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Uncovering differential equations from data with hidden variables
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SINDy is a method for learning system of differential equations from data by solving a sparse linear regression
optimization problem [Brunton, Proctor, and Kutz, Proc. Natl. Acad. Sci. USA 113, 3932 (2016)]. In this article,
we propose an extension of the SINDy method that learns systems of differential equations in cases where
some of the variables are not observed. Our extension is based on regressing a higher order time derivative of
a target variable onto a dictionary of functions that includes lower order time derivatives of the target variable.
We evaluate our method by measuring the prediction accuracy of the learned dynamical systems on synthetic
data and on a real data set of temperature time series provided by the Réseau de Transport d’Electricité. Our
method provides high quality short-term forecasts and it is orders of magnitude faster than competing methods

for learning differential equations with latent variables.
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I. INTRODUCTION

Many branches of science are based on the study of dy-
namical systems. Examples include meteorology, biology, and
physics. The usual way to model deterministic dynamical
systems is by using (partial) differential equations. Typically,
differential equation models for a given dynamical system are
derived using a priori insights into the problem at hand; then
the model is validated using empirical observations. In an era
in which massive data sets pertaining to different fields of sci-
ence are widely available, an interesting problem is whether
it is possible for a useful differential equations model to be
learned directly from data, without any major modeling effort
required by the researcher.
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The SINDy method is an approach of sparse identification
of nonlinear dynamical systems that consists of linking the
dynamical system discovery problem to a statistical regression
problem [1-3]. The main idea of the SINDy method is to
consider a set of differential operators (possibly in both time
and space if appropriate), discretize them, for example by
using finite differences, and then regress the outcome of in-
terest on the discretized differential operators. By solving the
regression problem using an ad hoc thresholded least-squares
algorithm, they can build sparse, interpretable models, that
use mostly low order derivatives. The authors explored the
applicability of their method on simulated data, but only in
situations in which all the variables of the simulated models
are observed.

Our goal is to extend the SINDy model for the case
in which not all relevant variables are observed, that is, in
cases in which the main variable of interest depends on other
variables of which no measurements are available. As an
example of application we consider the climate time series
of the Réseau de Transport d’Electricité (RTE). RTE is the
main electricity network operational manager in France, who
is interested in understanding the behavior of climate time
series because of their impact on energy consumption. RTE
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uses high-level simulations of hourly temperature series to
study the impact different climate scenarios have on electricity
consumption, and hence on the French electrical power grid.
The underlying simulations are based on the Navier-Stokes
equations and include variables as wind velocity, density,
pressure, etc. The resulting dynamic system is known to be
chaotic, see [4]. For that reason, our goal is to learn a system
of differential equations that adequately models the dynamics
of the temperature time series if the only observable variable is
temperature, that is, if pressure, wind velocity, etc., are hidden
variables.

To accommodate the possibility of hidden variables we
note that, for a large class of dynamical systems, it is possible
to reconstruct a trajectory (equivalent to the original one)
given only one of the model variables, using its higher order
derivatives [5,6].

Related to our approach is the Generalized Polyno-
mial Modeling method (known as GPoMo), that addresses
the recovery problem via a combinatorial search among a
predefined set of polynomial functions of the observable vari-
ables [7] and [8]. The GPoMo method proceeds by choosing
iteratively a family of combination of terms that minimize
the Akaike or the Bayesian information criterion. Finally, it
returns the set of best models. The authors also discuss the
ability of their algorithm to find equations able to capture the
dynamics when only some variables are observed. However,
we will show that unfortunately this approach does not scale
to large problems. Other approaches for learning dynamical
systems from data available in the literature, such as those
based on symbolic regression [8], also have the drawback of
being too computationally expensive.

The article is organized as follows. In Sec. II we review
the GPoMo and SINDy methods and afterwards, describe
our methodology (named L-ODEfind) in detail. Section III
presents the results of our experiments. In particular, in
Sec. III B, we compare the performance of GPoMo and L-
ODEfind in recovering differential equations using empirical
data in the case in which all relevant variables are observed. In
Sec. III C we compare them in the harder case in which at least
one relevant variable driving the dynamical system is latent.
We apply our proposed method to real world temperature
times series in Sec. III D. Finally, in Sec. IV we discuss future
work and possible extensions.

