
PHYSICAL REVIEW E 105, 054211 (2022)

Vortex motions in coupled phase oscillator lattices with inertia under shear stress
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We propose a coupled phase oscillator model with inertia and study the vortex motion in the model when
the external force is applied at the boundaries. The vortex exhibits a glide motion when the external force is
larger than a critical value. We find a transition from the pair annihilation to passing for the collision of the
vortex and antivortex when the external force is changed. In the parameter range of the passing, a single vortex
exhibits a reciprocal motion, which leads to desynchronization. When the external force is further increased, the
multiplication of vortices occurs and the jump of the frequency profile increases. The desynchronization induced
by the vortex motion is analogous to the plastic flow induced by the dislocation motion under the shear stress in
solids. In perfect crystals without dislocations, the plastic flow hardly occurs. We further show that a vortex ring
is generated when a vortex line passes through an impurity region, which corresponds to the Orowan loop in the
theory of plasticity.
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I. INTRODUCTION

Coupled limit-cycle oscillators and mutual synchroniza-
tion have been investigated in various research fields such as
physics, chemistry, biology, and electric engineering [1–3].
The coupled phase oscillators called the Kuramoto model
have been intensively studied by many authors as a simple
solvable model [1,4–6]. In the phase oscillator models, the dy-
namics of limit-cycle oscillators are expressed with the phase
of the oscillation. Various types of phase oscillator models
have been proposed since the original Kuramoto model [7].
One generalized model includes the inertia term or the sec-
ond derivative of the phase variable [8]. The phase oscillator
model with inertia was applied to the power grid, where the
alternating current is expressed using its phase [9,10]. The
original Kuramoto model has a global coupling and the mean-
field approximation can be applied exactly. However, coupled
phase oscillators on square or cubic lattices are also important,
which are called oscillator lattices [11,12]. For example, a
two-dimensional oscillator lattice has a form

dφi, j

dt
= K

∑
i′, j′

sin(φi′, j′ − φi, j + α),

where φi, j is the phase of the oscillator on a lattice site (i, j),
and (i′, j′) denotes the nearest-neighbor site of the (i, j) site,
K is the coupling strength, and α is a parameter of the phase
shift. Target and spiral waves appear on the oscillator lattices
with nonzero α, which is similar to the phenomena observed
in the oscillatory reaction-diffusion equations. In the center of
the spiral, there exists a topological defect called a vortex [13].

Strongly deformed solids exhibit various nonlinear phe-
nomena such as fractures in brittle materials and plastic flow
in ductile materials. Defects such as micro cracks and dis-
locations play an essential role in the large deformation of

solids. Perfect crystals without such defects are considered
to be much stronger. The mechanics of plasticity is one of
the basic research fields of solid materials. Many dislocations
exist in strongly deformed materials. The screw and edge
dislocations are typical line defects in crystals. The dynamics
of dislocations is a fundamental process in the mechanics of
plasticity [14,15]. The dislocation motions have been numeri-
cally studied with the molecular dynamics simulation. Several
authors developed direct numerical simulation methods of the
dislocation lines [16,17].

The dislocation motion has been studied from a viewpoint
of nonlinear physics. The Frankel-Kontorova model is a sim-
ple one-dimensional model of dislocation motion [18,19]. The
continuum approximation of the Frenkel-Kontorova model
becomes the sine-Gordon equation, which is known as an inte-
grable system. Although the original model is a conservative
system, a dissipative system can be constructed by adding a
viscous term. The Frenkel-Kontorova model is generalized
to a two-dimensional system by several authors [20]. The
two-dimensional Frenkel-Kontorova model is expressed as

d2ui, j

dt2
= − sin ui, j + K

∑
i′, j′

(ui′, j′ − ui, j ),

where ui, j denotes the displacement of a particle at the (i, j)
site.

The phase oscillator model on lattices and the lattice dy-
namics of crystals have several things in common. If the
phase in the phase oscillator lattice is interpreted as the one-
dimensional displacement from the equilibrium position in
crystals, the vortex in the phase oscillator lattice corresponds
to the dislocation in crystals. The shear stress is applied for
the deformation in solids. The shear stress is expressed as an
external force on the boundaries in the phase oscillator lattice.
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The average velocity in the plastic motion corresponds to the
average frequency of the phase oscillator.

The complex dynamics such as chaos and defect turbulence
has not been well studied in the research field of dislocation
theory. On the other hand, the nonlinear response to the ex-
ternal force such as the shear stress has not been studied in
oscillator lattices. We will propose a phase oscillator lattice
model with inertia and study the complex dynamics of vor-
tices and vortex lines in the oscillator lattices by applying the
force corresponding to the shear stress. We will show various
nontrivial dynamical phenomena with numerical simulations.
The main result is the desynchronization induced by the vor-
tex motion.

