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Corrected Maslov index for complex saddle trajectories

Huichao Wang and Steven Tomsovic
Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA

(Received 11 August 2021; accepted 4 April 2022; published 17 May 2022)

Saddle-point approximations, extremely important in a wide variety of physical contexts, require the analytical
continuation of canonically conjugate quantities to complex variables in quantum mechanics. An important
component of this approximation’s implementation is arriving at the phase correction attributable to caustics,
which involves determinantal prefactors. The common prescription of using the inverse of half a certain
determinant’s total accumulated phase sometimes leads to sign errors. The root of this problem is traced to
the zeros of the determinants at complex times crossing the real time axis. Deformed complex time contours
around the zeros can repair the sign errors that sometimes occur, but a much more practical way is given that
links saddles back to associated real trajectories and avoids the necessity of locating the complex time zeros of
the determinants.
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I. INTRODUCTION

Asymptotic analyses of linear wave equations give ex-
tremely powerful, quantitative methods of approximation
in many fields of physics. They are often called short
wave or eikonal approximations for acoustic and elec-
tromagnetic waves [1,2], where they enable an approx-
imate construction of propagating waves or eigenmodes
using rays. In quantum mechanics, they often go by the
names Wentzel-Kramers-Brillouin (WKB), Jeffreys-Wentzel-
Kramers-Brillouin (JWKB), Einstein-Brillouin-Keller (EBK),
semiclassical, or saddle point methods (h̄ → 0 or N → ∞ for
bosonic systems) [3–12], where the approximation to eigen-
functions and the propagation of wave functions are built from
classical trajectories.

In the implementation of these methods for practical appli-
cations, perhaps the most subtle part is the phase adjustment
due to encounters with caustics, where trajectories (or rays)
pass through singularities in the prefactor that weights the
contributions, i.e., the inverse square root of a determinant
that vanishes. In the context of quantum mechanics, where
the phase change is governed by what is typically called the
Maslov index, a great deal has been written on this sub-
ject. For example, there are notable works by Keller [8],
Maslov and Fedoriuk [9], Gutzwiller [13], and Littlejohn and
co-authors [14]. In the context of the stationary phase ap-
proximation applied to Feynman path integrals, which in its
simplest form generates the Van Vleck-Gutzwiller propagator
[15] approximation to the time-dependent Green’s function
for the Schrödinger equation, Schulman connects the index to
Morse theory [16]. To quote Keller [8]: “the prefactor’s phase
is retarded by mπ/2 on a trajectory which passes through a
caustic on which the determinant vanishes to the mth order.”
The Maslov index ν is therefore just the sum of these m
integers for all of the caustics a trajectory passes through
in its full history. The end result is that the absolute value
of the prefactor’s inverse square root of a determinant gets

multiplied by exp(−iνπ/2), and the index can be considered
to be defined modulus four [17].

Far less has been written about this issue for semiclassical
approximations of quantum dynamics based on Glauber co-
herent states [18] or Gaussian wave packets [17,19], although
they appear in an extremely wide variety of physical contexts
[20–26]. In the former, one is making a semiclassical approx-
imation to a coherent-state representation of a path integral
[10,11], and in the latter, one is carrying out the so-called
generalized Gaussian wave-packet dynamics (GGWPD) ap-
proximation, which is proven equivalent to a complex version
of time-dependent WKB theory [19]. The underlying mathe-
matics can be expressed in an essentially identical form for
these two very different physical contexts. Both necessitate a
saddle-point approximation instead of a stationary phase one
and require complex trajectories. For a typical saddle trajec-
tory the determinant, being complex, never vanishes. Instead,
the phase just accumulates, and for the most part the correct
phase for the prefactor is the inverse of half the determinant’s
total accumulated phase [11,19]. As such, there appears to
be no need to discuss a Maslov index. Nevertheless, it is
helpful to translate the phase calculations into a Maslov index
approach upon which later sections of this paper rely. By
calculating the determinant’s total accumulated phase angle
modulo π , its square root is brought into the first quadrant, call
that phase θ . The integer number of π being dropped in the
process becomes the index ν, which gives a multiplying phase
of exp(−iνπ/2) for the prefactor multiplied by exp(−iθ ).
Implicit in this definition is that the modulus operation is
defined to be the one that leaves a positive remainder even
for negative numbers.