II. METHODS

A. GPoMo: Differential equations recovery as a combinatorial
search problem

GPoMo is a method proposed and implemented by [7] that
addresses the differential equations recovery problem via a
combinatorial search in the space of differential equations that
can be expressed as polynomial functions of the observed
variables. The method uses a genetic algorithm in which at
each step new test models are generated by randomly choos-
ing some polynomial terms to be included in the equations.
This choice is made by making small variations (take or add
a few terms) over the best previously seen models. Then, to
select the winning models at each step, they are integrated and
compared to the original data.

This combination of combinatorial search and integration
steps makes the method slow (as we will see in the experi-
ments). Moreover, except for polynomial combinations of the
variables, it does not allow other types of regressors to be
included, such as functions of the time variable. To overcome
the aforementioned limitations of GPoMo, we based our ap-
proach on SINDy, which uses sparse regression to discover
governing physical equations from measurement data. We
briefly review the SINDy method in the following section.

B. SINDy: Differential equations recovery as a linear
regression problem

In our work we focus on ordinary differential equa-
tions even though SINDy can also tackle partial differential
equations. In particular, consider a dynamical system repre-
sented by functions fi(¢)... fu(t)... fu(¢) satisfying a set of
differential equations of the form

th:Uh(flv"'sfH’Eflv"'7Eva)’ (1)

where D, E are differential operators in the temporal variables
(t) and U : R’ — R¥ is an unknown map. Suppose we have
a series of T' equally spaced in time measurements, that is, we
observe fi(t;) iefl,...,T},hef{l,...,H}. An example
of a dynamical system we will study in this paper is the
classical Rossler system (2) [9]. This system was originally
designed to have similar properties and be simpler than the
Lorenz system [10] which was, at the same time, a simplified
model for atmospheric convection. The system is given by

d
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for constants «, 8, y. This system can be written in the
form (1) by taking £ = (f1, f>, f3), D = (d/dt,d/dt,d/dt),
and U= (U, U,,Us), where U;(vy, vy, v3) = —vy — v3,
Uz (v1, v2, v13) = v1 +avy and Us(vi, v2, v3) = B+ v3(v; —
y). For certain values of the parameters «, 8, p, the system
is known to have chaotic solutions [11,12].

Suppose now that we have access to a particular time series
that was generated by this system. Our objective is to find
some system of differential equations that can explain the
behavior of the measurements. The SINDy method works
by choosing a large dictionary of functions and regressing
discretizations of %, e, % on the dictionary. The dictio-
nary in question can be formed, for example, by collecting
polynomial powers of f,, h = 1, ..., H, spatial derivatives of
fi..., fu,and trigonometric functions of ¢. A concrete simple
example of such a dictionary in the case in which H = 1 is the
following:

A={t,1%,sin@), f1, 7. 11}

Of course in practice all derivatives are replaced by the cor-
responding finite differences taken from the measurements
represented in f. Having chosen a dictionary, we let A =
(Aq, ..., Ap) be the vector collecting all members of the dic-
tionary.
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Using the observations of the dynamical system, a re-
gression model can be fitted to find the combination of the
elements of the dictionary of functions that adequately ex-

plains the behavior of df' ,‘Z—‘t" That is, we look for a

vector of regression coefﬁc1ents ¢h = (Clhy - +»Cpn), such
thatforallh=1,..., H,
dfi(t) <o
TN ) cindi). 3)
i=1

The regression model has to be learned using the available
data. This regression problem could be solved in principle
using least-squares. However, the ordinary least-squares re-
gression estimator is ill-defined in cases in which the number
of predictor variables p is larger than the number of ob-
servations. Since the analyst is usually uncertain about the
number of elements in the dictionary needed to adequately
model the system of interest, the method used to solve the
regression problem at hand should allow for a large num-
ber of predictor variables (possibly larger than the number
of observations) and automatically estimate sparse models,
that is, generate accurate models that only use a relatively
small fraction of predictor variables. The Lasso regression
technique is perfectly suited for this task. The Lasso is an
£-regularized least-squares regression estimator, defined as
follows. For h =1, H, such that f}, is observable, we let

