmetry breaking is also substantial. Spontaneous symmetry
breaking can still be observed for a set of parameters en-
tirely different from our current set (a = 1.1, =0.18,¢ =
0.01,dt =0.012,dx = 0.35,D, = 1.0, D, = 0.0 as shown
in Fig. S7 [40]). This set of parameters with nondiffusing re-
covery variable (D, = 0.0) is often chosen to model systems,
where the catalyst is immobilized [29,36]. All the observa-
tions made with our parameter values can also be observed in
this system. However, it may be expected that the exact value
of the critical distance may change with changing parameters.
A simple change in the value of the excitability parameter
€ changes the nature of the spirals (time period, frequency,
wavelength, and tip trajectory or core size) [17]. Hence, it can
be expected that the critical distance might also change under
these circumstances, though it will always be less than one
wavelength. For both the sets of parameter values that we have
thoroughly investigated, we observed the formation of bound
states by some pairs of counterrotating spirals (Figs. 3, 5, and
S7). This is in keeping with results shown in [29]. Similar
observations have also been made in many of our experiments
(Figs. 7-9). However, a sudden asymmetry in the system
brought about by some local inhomogeneities may result in
the bound states losing their stability. The spiral pairs in these
cases may attract and annihilate Figs. 3(b), 5, and 9, or even
repel (Fig. S3), after having travelled as a bound state for a
long distance. Reducing the grid size does hasten the onset
of the symmetry-breaking instability (as mentioned in [27]),
and increasing grid sizes lead to a more symmetric system.
However, for multiple spirals (more than two), we found that
symmetry breaking is observed even for high grid sizes (0.5
space units). Our experiments show that symmetry breaking
is an inherent quality of excitable systems with multiple ex-
citable centers. The results of our numerical simulations are

054213-10



INTERACTION OF MULTIPLE SPIRAL ROTORS ...

PHYSICAL REVIEW E 105, 054213 (2022)

in keeping with that idea. The presence of numerical noise in
simulations or microscopic variation of system parameters in
experiments can make a system starting from symmetrical ini-
tial conditions evolve into one of striking asymmetry, as time
progresses. An initial dissymmetry, however small, blows up
with time, and the system diverges into complete asymmetry.

Some initiatory simulations by varying the phase of the
two spiral rotors were also carried out. In all our simulations
described so far, the counterrotating spirals had the same
initial phase [consider their amplitude along the y direction
for a pair of spirals placed side by side, like in Fig. 1(c), as
depicted clearly in Fig. 5 of [42]]. For counterrotating spirals
with an initial phase difference of 7, the nature of interaction
between the spiral tips depends upon the mutual orientation
of the waveforms and the distance separating the tips. When
there is an additional wave between the two tips (apart from
their immediate spiral arms), they will not attract, however
close they may be initiated. This happens even when the
phase difference between the two rotors is zero or 2 [30,40].
However, if we can initiate the two tips in such a way that they
do not have any intervening wave, the tips may attract and
annihilate. Refer to our Supplemental Material (Fig. S8) for
results of some preliminary simulations. It will be interesting
to further explore if there is an oscillatory dependence of the
nature of interaction on the phase difference of two spiral
rotors.

The results obtained for the interactive behavior of these
two-dimensional spiral waves are somewhat different from
that known about their three-dimensional counterparts, the
scroll waves. These three-dimensional scroll waves can be
thought to be a stack of spirals, or an extension of a
two-dimensional spiral along the third dimension. When
neighboring scrolls approach each other, their constituent spi-
rals can annihilate if they have opposite sense of rotation.
Depending on the distance between the filaments, such a phe-
nomenon can lead to “reconnection” of the scroll waves. In
experiments with scroll rings, we had in an earlier study [33]
shown that the circular filaments attract each other and re-
connect, when they are less than one core diameter apart.
Repulsion between the wave forms was also found for a
particular orientation of the filaments, which was believed
to be due to the proximity of corotating spirals. Scroll rings
having positive filament tension undergo spontaneous shrink-
age and eventually disappear. Hence, it is difficult to establish
quantitatively the repulsive influence of the constituent spirals
on the dynamics of two neighboring scroll rings. In another
experimental study of parallel and straight scroll waves [35], it
was shown that they repel each other when they are separated
by distances greater than %)L but smaller than one wavelength.
Here the authors could not initiate pairs of scroll waves that
were closer than %A in their experiments. Hence, for three-
dimensional scroll waves, a critical distance for the sudden
flipping of attractive interaction to give way to repulsion is
not yet known in the literature. However, in our current study
we observe that the attraction between rotors is felt over a
distance that is many times more than the core diameter. Nu-
merically, for our chosen parameters, the distance was found
to be 4.5 times the core diameter, while experimentally we
have observed attractive interaction at least up to 2.2 times the
core diameter (both of which are close to half a wavelength).

It would be interesting to probe the system of 3D scroll waves
to ascertain if its constituent spirals also attract until such
distances that are close to half of a wavelength.

VII. CONCLUSIONS

In conclusion, we have successfully quantified the nature
of spiral wave interaction as a function of wave properties. A
critical distance of interaction of two spiral waves has been
established. This measure could be used to understand the dy-
namics of multiple rotors. For systems of two, four, and eight
spiral cores, we have demonstrated the possibilities of spiral
attraction leading to annihilation, repulsion, and no interac-
tion. As the number of rotors are increased, more complicated
dynamics come to light. In the presence of additional rotors,
a pair of spirals in the repulsive zone can undergo attraction
followed by annihilation. Spontaneous symmetry breaking
is also observed, inducing the spiral tips to trace intriguing
tip trajectories. We have validated by several examples and
comparisons that the dynamics of the spiral rotors also depend
on the motion of the spiral wave arm. If the initial waves are
moving away from each other, the rotors that will originate
from the two ends of a single wave attract each other more
strongly than they do other rotors from neighboring spiral
waves.

Spiral rotors of these kind play a vital role in the fibril-
latory conduction of the cardiac muscles, by activating the
atria at exceedingly high frequencies [10]. The present study
illuminates the nuances of spiral wave interaction and may
facilitate a better understanding of the interaction of rotors
in the atria and ventricles. Since we have shown how the
interaction of neighboring spiral tips can bring about their drift
within the excitable media, or their annihilation, our results
have strong implications in understanding the dynamics of
such rotors in the cardiac system. The drift of otherwise non-
meandering spiral rotors due to interaction with nearby spirals
can transform a monomorphic tachycardia into polymorphic
tachycardia, and even the life-threatening Torsades de pointes,
in the presence of several rotors. Contrarily, mutual attraction
of rotors leading to annihilation of spiral pairs, will point
towards the quenching of tachycardia or fibrillation in the
heart muscles.

Further analysis of the velocity of attraction and repulsion
should shed more light on the interaction dynamics. It remains
to be seen whether the velocity of these interactions would
take the form of Yukawa potentials, as was found in the case
of three-dimensional scroll rings [33,43]. Future studies could
try to uncover the cause of the symmetry-breaking dynam-
ics that is observed in systems with multiple spiral rotors.
Another interesting question is how the spiral velocity fields
change as a function of model parameters. Also, detailed
simulations on interaction of spirals with varying phase dif-
ference, for both counter- and corotating spirals, will be worth
exploring.
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