It turns out that the half-the-total-accumulated-phase pre-
scription sometimes gives an error in the phase index for
complex trajectories, whether or not one is thinking in terms
of a Maslov index, and therefore there is more to the full
theory of the phase. In the development of semiclassical
coherent-state dynamics in the context of the Bose-Hubbard
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model [27], although not stated there, occasionally as a func-
tion of time, a saddle contribution would mysteriously and
discontinuously change sign. The purpose of this paper is to
point out how to resolve this problem and give a corrected
Maslov index for such cases.

The structure of this paper is as follows: The next sec-
tion introduces notation, a bit of background information,
such as the relevant determinants, and a very simple dy-
namical system used to illustrate the main ideas. Section III
discusses how the phase becomes incorrect and then shows
how to repair the index, both in an ideal way and in another
rather practical way. This is followed by a short concluding
section.

II. BACKGROUND

It is helpful to give explicit expressions for the deter-
minants that show up in the semiclassical approximation
applied to Glauber coherent states and Gaussian wave packets.
The mathematics can be made to appear essentially iden-
tical through the application of quadratures, and repairing
the Maslov index is the same in either context. The discus-
sion is presented for wave packets, but the main idea carries
over immediately to coherent states. The most interesting dy-
namical applications are to multi-degree-of-freedom systems,
however, for the purposes of this paper, it is sufficient to
illustrate the process with a simple one-degree-of-freedom
example, which is taken to be the purely quartic oscillator. The
correction necessary extends immediately to multi-degree-of-
freedom systems.

A. Coherent states

A Glauber coherent state describing a bosonic many-body
system takes the normalized form

|z〉 = exp

(
−|z|2

2
+ zâ†

)
|0〉. (1)

Two quantities that are often useful are the overlaps of its
evolved form |z(t )〉 with some coherent-state bra vector,
〈z′|z(t )〉 (coherent state path integral matrix element), or
projection onto quadrature variable bra vector eigenstates,
〈x|z(t )〉. The saddle-point approximation of either of these
quantities results in a multiplication of the inverse square root
of complex-valued determinants. Using quadratures, these
quantities can be made to look identical to forms arising with
Gaussian wave packets [18] whose determinants are given
ahead; see Ref. [28], the first of this pair of papers. One dis-
cussion of the parameter mapping between them can be found
in Appendix A of Ref. [29]. Roughly speaking, the com-
plex parameters of z can be mapped onto pseudo-momentum
and -position centroids, and the ground state links the shape
parameters.

B. Gaussian wave packets

A normalized, multidimensional Gaussian wave packet
may be parametrized as follows (α labels the entire set):

φα (�x) = N0
α exp

[
−(�x − �qα ) · bα

2h̄
· (�x − �qα ) + i �pα

h̄
· (�x − �qα )

]
,

(2)

where

N0
α =

[
Det(bα + b∗

α )

(2π h̄)N

]1/4

exp
( i

2h̄
�pα · �qα

)
. (3)

The subscript α is a label for the parameters that define
the particular wave packet, �x is the position variable for the
quantum system, and (�q, �p ) are the canonically conjugate
position-momentum phase-space variables for the analogous
classical system in ordinary Schrödinger quantum mechanics
of single or few particles. The phase convention chosen here
corresponds exactly to the coherent state of Eq. (1) projected
onto a quadrature variable. The real centroid is given by
(�qα, �pα ) and the variances and covariances determined by the
symmetric matrix bα (if bα is complex, the wave packet has a
chirped phase dependence). This form has the advantage that
h̄ does not explicitly appear in the equations that define the
saddle’s two point boundary conditions.