2
A . d
Cp = argming, g, Z ( dt];h () th nAi (ll)) + Allenll,
I
“4)

where A > 0 is a tuning constant, measuring the amount
of regularization. In practice, A is usually chosen by cross-
validation. It can be shown that the ¢, penalty encourages
sparse solutions and that the larger A > O the sparser the
solution vector ¢, will be. In fact, there exists a large body of
work studying the connection between £, penalties and sparse
estimation. For instance, assume that a linear regression model
relating outcome and predictor variables holds with a sparse
regression vector. More precisely, assume that the true regres-
sion vector has at most s nonzero entries, where slog(p) < n
and n is the total sample size. Then, if A is appropriately
chosen, under certain technical conditions, the solution to the
optimization problem in Eq. (4) will have approximately s
nonzero entries, and its estimation error in the £, norm will be
of order /slog(p)/n <« 1.[See Chap. 11 of [13] (in particular
Theorem 11.1) for the precise mathematical statement of these
results, and the rest of the book for a full treatment of the use
of Lasso and related methods for sparse estimation.] Note that
any other sparse regression technique could have been used
to estimate the coefficients. We prefer the Lasso due to its
simplicity and the wide availability of efficient algorithms to
compute it. See for example [14].

The main assumption behind this methodology is that the
dynamical system that generated the data at hand can, in real-
ity, be at least approximated using a sparse model, that is, that
the vectors ¢, in Eq. (4) are either exactly or approximately
sparse. This hypothesis is known to hold for several dynamical
systems of interest in different fields of science, see [2]. If the
hypothesis holds, we can expect the Lasso estimates to select

only a few elements of the dictionary, namely, those that do a
good job at explaining variations in the response variable [13].

It is important to notice that, even if the sparsity assumption
holds, there are no guarantees that the ODE found by the
algorithm will respect any motion integral of the system nor
that good coefficients would be found if the analyzed ODE is
near a discontinuity of the parametric map to solution. So, if
extra information of the studied system is known in advance
there is no way to introduce the proper constraint in the current
formulation.

n [1-3] the authors propose to use an ad hoc linear
regression estimator based on iteratively thresholding the
least-squares estimator, and applied this method only to first-
order systems. Through extensive numerical experiments,
they show that this methodology is able to learn systems of
partial differential equations that adequately model the dy-
namical system that generated the data. Unfortunately, if some
variables are latent, that is, if one is unable to measure at
least one of fi, ..., fu, the approach described above cannot
be used directly. Next, we describe a way of extending this
methodology to deal with the case in which some variables
are latent.

C. Our proposal: L-ODEfind

To accommodate the possibility of latent variables we note
that, for a large class of dynamical systems, it is possible
to reconstruct a trajectory (equivalent to the original one)
given only one of the model variables, using its higher order
derivatives [5,6]. Moreover, we recall that in the case of a
linear system of n ordinary differential equations there is
an equivalence between this multidimensional system and a
single differential equation of order n, which we can interpret
as latently including the information of the other n — 1 unob-
served variables. Reference [7] also makes use of higher order
time derivatives to deal with unobserved variables.

Based on these ideas, we propose to augment the method-
ology developed in [1-3] by choosing the target variable
to be a higher-order time derivative, to tackle situations in
which not all relevant variables are observed. We estimate the
coefficients of the dynamical system using the Lasso estima-
tor (4). As mentioned earlier, we chose to use the Lasso due to
its simplicity, the abundance of theoretical guarantees on its
performance [13] and the availability of efficient algorithms
to solve the convex optimization problem that defines the
estimator. The choice of the tuning constant A in Eq. (4) is
done by tenfold cross validation, using the LassoCV method
from sklearn [15] with a maximum number of steps equal
to 10%, and 100 candidate As. After estimating the regression
coefficients, we build a forecasting method by integrating the
retrieved differential equation. We call this method Latent
ODE find (L-ODEfind).