The vortex motion is studied on two-dimensional lattices in
Sec. II and on three-dimensional lattices in Sec. III. Sponta-
neous creation of vortices and vortex rings in oscillator lattices
with impurities is studied in Sec. IV. In Sec VI, we study an
interaction of a vortex line and an impurity region. In Sec.
VII, we summarize numerical results of our phase oscillator
lattices.

II. VORTEX MOTIONS IN COUPLED PHASE
OSCILLATORS ON SQUARE LATTICE

We study coupled phase oscillators with inertia on the
square lattice in this section. Our coupled phase oscillator
model with inertia is expressed as

d2φi, j

dt2
= K

∑
i′, j′

sin(φi′, j′ − φi, j ) − d
dφi, j

dt
+ fi, j, (1)

where (i′, j′)’s are the four nearest-neighbor sites of the (i, j)
site on the rectangular lattice of Lx×Ly, K is the coupling
constant, and d is a parameter of the viscous resistance. The
no-flux boundary conditions are imposed at i = 1, i = Lx, j =
1, and j = Ly in most numerical simulations in this paper. This
model equation is simple but not well studied, although there
are many model equations closely related to this equation.

If d = 0, fi, j = 0, and the phase difference φi′, j′ − φi, j is
sufficiently small, the continuum approximation of Eq. (1) is
expressed as

∂2φ

∂t2
= K

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
. (2)

This equation has the form of the equation of motion of
the two-dimensional elastic body when the displacement is
assumed to be (0, 0, φ). The parameter K corresponds to μ/ρ,
where μ is the modulus of rigidity and ρ is the density of the
elastic body.

As a model of the shear stress, the external force fi, j is ap-
plied at the boundaries in the y direction as fi, j = F at j = Ly

and fi, j = −F at j = 1. The external force fi, j is set to be zero
for the other lattice points. The numerical simulations were
done using the fourth-order Runge-Kutta method with time
step �t = 0.005. Our model has three control parameters: K ,
d , and F . F is a parameter of the external force and K denotes
the rigidity. The response of the system is mainly determined
by F/K . The parameter d denotes the dissipation rate and
the vortex dynamics changes by d qualitatively. If the initial
condition is uniform, such as φi, j = 0, a stationary solution

FIG. 1. (a) Stationary profile of φi, j at i=Lx/2 at K =1, F = 0.5,
and d = 0.2. (b) φi, j at i = Lx/2, at F = 0.95, and 1.05 for K = 1
and d = 0.2.

is obtained if K is smaller than a critical value. Figure 1(a)
shows a stationary profile of φi, j at the cross section i = Lx/2
for K = 1, d = 0.2, and F = 0.5 in a system of 20×20. The
stationary solution φi, j satisfies

φi, j = �{ j − (Ly + 1)/2}. (3)

The coefficient � is given by � = sin−1(F/K ) because

K{sin(φi,Ly+1 − φi,Ly ) + sin(φi,Ly−1 − φi,Ly )}
= −K sin(�) + F = 0 (4)

is satisfied at j = Ly. If F > K , there is no solution for �

and the desynchronization occurs. Figure 1(b) shows the pro-
file of φi, j at i = Lx/2 at F = 0.95 and F = 1.05 for K = 1
and d = 0.2. At F = 0.95, there is a stationary profile with
� = sin−1(0.95) ∼ 1.25. However, the desynchronization oc-
curs between j = Ly and j = Ly − 1 and between j = 1 and
j = 2 at F = 1.05. The phase φi,Ly increases with time and
the profile of φi, j between j = 2 and Ly − 1 becomes rather
flat. The critical value of the desynchronization is Fc = K .

If a defect called a vortex exists initially, the result changes
drastically. To set a vortex as an initial condition, the phase
profile is assumed to be

φi, j = cos−1(y/r) for x < 0, and

φi, j = 2π − cos−1(y/r) for x > 0,

where x = i − (Lx + 1)/2, y = j − (Ly + 1)/2, and r =√
x2 + y2. Figure 2 shows the vector (cos φi, j, sin φi, j ) at each

lattice position. There is a phase singularity or a vortex at
x = y = 0. If the direction (cos φi, j, sin φi, j ) rotates anticlock-
wise (clockwise) by one turn when we circulate anticlockwise
around the defect, the defect is called a vortex (antivortex).
This phase configuration corresponds to the displacement of
the screw dislocation of the Burgers vector (0, 0, 2π ), if φi, j is
interpreted as the displacement in the z direction. The Burgers
vector is a vector that represents the lattice distortion for the
dislocation. If the shear stress is applied to the crystal, the
dislocation is considered to move in a periodic potential called
the Peierls potential, which is caused by the periodic structure
of the crystal. The minimum force necessary for the disloca-
tion to go over the potential peak is called the Peierls stress.
The Peierls stress is much smaller than the critical stress for
the yielding in perfect crystals. That is why the dislocation is
important to determine the mechanical property of the solid.
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FIG. 2. Phase configuration of a vortex.