It also leaves the overall shape of its Wigner transform
independent of h̄, other than the volume (overall scale). The
result is

W( �p, �q )

= 1

(2π h̄)N

∫ ∞

−∞
d�x ei �p·�x/h̄φα

(
q − �x

2

)
φ∗

α

(
q + �x

2

)

= (π h̄)−N exp

[
−( �p−�pα, �q − �qα ) · Aα

h̄
· ( �p − �pα, �q − �qα )

]
,

(4)

where Aα is

Aα =
(

c−1 c−1 · d
d · c−1 c + d · c−1 · d

)
, Det[Aα] = 1, (5)

with the association

bα = c + id. (6)

The 2N × 2N dimensional matrix Aα determines the shape
parameters; h̄ is seen to enter only as a scale in Eq. (4). Aα

is real and symmetric. If bα is real, there are no covariances
between �p and �q. The off-diagonal blocks of the matrix Aα

disappear.
Note that a matrix element of the coherent-state path inte-

gral could be expressed in quadratures as

Aβα (t ) =
∫ ∞

−∞
d�x φ∗

β (�x)φα (�x; t ) (7)

and which could be thought of as a transport coefficient for
wave packets. If β = α, it would be a diagonal element or a
return amplitude.

C. The determinants of interest

The saddle trajectories are found using Hamiltonians
analytically continued for complex canonically conjugate
variables denoted with a calligraphic font (p, q). Using the
definition of a trajectory’s stability matrix(

δ�pt

δ�qt

)
=

(
M11
M21

M12
M22

)(
δ�p0

δ�q0

)
, (8)

the determinants of interest are as follows: For the semiclassi-
cal approximation to the time-dependent Green’s function (the
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Van Vleck-Gutzwiller propagator), the Van Vleck determinant
is given by

D0 = Det(−M21), (9)

where the propagator has a multiplicative factor D
−1/2
0 and the

trajectory used to generate the stability matrix is real as well
as D0. For propagating a wave packet or coherent state, the
appropriate determinant becomes

D1 = Det(M22 + iM21 · bα ), (10)

and the trajectory used is almost always complex, as is the de-
terminant D1. Similarly, for the semiclassical approximation
to a coherent-state path integral matrix element or wave-
packet defined transport coefficient, the determinant turns out
to be

D2 = Det[M11 · bα + b∗
β · M22 + i(b∗

β · M21 · bα − M12)],

(11)

which is again complex in general. The phase index of con-
cern in this paper originates from either D

−1/2
1 or D

−1/2
2 .

D. The purely quartic oscillator

The one degree of freedom purely quartic oscillator has a
number of simple features that makes it ideal for illustrating
how to correct the phase index for complex determinants.
Setting h̄ = m = 1, its Schrödinger equation is given by

i
∂

∂t
φ(x; t ) =

(
− ∂2

2∂x2
+ λx4

)
φ(x; t ). (12)

The corresponding analytically continued Hamiltonian takes
the form [complex (p, q)]

H (p, q) = p2

2
+ λq4, (13)

where λ = 0.05 is the value taken for all the illustrations
shown in this paper. Being homogeneous, there are simplify-
ing scaling relations between trajectories on different energy
surfaces [30]. They provide convenient checks on various
calculations.

The potential generates nonlinear Hamiltonian equa-
tions that lead to sufficiently complicated behavior for our
purposes. There is a shearing behavior in the dynamics trans-
verse to the energy surface, and at any given time, there is an
infinity of saddle solutions [28], only a handful of which are
physically relevant (neither on the wrong side of Stokes lines
nor with imaginary classical actions so large as to contribute
negligibly). Here, the focus is exclusively on the physically
relevant saddle trajectories.

III. REPAIRING THE MASLOV INDEX

The need to look deeper into the phase index was first re-
alized by a problem that arose in developing the semiclassical
method for Glauber coherent states governed by the Bose-
Hubbard Hamiltonian [27]. The problem was then reproduced
in a different way with the much simpler quartic oscillator,
where it was easier to analyze fully. We start by illustrating
the issue.