For instance, suppose we have observed a single time series
f (H = 1). If we choose as a target variable the third time
derivative and we use polynomial combinations up to degree 2
of the series and derivatives up to order 2 as regressors, Eq. (3)
becomes

d? a
D~y e 5)
i=1
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and

dft) d*f() df (1)

A 1, f,

d*f(t) df(t) d*f(t) df(t)d*f(t)

()

This regression model is then fitted using the Lasso (4), as
described earlier.

dt = dr? dt

D. Evaluation with predictions

Evaluating the equations found by these methods can be
challenging. The evaluation of a method that aims at recov-
ering the differential equation behind the observed data needs
to be done in different ways depending on the information
available.

In the case of a simulation where the coefficients of the
differential equation are known and the variables are fully
observed, the adjusted coefficients and the true ones can be
compared using the mean squared error (A, being the real
value and F; the forecasted value):

1 n
MSE(4, F) = ~ ;(E — A

If not all variables are observed, the adjusted coefficients
refer to a different differential equation that in most cases
cannot be obtained analytically (exceptions are, for instance,
linear ODE?5). In this case, the coefficients comparison cannot
be done and another way of evaluating the method is needed.
The same happens when working with real world data where
the differential equation behind is not known. In order to
evaluate a method in this context, we propose to split the
observed data in two (Fig. 3). The first part is used to fit the
differential equation. Then, by integrating the learned equa-
tion with initial condition taken from the end of the series used
for fitting, we obtain predictions for different time horizons
and compare them to the observed data (which was not used
for fitting). The comparison is made by using the symmetric
mean absolute percentage error (SMAPE) (regularly used in
forecasting competitions such as M3 [16] and M4 [17]) as it
allows a relative error comparison between predictions and
observations while penalizing equally both mistakes, under
and below, which is not the case for MAPE. Using a time
horizon of n, the SMAPE is defined as

SMAPE(A, F) = 1 >

n
t=1

|F — Al
(AN +1FED/2°

where A, is the real value and F; the forecasted value. If the
predictions made by method A are better (lower values of
SMAPE) than the ones made by method B, the differential
equation found by the method A is deemed better than the one
found by method B.

E. Implementation details

All the experiments in this paper were performed using
PYTHON 3.8, except for GPoMo, which was performed using
R 3.6 [18] and the GPoM package [19]. For L-ODEfind we
use our own PYTHON implementation (available at [20] ).

2
)

The integration of the differential equations was done using
ODEINT from the PYTHON Scipy library [21].

dt? dt 77 dt2 0 dt  dr?

(

II1. RESULTS

In this section we first compare L-ODEfind with GPoMo
for the problem of learning an ordinary differential equa-
tion with no hidden variables. Then, we compare the
performance of these methods in simulated systems with hid-
den variables and finally in temperatures series provided by
RTE.

A. Names abbreviation

The names abbreviation used in this section can be found
in Table 1. Target time derivative is the degree of the fitted
differential equation and poly degree is the maximum degree
of the polynomial combinations of the derivatives used as
regressors. An example of the regression problem with target
derivative 3 and poly degree 2 can be found in Eq. (5). Notice
that the number in the model name refers to the degree of the
differential equation.

B. Simulated data with fully observed variables

We compare the performance of L-ODEfind with that of
GPoMo for the task of learning an ordinary differential equa-
tion with no hidden variables. Note that since in this case
there are no hidden variables, our method coincides with
SINDy. The goal of this comparison is to highlight the fact
that, because L-ODEfind solves a continuous optimization
problem and GPoMo approximately solves a combinatorial
optimization problem, L-ODEfind can be orders of magnitude
faster that GPoMo.

We generated data using the Lorenz attractor equations:

dx ( )

— =o(y —x),

dr Y

dy

E—x(p—z)—y,

dz

i — Bz, 6
= Bz (6)

TABLE I. Models names abbreviations used in the graphics above.