By the analogy to the dislocation motion, the vortex is ex-
pected to move in our oscillator lattice if the external force F
is beyond a critical value.

Figure 3(a) shows the time evolution of the x coordinate
of the vortex position at F = 0.1018 and 0.15 for K = 1
and d = 0.2. The system size is 500×100. The position of
the vortex can be determined as a lattice site with nonzero
local vorticity along the square loop (i, j) → (i + 1, j) →
(i + 1, j + 1) → (i, j + 1) → (i, j). At F = 0.15, the vortex
moves in the x direction almost with a steady velocity after
an initial transient time. That corresponds to the glide mo-
tion of the dislocation. The y coordinate of the position of
the vortex is fixed to be Ly/2. At F = 0.1018, a stick-slip
motion is observed. The stick-slip motion is observed for a
small parameter range of 0.1002 � F � 0.1032 at d = 0.2.
The period of the stick-slip oscillation increases with F and
the time interval of the stick state decreases with F , however,
any singularity such as divergence is not observed. Figure 3(b)
shows a relationship between F and the time interval ST of the
stick state for K = 1 and d = 0.2. A discontinuous transition
seems to occur at F = 0.10323. To study the robustness of
the stick-slip motion, we have performed numerical simula-
tions with external noises fi, j (t ) satisfying 〈 fi, j (t ) fi′, j′ (t ′)〉 =
2Dδi,i′δ j, j′δ(t − t ′) in Eq. (1) other than the external shear
stress ±F . This noise term represents the effect of thermal
fluctuations in the dislocation theory. Figure 3(c) shows the

FIG. 4. (a) Average velocity as a function of F at K = 1, 2 and 4
for d = 0.2. (b) Critical value Fc as a function of K for d = 0.2.

time evolution of the x coordinate of the vortex position at
D = 7.3×10−5 and 0.094 for F = 0.1018. As D increases,
the number of steps within the fixed time interval increases,
however, the stick-slip motion is still observed.

Figure 4(a) shows the average velocity of the vortex motion
as a function of F at K = 1, 2, and 4 for d = 0.2. The average
velocity is determined by the average slope of the relationship
between the time and the x coordinate of the vortex position.
At K = 1, the vortex begins to move at F > 1.002, and the
transition is continuous. At K = 2 and 4, the transition is
discontinuous, and the hysteresis is observed. The origin of
the hysteresis is not understood well. Figure 4(b) shows the
critical force Fc for the stationary vortex to move as a func-
tion of K . The dashed line is Fc = 0.1K . Fc = 0.1K is much
smaller than the critical value Fc = K of the desynchroniza-
tion shown in Fig. 1. The critical value for the vortex motion
takes almost the same value Fc = 0.2 when d is changed as
d = 0.1, 0.2, 0.3, and 0.4 for K = 2, however, Fc = 0.086 at
d = 0 for K = 2. The critical value becomes smaller when the
viscosity is sufficiently small.

We have studied the vortex motion more in case of d = 0
more in detail. When d = 0, the total energy

E =
∑
i, j

1

2

(
dφi, j

dt

)2

− 1

2

∑
i, j

∑
i′, j′

cos(φi′, j′ − φi, j )

FIG. 3. (a) Time evolution of the x coordinate of the dislocation position at F = 0.1018 and 0.15 for K = 1 and d = 0.2. (b) Relationship
between F and the stick time ST for K = 1 and d = 0.2. (c) Time evolution of the x coordinate of the vortex position at F = 0.1018 for
D = 7.3×10−5 and 0.094 for K = 1.
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FIG. 5. (a) Time evolutions of the position of the vortex at F =
0.03, 0.04, 0.05, 0.1, and 0.2 for the conservative system of d = 0
and K = 1. (b) Time evolution of φ(i, j) at j = Ly/2 at F = 0.3,
K = 1, and d = 0.

is conserved. Figure 5(a) shows the time evolution of the
vortex position at F = 0.03, 0.04, 0.05, 0.1, and 0.2 for d = 0
and K = 1. The dislocation begins to move at F = 0.038 for
d = 0. The slip-stick motion is observed for a wide parameter
range of F . The slip motion starts at almost the same times for
F = 0.1 and 0.2. The period is around 200. Even at F = 0.03,
there is an oscillatory motion of very small amplitude with the
period of around 200. Figure 5(b) shows the time evolution
of φ(i, j) at j = Ly/2 at F = 0.3. A vortex-antivortex pair
is created near t = 120, and the antivortex moves in the −x
direction. For a larger value of F , many vortex-antivortex pairs
are created and chaotic motion appears. The proliferation of
vortices is an interesting phenomenon, which is analogous to
the proliferation dislocations in the problem of the plastic flow
in solids.