-0.004

-0.002

 0

 0.002

 0.004

 0.6  1  1.4  1.8
t

A(t)Re

FIG. 1. The real part of A(t ) for one particular saddle family;
the envelope is the absolute value. There is a faster phase oscillation
at short times decreasing as time increases corresponding to changes
in the complex saddle trajectory. At short times, the real parts of the
saddle trajectory’s energy are greater than the wave packet’s energy
expectation value, and at longer times they are less. The saddle
family’s peak contribution occurs near where the two are equal.

A. What goes wrong?

The issue presented below is a general problem that can
arise whatever the number of degrees of freedom or the nature
of the dynamics, be it regular or chaotic. Consider a transport
coefficient, Aβα (t ), with the parameter set β = α and drop the
subscript in the notation; this involves a D2. For continuous
time dynamical systems, each saddle found at some given time
gives rise to a one parameter family of saddles labeled by time.
As t changes continuously, the saddle trajectory’s initial con-
ditions change continuously as well. Barring orbit bifurcations
and crossing Stokes surfaces (which becomes exceedingly
unlikely in the h̄ → 0 limit), this one parameter family gen-
erates a continuous contribution to A(t ). A typical example
was given in Ref. [29] and is reproduced here; see Fig. 1.
Generally speaking, for an A(t ) there is a peak contribution
time for a saddle family corresponding to a saddle trajectory
possessing an energy close to that of the wave packet. Earlier
and later in time, the saddle trajectory moves further away
from this energy and the contribution decays, thus creating a
time window in which it contributes significantly.

In Ref. [27] for the Bose-Hubbard model, the majority of
the saddle families produced contributions to A(t ) that were
continuous and well-behaved as in the example of Fig. 1.
However, sometimes a family’s contribution was observed
to change sign discontinuously at some particular time, t0,
i.e., acquires an unnecessary extra phase exp(±iπ ) (or ν an
extraneous ±2). Discontinuities are unphysical and require
correction. We emphasize that for each particular time t there
is a unique saddle trajectory that has its own evolution from
0 to t . The saddle trajectory for t1 = t0 − δt has its determi-
nant’s phase followed continuously up to t1. Likewise, the
saddle trajectory for t2 = t0 + δt has its determinant’s phase
also followed continuously, and yet there is a discontinuous
jump between the two.
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FIG. 2. Contribution to the evolution of a wave packet from a
single continuous family of saddles as a function of position; the
saddles are linked to a classical foliation of real initial conditions
labeled by 7© in Fig. 5 ahead. The initial wave packet, Eq. (2),
is centered at (qα, pα ) = (0, 20) of width parameter bα = 32 and
propagated with Eq. (12). The propagation time is equal to 3τ where
τ is the period of motion for the centroid initial condition (qα, pα ).

To track down what causes the discontinuous sign flip, it
is simpler to consider an evolved wave packet φ(x, t ) for the
quartic oscillator. The prefactor involves a D1, and an example
of a sign discontinuity is shown in Fig. 2. The Maslov index
is created by continuously following the total phase accumu-
lation for each saddle individually modulo π and counting the
integer number of π dropped in the process as described in
the introduction. Despite following the phase accumulation
continuously, the index is off by 2 (modulo four) for all the
saddles to the left of the abrupt sign flip in one saddle family’s
contributions to φ(x, t ) labeled with the subscript 7©, i.e.,
φ 7©(x, t ).

The determinant of interest, D1, for any real trajectory
has a phase that evolves in time by rotating counterclockwise
around zero. See the illustration of this in the left panel of
Fig. 3, which follows the phase accumulation for a real initial
condition up to a time t = 3τ . However, there is a critical
complex saddle trajectory associated with the discontinuity
in Fig. 2 for which D1 = 0 at some time during its past; see
the right panel of Fig. 3. This creates an uncertainty about
its phase accumulation. For saddles to the left of this critical
saddle in Fig. 2 the total phase accumulation curve passes
to the left of zero in the neighborhood of where D1 almost
vanishes, whereas for those saddles to the right of the critical
saddle, the phase curve passes on the right side of zero. The
saddles just to the left acquire 2π less total phase than those
just to the right. Hence, the discontinuous sign flip in the
semiclassical contribution labeled φ 7©(x, t ).