Method Parameters Name
L-ODEfind Target derivative: 1, poly degree: 3 L-odefind1
L-ODEfind Target derivative: 2, poly degree: 3 L-odefind2
L-ODEfind Target derivative: 3, poly degree: 3 L-odefind3
GPoMo Target derivative: 2, poly degree: 3 GPoMo2
GPoMo Target derivative: 3, poly degree: 3 GPoMo3

054209-4



UNCOVERING DIFFERENTIAL EQUATIONS FROM DATA ...

PHYSICAL REVIEW E 105, 054209 (2022)

A aMS AL AMA. AAM
101
100 aat
) i A
s as A
10-!
1072 s+  GPoMo
L-ODEfind
101 102 103 104

Time (s)

FIG. 1. Comparison between L-ODEfind and GPoMo when
finding the coefficients of data generated by the Lorenz attractor
differential equations. We plot the average MSE across different
random initial conditions for the system, and the time (in seconds)
needed by the algorithm to fit the model.

using the coefficients 0 = 10, p = 28, and 8 = %, for 20 dif-
ferent random starting conditions, with distribution N O, 1).
The differential equation was integrated using a discretiza-
tion step of 0.01. Then, we fitted the resulting datasets using
GPoMo and L-ODEfind. For GPoMo we set a maximum
number of steps of 10240. We compare the true coefficients
of the differential equations with the ones found by each
model using as a metric the mean square error (MSE). All
the coefficients were taken into account for computing the
MSE, including the ones that are supposed to be zero. We
average the MSE corresponding to different random starting
conditions and report this as our goodness of fit metric.

Figure 1 shows that L-ODEfind method is nearly two
orders of magnitude more accurate than the best GPoMo
case. On the other hand, L-ODEfind is also orders of
magnitude faster, taking less than 10 s to compute accu-
rate approximations of the true coefficients while GPoMo
takes hours.

C. Simulated data with hidden variables

In this section we use three ODE systems, an oscillator,
and the Rossler and Lorenz systems, as examples to evaluate
and compare, using the methodology explained in Sec. II D,
the accuracy of several L-ODEfind and GPoMo models. For a
given differential equation, we generated time series of length
5000 points and integration step of dt = 0.01 for 20 different
initial conditions. Following the methodology described in
Sec. IID we fit each series with GPoMo or L-ODEfind and
then integrate the equation found in each case to predict the
values of the series for several time horizons and compute the
corresponding SMAPE. The number of maximum iterations
for GPoMo is set to 5120.

1. Example 1: Oscillator

We start by considering an oscillator, which is a first order
linear system of two variables. An equation of order two
involving only one of the variables can be derived. So, in
this case, the problem of having hidden variables can be ef-
fectively tackled by choosing a higher order time derivative
(order two) as the target.

We used the two variables oscillator equation which can be
written in general form as

a0)=( 2)0)

where x and y are the variables and a, b, ¢, d are the coef-
ficients of the linear equation that links the variable with its
derivatives. If we only had access to the variable x, this system
could be rewritten in a second order differential equation tak-
ing the form

d*x dx dx
W:(a+d)z—(ad—bc)x=ﬂ5+ax. (8)
In our experiments we set a =0.1,b=—1,c=1,d =
0 (¢ = —1, 8 =0.1) and we only observed the variable x so

the corresponding second order equation derived as in Eq. (8)
is 0.13—;‘ — x. We can see in Fig. 2(a) that using the second
derivative in time as a target gives the lowest prediction error

0.5 i 180
4 —e— GPoMo2
e + L-ODEfind1
v ) 60
0.4 o —=— |-ODEfind2
P
% 30
’
0.3 Vi T 10
" E
o ) F
»n0.2 b
/,V/
1
4
e 4 ol
v/ w o~ o ~
e F—— § ,E g
0.0 & b &
-
5 20 35 50 65 80 95 110 125 140 155 170 185 A 4
Time horizon steps
(a) Mean SMAPE versus time horizon. (b) Fitting time.