Next, we have performed numerical simulations of the
collision of the vortex and antivortex by imposing the periodic
boundary conditions in the x direction because we need not
consider the mirror image of vortices in the periodic boundary
conditions. The periodic boundary conditions are imposed at
i = 1 and Lx in a rectangular system of Lx×Ly, and a vortex
and antivortex are initially set at i = 50 and 150 in a system
of 200×100. The no-flux boundary conditions are assumed
at j = 1 and j = Ly. This type of boundary condition is used
only in this numerical simulation. Figure 6 shows the numer-

ical result at F = 0.25 for K = 1 and d = 0.05. Figure 6(a)
shows the time evolutions of φ(i, j). A pair annihilation is
observed, and a uniform state appears after the collision.
Figure 6(b) shows a snapshot profile of (cos φi, j, sin φi, j ) at
t = 220 before the pair annihilation, and Fig. 6(c) shows a
snapshot profile at t = 240 after the pair annihilation. Figure 7
shows the numerical result at F = 0.3. Figure 7(a) shows the
the time evolutions of φ(i, j). The vortex and antivortex pass
through each other at F = 0.3. The passing phenomenon of
the vortex and antivortex is a phenomenon found in our model.
Figure 7(b) shows a snapshot profile of (cos φi, j, sin φi, j ) at
t = 175 before the collision, and Fig. 7(c) shows a snapshot
profile at t = 180 after the collision. In a very narrow param-
eter range above the critical line, a bound state of vortex and
antivortex is generated. Figure 8(a) shows the time evolution
of φ(i, j) at F = 0.27 for K = 1 and d = 0.05. At this pa-
rameter, the vortex and antivortex make a bound state after
the collision. Figure 8(b) shows the stationary configuration
of (cos φi, j, sin φi, j ) near the vortex pair. The vortex locates at
x = 102.5 and the antivortex locates at x = 98.5.

Figure 8(c) shows the critical line below which the pair
annihilation occurs in a parameter space of (d, F ) at K = 1.
When d is larger than the critical value for a fixed value
of F , pair annihilation occurs at the collision. When F is
smaller than the critical value for a fixed value of d , the pair
annihilation occurs at the collision. Even for d = 0, there is a
transition from the pair annihilation to passing at F = 0.205
when F is increased as shown in Fig. 8(c).

Even in the case of no-flux boundary conditions, the col-
lision between the vortex and antivortex is important. At
d = 0.2 and K = 1, a single moving vortex disappears at
the boundary, which can be interpreted as the pair annihi-
lation of the vortex and antivortex locating at the mirror
image of the original vortex. For a smaller value of d , the
pair annihilation does not occur, and the two vortices with
different signs pass through each other at the boundary. Fig-
ure 9(a) shows the time evolution of x coordinate of the
vortex at d = 0.01 and F = 0.4. As an initial condition, one
vortex is set at the center of the 500×100 system. The single
vortex exhibits a reciprocal motion in the x direction. The
vortex of the positive sign moves in the x direction, and

FIG. 6. (a) Time evolutions of φ(i, j) at j = Ly/2 at F = 0.25 for K = 1 and d = 0.05. (b) Snapshot profile of (cos φi, j, sin φi, j ) at t = 220
before the pair annihilation. (c) Snapshot profile of (cos φi, j, sin φi, j ) at t = 240.

054211-4



VORTEX MOTIONS IN COUPLED PHASE OSCILLATOR … PHYSICAL REVIEW E 105, 054211 (2022)

FIG. 7. (a) Time evolutions of φ(i, j) at j = Ly/2 at F = 0.3 for K = 1 and d = 0.05. (b) Snapshot profile of (cos φi, j, sin φi, j ) at t = 175
before the collision. (c) Snapshot profile of (cos φi, j, sin φi, j ) at t = 180.

the sign change occurs at the boundary x = Lx and moves
in the −x direction. The y coordinate remains j = Ly/2.
Figure 9(b) shows the time evolution of φi, j for i = 100
and i = 300 at j = 74. When the vortex passes through
(i, Ly/2), φi, j jumps by π for j > Ly/2, and φi, j jumps by
−π for j < Ly/2. Figure 9(c) shows the average frequency
ω j = (1/Lx )