B. Complex time paths

Generally speaking, the zeros of D1 are found at complex
values of the time t . This is illustrated in Fig. 4. The location
of the zeros are shown for 3 values of the position in the
wave function, x ≈ −1.9, 0, 1.9. For the point x = 0.0, this
example was designed so that the saddle trajectory’s initial
conditions coincide with the wave-packet centroid (qα, pα )
since t = 3τ and qα = 0. Therefore, its D1 wraps exclusively
counterclockwise around zero exactly as in the left panel of
Fig. 3. The zeros of its D1 are all found above the Im(t ) = 0

100
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100-
-1 0 1
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Im

D1

D1

100

50

0

50-

100-

ImD1

-1 0 1
ReD1

FIG. 3. The evolution of the total accumulated phase for a time
t = 3τ . In the left panel, the real and imaginary parts of D1 are
plotted for all times 0 � t � 3τ . Real trajectory initial conditions
are used. At t = 0, the D1 curve starts at the point (1,0) and proceeds
always in a counterclockwise direction as time increases up to the
final time 3τ . In the right panel, the phase for the critical saddle
begins similarly, but the complexification of the stability matrix
elements generates a point at which D1 = 0.

axis and are the central points between arrows. The total
accumulated phase always increases and, hence, the Maslov
index never drops with increasing time. To locate the zeros for
x ≈ 1.9 follow the up arrows; i.e., the zeros have all moved
upward and the Maslov index for the x ≈ 1.9 saddle also
always increases exactly like the x = 0.0 case.

0.001 τ

Im(t)

0.0005 τ

0

zeros of D1

τ 2τ 3τ
Re(t)

FIG. 4. The location in time of zeros for three saddles from
foliation 7©. The middle zero at each of the arrows’ origination point
is for x = 0.0. Following the up arrows are the zeros for x = 1.9008,
and likewise, following the down arrows x = −1.9008. For this latter
point, the zero a bit before t = 2τ has just crossed the real axis, the
point x = −1.9008 is just to the left of a sign flip. The next zero is
very close to crossing, but has not yet. A small further decrease in
the x value leads to a second sign flip. There is one zero not pictured
for 0 � t � τ , but its imaginary value is quite large and positive too
high to be seen on the figure’s scale.
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However, the zeros for the x ≈ −1.9 case all drop and are
found at the end of the down arrows. Just before t = 2τ , one
of its zeros has crossed the Im(t ) = 0 axis. To the left and right
of x ≈ −1.9, there is a discontinuous change of 2π in the total
phase accumulation (for a saddle of x > −1.9, there is 2π

greater phase accumulation than for x < −1.9). Thus, there is
a discontinuous sign change in the saddle family contributions
to the propagated wave function exactly as pictured in Fig. 2,
and the Maslov index drops by two as x decreases across the
discontinuity. Therefore, it is possible to end up on the wrong
branch of the square root of the relevant determinant following
a real time propagation path if one is just accumulating the
total phase and taking half the inverse. This is rectified by
deforming the t integration contour in this neighborhood to
negative imaginary times such that the contour runs beneath
the zero that has crossed the Im(t ) = 0 axis. Knowledge of the
location of all the pertinent zeros and appropriately deforming
the time contour leads to the corrected Maslov index.

C. A practical approach

It is quite impractical, especially for multi-degree-of-
freedom systems, to be required to develop complex time
evolution and locate the zeros of the determinant of interest for
all the saddles. For physically relevant saddles, there are ways
of avoiding complex time entirely. We give one such rather
practical prescription here that relies on continuity and param-
eter variation. This prescription depends on a classification
of the saddles into two groups, exposed and hidden saddles
[28]. The exposed saddles correspond to classically allowed
processes, and the hidden saddles correspond to classically
nonallowed processes, such as tunneling.