FIG. 2. Prediction accuracy and fitting time for L-ODEfind and GPoMo models when data come from the oscillator system with x as

observed variable (y hidden).
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Data for best L-odefind fit (SMAPE 0.001)

— true
—— L-odefind (SMAPE:0.001)
—— gpomo (SMAPE:0.042)

£
0 1000 2000 3000 4000 5000
Time horizon t
(a)
Data for best gpomo fit (SMAPE 0.010)
— true
—— L-odefind (SMAPE:0.005)
—— gpomo (SMAPE:0.010)
<
0 1000 2000 3000 4000 5000

Time horizon t

(b)

FIG. 3. Predictions for the oscillator system with x as observed variable. In black are the true data. To the left of the dotted line is the data

that was used for fitting the models (inferring the coefficients of the ODE). In orange are the GPoMo predictions and in blue the L-ODEfind

predictions.

for both GPoMo and L-ODEfind, as expected from Eq. (8).
We also see that the model found by L-ODEfind manages to
approach the true model much better than GPoMo as it main-
tains an SMAPE below 0.02 in horizons were GPoMo has
already arrived to 0.1. As an example to perceptually evaluate
the meaning of this lower SMAPE, in Fig. 3 the true data
and the GPoMo and L-odefind fits are shown. For both mod-
els we see that the predictions are almost indistinguishable

from the true solution with GPoMo sometimes falling slightly
apart.

When looking at the coefficients found by GPoMo
(¢ = —0.995 £ 0.004 and B = 0 £+ 0) and L-ODEfind (¢ =
—0.9997 £ 0.0003 and B = 0.0996 £ 0.0001) are within a
small tolerance the expected from Eq. (8). Finally, when look-
ing at the fitting time [Fig. 2(b)], we find that L-ODEfind is
around 50 times faster than GPoMo.

e GPoMo2

GPoMo3

L-ODEfind1
L-ODEfind2
L-ODEfind3

0.8

0.6

SMAPE
w

0.4 -

0.2

0.0

GPoMo2
GPoMo3

L) 35 65 95 125
Time horizon steps

155

(a) Mean SMAPE versus time horizon.

L-ODEfind1
L-ODEfind2
L-ODEfind3

185

(b) Fitting time.

FIG. 4. Prediction accuracy and fitting time for L-ODEfind and GPoMo models when data comes from the Rossler system with y as

observed variable (x and z hidden).
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—e— GPoMo2
081+ LoDEfind1 -
—— L-ODEfind2

—— L-ODEfind3 -
0.6

SMAPE

0.2

0.0

GPoMo3 =

/ 30

180

60

10

Time(s)

GPoMo2
GPoMo3

5 35 65 95 125 155
Time horizon steps

(a) Mean SMAPE versus time horizon.

L-ODEfind1
L-ODEfind2
L-ODEfind3

185

(b) Fitting time.

FIG. 5. Prediction accuracy and fitting time for L-ODEfind and GPoMo models when data comes from the Rossler system with x as

observed variable (y and z hidden).

2. Example 2: Rossler

Next, we consider a more complicated case, the Rossler
system, which is a nonlinear (quadratic) system:

dx

_ .

dt ¢

d

d—f:x—l—ay,

B yz—o) ©)
d[_ X C).

If only variable y is observed (x and z hidden) an equation of
order 3 and polynomial degree 2 can be deduced for y [22].

In our experiments, we set a = 0.52,b=2,c =4, and
only observe y (x and z latent). L-ODEfind is consistently
faster than GPoMo [Fig. 4(b)] although, in this example,
GPoMo3 and L-ODEfind3 have almost the same prediction
SMAPE [Fig. 4(a)]. Notice that the SMAPE is less than 0.2
for all models with target time derivative 2 or 3 up to 125 time
horizon steps.

Therefore, when considering systems where an analytical
solution can be deduced, such as the oscillator (x observed, y

hidden) and Réssler system (y observed, x and z hidden), both
methods perform very well in terms of SMAPE prediction.

Next, we consider the Rossler system in the case of variable
x observed (y and z hidden). In this scenario, there is no
analytical solution using only polynomials [22]. Interestingly,
we can see that using higher order time derivatives as target,
both GPoMo and L-ODEfind find a differential equation that
is able to provide predictions whose accuracy is comparable
(for short-term horizons) to the previous case (y observed)
where there was an analytical solution (Fig. 5). The fitting
times continue to show that L-ODEfind is consistently faster
than GPoMo.