∑Lx
i=1{φi, j (10 000) − φi, j (5000)}/5000. There is

a jump in the average frequency ω at j = Ly/2. This implies
the desynchronization between the phase oscillators in the
upper region j > Ly/2 and the ones in the lower regions
j < Ly/2. The frequency ω is around 0.038 for i > Lx/2 + 1,
which is equal to the 2π/T , where T = 1645 = 2Lx/v is the
time for the reciprocating motion of the vortex between 0
and Lx. If φi, j = 0 and there is no vortex at t = 0, the desyn-
chronization does not occur until F = 1 for K = 1. Figure 9
implies that the existence of the vortex induces desynchro-
nization. If φi, j is interpreted to be the displacement in the
z direction, the desynchronization corresponds to the plastic
flow where the upper and lower regions of a solid move in the
opposite directions. The vortex motion plays an essential role
in the desynchronization, which corresponds to the dislocation
motion in the plastic flow in solids.

For larger F , the pair creation of vortices occurs frequently.
Figure 10(a) shows the time evolution of x coordinate of
vortices of positive or negative sign at d = 0.01, K = 1,
and F = 0.5. The number of vortices changes in time by
the pair creation and annihilation of vortices. Figure 10(b)
shows the time evolution of y coordinate of vortices. The
y coordinates change in time; however, they are distributed
near Ly/2. Figure 8(c) shows the average frequency ω j =
(1/Lx )

∑Lx
i=1{φi, j (10 000) − φi, j (5000)}/5000. Owing to the

phase slips by the vortex motion, ω takes a different value
between the upper and lower regions. The frequency profile
changes smoothly as a function of j in contrast to the sharp
transition shown in Fig. 9(c). This is because the vortex po-
sition is distributed around Ly/2, owing to the chaotic vortex
dynamics. The average frequency ω̄ calculated by the spatial
average of ω j for j > 3Ly/4 is evaluated at 0.0181 at F = 0.5.
On the other hand, the temporal average of the vortex number
is 5.18 at F = 0.5. Both the average frequency ω̄ and average
vortex number at F = 0.5 are around five times larger than the
case of F = 0.4. Figure 10(d) shows a relationship between
the average number N of vortices and the frequency ω̄ ob-
tained by changing F at K = 1 and d = 0.01. The dashed line

FIG. 8. (a) Time evolutions of φ(i, j) at j = Ly/2 at F = 0.27 for K = 1 and d = 0.05. (b) Stationary profile of (cos φi, j, sin φi, j ) at
F = 0.27. (c) Critical line below which the pair annihilation occurs in a parameter space (d, F ) K = 1.
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FIG. 9. (a) Time evolution of the x coordinate of the vortex at d = 0.01 and F = 0.4. (b) Time evolution of φi, j for i = 300 (solid line)
and 100 (dashed line) at j = 74. (c) Frequency ω j as a function of j − Ly/2 at F = 0.4 and d = 0.01.

is the linear approximation ω̄ = 0.035N , although there is no
mathematical analysis now. The frequency increases with the
vortex number because φi, j jumps by π for j > Ly/2 when a
vortex passes through a point (i, j0) satisfying j0 < j. In any
case, it has been shown that the vortex dynamics is directly
related to the frequency distribution of the phase oscillators.

III. COMPLEX DYNAMICS OF VORTEX
LINES IN THREE DIMENSIONS

A three-dimensional phase model of vortex dynamics is
expressed as

d2φi, j,k

dt2
= K

∑
i′, j′

sin(φi′, j′,k′ − φi, j,k ) − d
dφi, j,k

dt
+ fi, j,k,

(5)

where (i′, j′, k′) is the sixth-nearest-neighbor site of the
(i, j, k) site on the cuboid lattice of Lx × Ly×Lz. The no-flux
boundary conditions are imposed at i = 1, i = Lx, j = 1, Ly,
k = 1, and k = Lz. A vortex ring is set at j = Ly/2 as an initial
condition to study the dynamics of the vortex ring. The exter-
nal force is assumed to be fi, j,k = F at j = Ly, fi, j,k = −F at
j = 1, and fi, j,k = 0 for the other sites.

The numerical simulation was performed in a cubic lattice
of 80×80×80. Figure 11 is five snapshot patterns of the vortex

ring at t = 0, 10, 20, 30, and 40 in a cross section of j =
Ly/2 for K = 1, d = 0.3 and F = 0.3. Figure 11 shows the
time evolution that the vortex ring expands, collides with the
boundaries, and disappears at d = 0.3. Although the vortex
ring disappears at the boundaries for d � 0.05 at K = 1 and
F = 0.3, the reflection of vortex lines occurs for d < 0.05,
which is similar to the two-dimensional system.