1. Exposed saddles

Basically, exposed saddles can be located by using
Newton-Raphson search schemes whose initial seeds are real
trajectories’ initial conditions corresponding to distinct clas-
sically allowed pathways (transport) [29,31–37]. The Wigner
transform is especially useful for this purpose [28]. For the
initial wave-packet example defined in the Fig. 2 caption,
the Wigner transform is illustrated in Fig. 5 by showing the
ellipses corresponding to the σ, 3σ, 5σ contours of the result-
ing Gaussian functional form. These ellipses are propagated
for a time 3τ and result in the collapsed distorted spirals also
plotted. Consider the 5σ spiral (the most extended one). It
can be subdivided into nine foliations or groups of classical
trajectories that are somewhat similar; for example, foliation
7© contains the central orbit whose initial condition is (qα, pα ).

It consists of other trajectories that have similarly made ap-
proximately three full cycles of the motion, whereas foliation
9© contains orbits that have completed approximately four full

cycles of the motion. The boundaries between the foliations
are best located at the classical turning points of the motion
for this case. Each foliation can be used to generate a unique
saddle at a given point x by a Newton-Raphson search scheme,
and therefore a continuous family of saddles (as a function of
x) can be labeled the same as the foliation.

The key idea is that there must be consistency in sign
between the result for a saddle associated with some foliation
and the sign one would arrive at by making use of the real

−10 −5 0 5 10
q

−40

−20

0

20

40

p

7

6

8

9

5

4

t = 3τ

1σ

3σ
5σ

FIG. 5. Illustration of distinct classical transport pathways. The
vertically oriented ellipses are contours of the Wigner transform of
the initial wave packet defined using a single degree of freedom
version of Eq. (2) and the parameters given in the Fig. 2 caption.
They are propagated classically for three periods of motion of the
centroid, and they generate the distorted spirals. The 5σ contour can
be divided into nine foliations, a trajectory member of which can be
used to generate initial conditions for a Newton-Raphson scheme to
locate unique saddles. The blackened dots show the locations of the
real parts of the nine associated saddles’ complex final phase-space
points contributing to φ(x = 0, t ) (the initial conditions follow by
back propagating a time 3τ ).

trajectories of the same foliation. In other words, the Van
Vleck-Gutzwiller propagator relying on real trajectories of
that foliation could be used to evaluate a contribution to, say
an Aβα (t ) or φ(x, t ), and that must give a consistent result
with using the true saddle approximation relying on complex
saddle trajectories.

There are many reasons to expect this consistency, one of
which is that shrinking the width of the wave packet makes
it approach a position eigenstate in a continuous way and
φ(x, t ) → G(x, qα; t ) in the limit of vanishing width. Put more
simply, the stability matrix of the associated real trajectory re-
lied upon to locate the exposed saddle in the Newton-Raphson
search scheme could be used to calculate the total phase
accumulation of D1 or D2, and thereby deduce the corrected
Maslov index.

As one would anticipate, it turns out that the stability
matrices of the real trajectories and their associated saddles
are very closely related. In fact, their real parts are nearly
identical. See Fig. 6 for an illustration of the matrix elements
contributing to D1. Likewise, the imaginary parts of the
saddle’s stability matrix elements are very small at the final
propagation time (to be compared with the real trajectory
having no imaginary part), but at intermediate times can be
a bit larger; see Fig. 7. In this case, the imaginary parts are
approximately two orders of magnitude smaller than the real
parts at intermediate times, and even much smaller by the
endpoint in time at 3τ . Nevertheless, these small imaginary
parts of M22 and M21 (it is multiplied by bα) can be sufficient
to reverse the rotation sense of D1 from counterclockwise (as
for the real trajectory used to find the saddle) to clockwise.
Indeed this happens for foliation 6©. Figure 8 shows how it
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0
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2
Foliation 8