3. Example 3: Lorenz attractor

Here, we consider the Lorenz system [10], discussed in
Sec. III B, where no differential equation using only polyno-
mials can be derived for x as the only observed variable.

Following the same methodology as before, we tried dif-
ferent target derivatives for both GPoMo and L-ODEfind to
fit observed variable x (y and z served). We found that us-
ing higher order time derivatives (in particular second order)
helps to find models that can approximate better the observed
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FIG. 6. Prediction accuracy and fitting time for L-ODEfind and GPoMo models when data comes from the Lorenz system with x as

observed variable (y and z hidden).
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FIG. 7. SMAPE and fitting times for different models applied on a real world data set of temperatures.

time series when integrated, although the prediction accuracy
suffers from the added complexity of the problem (Fig. 6).
As a consequence, the accuracy degrades faster reaching
SMAPE = 0.5 as soon as 35 time steps while in the previous
cases this was attained around 185 steps. For a narrow dif-
ference again, L-ODEfind outperformed GPoMo while also
keeping fitting times 4 to 40 times faster than GPoMo.

D. Temperature series provided by RTE

In this section, we fit different models to temperature series
provided by the Réseau de Transport d’Electricité (RTE). The
data consist of 200 hourly measured temperatures time series.
These time series correspond to temperatures in Paris along a
year for 200 different possible years or scenarios. The time
series are not measured temperatures nor the output of a
simulation, but rather the result of a reanalysis process. Also,
some relevant variables for modeling the atmospheric system
are not available to us, for instance, wind and pressure. Our
temperature time series are not historical measurements but
can be thought as a possible realization of the temperature in
Paris. These temperature time series have 365 x 24 = 8760
time points.

In order to evaluate the methods, we select 39 out of the
200 temperature time series (due to GPoMo’s computation
time), fit the different models and use them to predict for
short time horizons. The fit was done with the first 8560 time
points and the prediction was evaluated with the following
time points (up to a time horizon of 15 time points).

In tackling this complex problem we want to analyze
the performance of L-ODEfind and GPoMo in the forecast-
ing task and compare their behavior to classical forecasting
methods naive predictor (for every time horizon, predicts the
average of the last 24 time points) and exponential smoothing
(ES) (triple exponential smoothing with an additive seasonal
component!).

"We used the implementation available in the PYTHON library sk-
time [23].

In Fig. 7 the SMAPE of the prediction for different time
horizons in hours is displayed. L-ODEfind2 gives the lowest
SMAPE for time horizons lower or equal to 6 h, whereas
GPoMo3 is better for time horizons greater than 6 h. Notice
that for time horizons greater than 6 h, the naive predictor
performs better than exponential smoothing, giving a rough
idea of the reasonable predictability horizon that forecasting
methods can give. In any case, both L-ODEfind and GPoMo
give better forecasts than both ES and naive when the tar-
get derivative is 3. As can be seen in Fig. 7(b), the fitting
times for GPoMo are much greater than L-ODEfind, whereas
L-ODEfind and exponential smoothing have similar fitting
times.

IV. DISCUSSION

In this paper we addressed the problem of recovering
differential equations from data where not all variables are ob-
served by enhancing the approach outlined in [1]. After testing
it in simple and complex ODE systems, we consistently found
that the proposed method of using time derivatives of higher
order as target regressing variables allows to find models
whose future predictions are more reliable than only using first
order derivatives. We also compared our method to GPoMo
and found that: (i) our proposal is orders of magnitude faster
that GPoMo, and (ii) our proposal learns models with compa-
rable or even higher prediction accuracy for several dynamical
systems. Finally, we faced the challenge of addressing a
real world problem and found that both L-ODEfind and
GPoMo used as forecasting methods gave comparable results
while at the same time outperforming classical forecast-
ing methods, exponential smoothing and naive. In summary,
L-ODEfind proved to be an accurate and fast method for re-
covering ordinary differential equations from data with hidden
variables.
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