Figure 12 shows numerical results at d = 0.03 and
F = 0.43. Figure 12(a) shows the time evolution of the total
number S of elemental square loops with nonzero vorticity.
Here, the elemental square loop is (i, j, k) → (i + 1, j, k) →
(i + 1, j + 1, k) → (i, j + 1, k) → (i, j, k), (i, j, k) →
(i, j + 1, k) → (i, j + 1, k + 1) → (i, j, k + 1) → (i, j, k),
and (i, j, k) → (i, j, k + 1) → (i + 1, j, k + 1) → (i +
1, j, k) → (i, j, k). The vorticity is calculated from the
summation of the phase difference:

∑
(φi′, j′,k′ − φi, j,k ) along

the elemental square loop. The summation takes 0, 2π , or
−2π , and the vorticity is defined by the summation divided by
2π . S is the total number of the elemental square loops with
nonzero vorticity. For F = 0.43 and d = 0.03, a fairly regular
oscillation of S is observed in the numerical simulation of
Eq. (5). The number S roughly represents the length of the
vortex ring. At the parameters, the vortex ring expands and
collides with the boundaries. The vortex ring is reflected at
the boundaries and shrinks. Figure 12(b) shows four half
rings moving toward the center at t = 525 after the reflection

FIG. 10. (a) Time evolution of the x coordinate of the vortex at d = 0.01 and F = 0.5. (b) Time evolution of the y coordinate of the vortex
at d = 0.01 and F = 0.4. (c) Frequency ω j as a function of j at F = 0.5 and d = 0.01. (d) Relationship between the average number of
vortices and the average frequency ω̄ obtained by changing F at K = 1 and d = 0.01. The dashed line is ω̄ = 0.035N .
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FIG. 11. Five snapshot patterns of the vortex ring at t = 0, 10,
20, 30, and 40 in the section of j = Ly/2 for d = 0.3 and F = 0.3.

at the boundaries. The four half rings collide with each other,
and a reconnection of vortex lines occurs between t = 525
and 530. Figure 12(c) shows a snapshot of the vortex lines at
t = 530 after the reconnection.

For larger F , creation and annihilation of vortex lines
occur, and the dynamics become chaotic. Figure 13 shows nu-
merical results at d =0.012, K =1, and F =0.5. Figure 13(a)
shows a snapshot of vortex line. Complicated vortex lines
are observed. Figure 13(b) shows the time evolution of S.
Chaotic time evolution of S is observed by the chaotic cre-
ation and annihilation of vortex lines. Figure 13(c) shows
of the frequency ω j = 1/(LxLz )

∑Lz

k=1

∑Lx
i=1{φi, j,k (1500) −

φi, j,k (750)}/750. The vortex lines are localized near j = Ly/2
and the frequency profile has a jump around j = Ly/2. The
average frequency takes almost the same value in the two re-
gions j > Ly/2 and j < Ly/2, and the profile of the frequency
changes rapidly near j = Ly/2. That implies that the upper
and lower regions are desynchronized because the phase slips
occur near j = Ly/2 by the vortex motion. Figure 13(d) shows
a relationship between S and the average frequency ω̄ for 55 �
j � 80 obtained by changing F for 0.35 � F � 0.5 at K = 1
and d = 0.012. The average frequency increases with S; that
is, the desynchronization develops with the multiplication of

vortex lines. Thus, we have found the desynchronization in-
duced by vortex lines even in the three-dimensional systems.

IV. CREATION OF VORTICES AND VORTEX
LINES BY IMPURITIES

It is known that impurities play an important role in
the dislocation motion and plastic flows in solids. In the
previous sections, we studied homogeneous phase oscillator
lattices. In this section, we study the effect of impurities in
the phase oscillator lattices. A two-dimensional phase oscil-
lator lattice with inhomogeneity in the coupling constant is
expressed as

d2φi, j

dt2
=

∑
i′, j′

Kr′,r sin(φi′, j′ − φi, j ) − d
dφi, j

dt
+ fi, j, (6)

where (i′, j′)’s are the four nearest-neighbor sites of the
(i, j) site on the square lattice of Lx×Ly, and Kr′r is the
coupling constant between the (i′, j′) and (i, j) sites. The
no-flux boundary conditions are imposed at i = 1, i = Lx,
j = 1, and Ly. In Sec. II, a single vortex or a pair of vor-
tices was set as an initial condition. In this section, we will
show the creation of vortices from a uniform state owing
to the impurities. Therefore, φi, j = 0 and dφi, j/dt = 0 are
assumed as an initial condition. The coupling constant Kr′,r
is 1 except for the impurity. We will show that a pair of
vortices is spontaneously created around the impurity when
F is increased. We have performed numerical simulations in
a system where the coupling constant Kr′,r locally takes a
different value from 1. Figure 14(a) shows the time evolution
of the total vortex number when the coupling constant is
0.2 in the circular region of (i − Lx/2)2 + ( j − 3Ly/4)2 < 9
at F = 0.75 and d = 0.4. The number of oscillators in this
circular region is 29. Figure 14(a) shows the time evolution
of the vortex number. A pair of vortex and antivortex appears
first at t � 1424 near i = Lx/2 and j = 3Ly/4 + 3, which is
the top site of the circular region, and the vortex number jumps
from 0 to two. The vortex moves to the right and disappears
at the boundary x = Lx, the antivortex moves to the left and