Re M22

real trajectory
  saddle

τ t 2τ 3τ

0 τ
−5

0

5

t

real trajectory
saddle

Re M21

2τ 3τ

FIG. 6. The real parts of M22 and M21 for the saddle of foliation
8© at x = 0 and its associated real trajectory. If the stability matrix

elements were not so similar, the Newton-Raphson search for the
saddle could not converge since they are essential to the method.

begins by rotating counterclockwise, but after half a cycle
of motion reverses rotation sense for the remainder of the
propagation. It ends up very nearly at the same final point,
as it must, but generates a Maslov index which differs from
its related real trajectory by eight. Keeping in mind that the
Maslov index modulo four generates the same phase, the quite
different indices in this case actually generate the same overall

Foliation 80.05

0.00

-0.05

Im M22

0 τ 2τ 3τt

Foliation 60.05

0.00

-0.05

Im M22

0 τ 2τ 3τt

FIG. 7. The imaginary parts of M22 for the saddles of foliations
6© and 8© at x = 0. For the associated real trajectories, the imaginary

parts vanish for all times. The stability matrix elements’ imaginary
parts using the saddles are orders of magnitude smaller than the real
parts of Fig. 6. As noted the saddle of foliation 7© is equivalent to
its associated real orbit, and its imaginary parts have vanished for
this case. Foliations 6© and 8© are the closest neighboring foliations
on opposite sides. Their stability matrix elements’ imaginary parts
are reflected, which is a trend that continues. All the lower energy
foliations possess an Im(M11) that goes negative first, which is the
opposite of the higher-energy foliations.

−100

−50

0

50

100 Foliation 6

Im D1

Re D1
-1 0 1

FIG. 8. Rotation sense of the total accumulated phase of the
foliation 6© (x = 0) determinant D1. For roughly half a cycle of
the motion it rotates counterclockwise, and then reverses itself to a
clockwise rotation sense for the remainder of its propagation. Never-
theless, its final point is very close to the final point of its associated
real trajectory, which rotated exclusively counterclockwise.

phase, but this can be considered an accident resulting from
an even number of unwanted sign flips. Foliation 2©’s real
trajectory and complex trajectory generate Maslov indices +1
and −1, respectively, thus differ by two. Foliation 4© generates
+3 and −3, respectively, and thus differ by six. Hence, the
signs given by the complex trajectories in these two foliations
are incorrect.

An interesting feature for the quartic oscillator and the
multi-site Bose-Hubbard model [27] is the fact that the prob-
lematic saddles always turned out to be related to energies
below that of the Gaussian centroid’s energy (calculating the
energy using the real trajectories of the associated foliation).
This example was arranged so that the foliation 7© saddle
at x = 0 was real, not complex, and equivalent to the real
trajectory used as a Newton-Raphson seed. In Fig. 7, it can
be seen that the imaginary parts of the stability matrices start
out in opposite directions for foliations 6© (goes negative first)
and 8© (goes positive first). Foliation 8© is associated with an
energy greater than that of (qα, pα ) and all such foliations (at
greater energies) have stability matrix elements that start in
the same direction. None of the determinants of these asso-
ciated saddles ever reversed themselves and began winding
clockwise. On the other hand, all of the saddles associated
with lower energies did and had Maslov indices that differed
from their associated real trajectories. This is consistent with
the direction of motion of the zeros of D1 depicted in Fig. 4.