FIG. 12. Numerical results of the three-dimensional model at d = 0.03 and F = 0.43. (a) Time evolution of the total number S of elemental
square loops with nonzero vorticity. (b) Snapshot of vortex lines at t = 525. (c) Snapshot of vortex lines at t = 530.
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FIG. 13. Numerical results of the three-dimensional model at d = 0.012 and F = 0.5. (a) Snapshot of vortex lines at t = 750. (b) Time
evolution of S. (c) Frequency ω j as a function of j. (d) Relationship between S and the average frequency ω̄ for 55 < j < 80 obtained by
changing F for 0.35 � F � 0.5 at K = 1 and d = 0.012.

disappears at x = 0, and the vortex number becomes 0. After
a while, a new vortex pair is created again near i = Lx/2 and
j = 3Ly/4 + 3. The creation of the vortex pair and the anni-
hilation at the boundaries repeats periodically with period T .
Figure 14(b) shows the frequency ω = 2π/T of the oscillation
of vortex number as a function of F . The pair creation occurs
for F > 0.71 at d = 0.4, and the frequency increases contin-
uously from 0. The disappearance of the vortex and antivortex
at the no-flux boundaries is due to the large value of d . For
smaller d , the annihilation of the vortex at the boundaries
does not occur, and many vortices can be created, as shown in
Figs. 9 and 10. Figure 11(c) shows the chaotic time evolution
of the vortex number at F = 0.75 and d = 0.05 for the same
configuration of the coupling constant K .

In three dimensions, a vortex ring can be spontaneously
created in inhomogeneous systems. The three-dimensional
phase oscillator lattice with inhomogeneous coupling constant
is expressed as

d2φi, j,k

dt2
=

∑
i′, j′,k′

Kr′,r sin(φi′, j′,k′ − φi, j,k ) − d
dφi, j,k

dt
+ fi, j,k,

(7)

where (i′, j′, k′)’s are the six nearest-neighbor sites of the
(i, j, k) site on the cubic lattice of L×L×L, and Kr′r is the cou-

pling constant between the (i′, j′, k′) and (i, j, k) sites. The
no-flux boundary conditions are imposed at i = 1, i = L, j =
1, j = L, k = 1, and k = L. Similarly to the two-dimensional
system, φi, j,k = 0 and dφi, j,k/dt = 0 are assumed as an initial
condition. The external force is applied only at j = 1 and
j = L as fi,1,k = −F and fi,L,k = F as the shear stress, and
fi, j,k is set to 0 for the other sites. The coupling constant
Kr′,r is set to be 1 except for impurities. As an example,
Kr′,r is assumed to be 6 in a spherical region of (i − L/2)2 +
( j − 5L/8)2 + (k − L/2)2 < 25 for L = 80. The number of
oscillators in this spherical region is 498. The parameter d is
set to be d = 0.5.

Figure 15(a) is the time evolution of the total number S of
elemental square loops with nonzero vorticity at F = 0.9 for
d = 0.5. S represents roughly the length of the vortex ring.
A vortex ring appears near t = 650, the radius of the vortex
ring increases, and the vortex ring collides with the boundary
and disappears owing to the large value of d . The creation and
annihilation of a vortex ring repeat in time. Figure 15(b) shows
three snapshots of the vortex ring at t = 2190, 2220, and 2250.
The spreading process of the vortex ring is observed. The
creation of the vortex ring occurs for F � 0.685 at d = 0.5
and L = 80. Figure 15(c) is the frequency ω of the oscillation
of S when F is changed. The frequency increases continuously
from 0 at F � 0.685 at d = 0.5.

FIG. 14. (a) Time evolution of the vortex number at F = 0.75 and d = 0.4. (b) Frequency of the oscillation of vortex number as a function
of F at d = 0.4. (c) Time evolution of the vortex number at F = 0.75 and d = 0.05.
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FIG. 15. (a) Time evolution of S of the vortex ring at d = 0.5 and F = 0.9. (b) Three snapshots of the vortex ring at t = 2190, 2220, and
2250. (c) Frequency ω of the oscillation of S as a function of F for d = 0.5.

V. INTERACTION BETWEEN VORTEX
LINE AND IMPURITIES

It is known that impurities can trap a dislocation, and
impurities’ suppression of the dislocation motion can harden
the material in the theory of plasticity. We will show a nu-
merical simulation of the interaction of the moving vortex
line with an impurity region. The system size is L×L×L =
100×100×100. As an initial condition, a straight vortex line
is set at i = L/4 and j = L/2. The vortex line moves in the
x direction at F = 0.2 for d = 0.1. In a spherical impurity
region of (i − L/2)2 + ( j − L/2)2 + (k − L/2) < 9, the cou-
pling constant is assumed to be K (r′, r) = 6. In the other
region, the coupling constant is 1. Figure 16(a) shows the time
evolution of φ(i, j, k) at j = L/2 and k = L/2. φi, j,k exhibits a
jump at the vortex position. Figure 16(a) shows that the vortex
line moves in the x direction; it is once trapped in the impurity
region, and then the vortex line moves in the x direction again.
Figure 16(b) shows the time evolution of the total number S
of elemental square loops with nonzero vorticity. The vortex
line is deformed by being trapped in the impurity region, and
S increases. After the vortex line passes through the impurity
region, S decreases by recovering the straight vortex line. The
vortex line moves toward the boundary x = L and disappears.

A vortex ring remains around the impurity region, and S
keeps a nonzero value S = 32. Figure 16(c) shows the three
snapshots of vortex lines at t = 175, 300, and 400. At t = 300
(green), the vortex line is deformed by the impurity region,
At t = 400 (red), the deformed vortex line is split into a
vortex ring around the impurity region and a vortex line. This
trapping process of the vortex line is similar to the Orowan
mechanism in the dislocation theory. When the dislocation
line passes through an impurity region in solids, a dislocation
loop called the Orowan loop is left behind around the impurity
region, which is similar to the process shown in Fig. 16. The
Orowan mechanism is important because it is closely related
to the dispersion hardening of materials.

VI. SUMMARY

We have proposed a phase oscillator lattice with inertia
and studied the complex dynamics of vortex points and vortex
lines as an analog of the dislocation motion in solids under the
shear stress. We have numerically found various dynamical
phenomena. The vortex begins to move if the shear stress
is beyond a critical force, which corresponds to the Peierls
stress in the dislocation theory. We have numerically found
that the vortex exhibits a stick-slip motion for sufficiently

FIG. 16. (a) Time evolution of φi, j,k at the section of j = L/2 and k = L/2 for L = 100 at d = 0.1 and F = 0.2, and L = 100. The vortex
line is initially set at i = L/4 and j = L/2 and an impurity region of radius 3 is set at the center i = L/2, j = L/2, and k = L/2. (b) Time
evolution of the length S of the vortex ring at d = 0.1 and F = 0.2, and L = 100. (c) Three snapshots of the vortex lines at t = 175, 300,
and 400.
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small d . The pair annihilation of vortex and antivortex occurs
for large d and the vortices pass through for small d , when
F is fixed. There is a transition from the pair annihilation
to passing when F is increased for a fixed value of d . The
transition occurs even for d = 0. The passing phenomenon of
the vortex and antivortex is a finding in our model. Owing to
the passing phenomenon, a single vortex can exhibit a recip-
rocal motion in a system of the no-flux boundary conditions,
and the frequency jump appears on the line where the vortex
exhibits the reciprocal motion in the x direction. When F
is larger for small d , many vortex pairs are spontaneously
created, and chaotic behaviors appear. We have found that
the frequency jump at the phase slip region increases with the
number of spontaneously generated vortices. The desynchro-
nization induced by the vortex motion is the main result of
this paper. The desynchronization induced by the vortex lines
was also found in the three-dimensional oscillator lattices. The
desynchronization in the phase oscillator lattices corresponds
to the plastic flow via the dislocation motion in solids.

We have also studied the effect of inhomogeneity in the
coupling constant. A vortex pair or a vortex ring is periodi-

cally created around the impurity region even when the initial
condition is uniform. Finally, we have found that a vortex
loop remains after the vortex line passes through an impurity
region. This corresponds to the Orowan loop in the dislocation
theory.

Although our phase oscillator lattice model is much sim-
pler than the models studied in the dislocation theory, our
model can reproduce several important properties of disloca-
tion motions. Complex vortex dynamics can be more easily
studied in our model, which has not been studied well in the
dislocation theory.

We have numerically found various interesting phenomena
in the coupled phase oscillator lattices with inertia; however,
the theoretical understanding of the phenomena is not suffi-
cient. Since our model is a dynamical system of many degrees
of freedom, mathematical analysis is not easy. Even in a
system of a single or two vortices, there are nontrivial phe-
nomena such as the stick-slip motion and the transition from
the pair annihilation to passing. We would like to develop
some mathematical analyses of the model equation in the
future.
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