In the quartic oscillator example, all the D1 determinant
zeros lie above the Im(t ) = 0 axis for real trajectories. Using
the Maslov index derived from these trajectories automati-
cally generates the same result as locating all zeros that have
crossed the Im(t ) = 0 axis and deforming the time integration
contour to pass beneath them. This greatly simplifies the work
by eliminating the necessity of locating the zeros of D1 (or
D2) at complex times, and then creating deformed complex
time integration contours.
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2. Hidden saddles

Naturally, hidden saddles are those that cannot be located
by using some real trajectory as a seed for a Newton-Raphson
search. Thus, the direct use of real trajectories does not apply
as it does for the exposed saddles. However, in Ref. [28]
it was discussed that the best way to locate the physically
relevant hidden saddles was to begin with exposed saddles
(actually all of them for the quartic oscillator example), and
use parameter variation to follow them continuously as they
pass beyond caustic regions, the caustics being responsible to
a large extent for the saddles being hidden to begin with. Start-
ing with an exposed saddle and a corrected Maslov index, one
need only step finely through the parameter variation using
a Newton-Raphson search to get from one saddle to the next
until arriving at the desired hidden saddle. By reversing any
sign flips that may occur along the way, ensuring continuity,
the Maslov indices for these hidden saddles end up with their
corrected values. Again, complex time is avoided and almost
no extra calculations are needed beyond those required to
locate the saddles, exposed or hidden. The additional calcu-
lation necessary is just to monitor the determinants for sudden
changes in total phase accumulation of 2π , which effectively
adds no extra computation time or complications beyond what
already must exist.

Finally, the remaining potentially, physically relevant sad-
dles are those behind “bald spots” [38], which cannot be
located with purely real time propagation. Instead of the
prefactor diverging because the determinant vanished, the
prefactor itself vanishes for singular trajectories acquiring in-
finite momenta in finite times where the determinant diverges.
Again, that leads to an ambiguity in the phase choice even if
one can locate the saddle. Petersen and Kay showed that it was
essential to deform the real time propagation path appropri-
ately to complex time paths around the singular trajectories in
order to arrive at these saddles [38] with the appropriate prop-
erties. Nevertheless, just as discussed for the previous group
of hidden saddles, it is not necessary to locate the migrating
complex time zeros of the determinants for this class of hidden
saddles either. A combination of continuous parameter varia-
tion and complex time path deformation, which must be done
in any case to locate them, suffices to fix any Maslov index
ambiguities.

IV. SUMMARY

The saddle-point approximation applied to Glauber coher-
ent states for bosonic many-body systems and wave packets in
Schrödinger quantum mechanics is an important asymptotic
analysis and approximation in a wide variety of physical con-
texts. It always leads to the existence of a complex prefactor
depending on the inverse square root of a determinant (labeled
D1 and D2 here) for which the phase must be properly fixed.

The standard practice of (i) continuously following the total
phase accumulation of the determinant’s phase, (ii) cutting it
in half, and (iii) inverting it, is insufficient from a theoretical
perspective to fix the phase. This prescription sometimes leads
to sign errors. The use of complex canonically conjugate
variables (position, momentum) necessitates the complexifi-
cation of time as well; see the work of Ref. [38] for the
example of saddles behind bald spots and also note the use of
complexification of time in solving tunneling problems [39].
The determinants develop zeros in the complex time domain,
which generate branch cuts in the prefactor. The appropriate
deformation of the real time integration path using a complex
time path to circumvent the branch cuts resolves the issue and
completes the theory.

It can be prohibitively difficult to locate complex time
determinant zeros for systems with many degrees of freedom.
Instead, a practical way to evade their construction is given
here based on a technique that borrows from the ideas behind
the classification of saddles into exposed and hidden ones in
the previous paper of this pair [28]. Exposed saddles can be
located by a Newton-Raphson technique with a real reference
trajectory as a starting seed. The real trajectory has a well-
defined Maslov index and there must be continuity between
some particular saddle’s contribution and Gaussian integra-
tion over its real seed trajectory. The majority of the remaining
hidden saddles can be found through parameter variation
starting with exposed saddles, and ensuring continuity as the
parameter changes is sufficient. The calculations required for
this practical approach entail almost no new calculations and
are straightforward to implement.

The quartic oscillator used here to illustrate the sign prob-
lem and its resolution is homogeneous. Its dynamics are
especially straightforward. It would be good to examine the
practical solution in more complicated dynamical situations,
including systems with many degrees of freedom. For exam-
ple, the existence of saddles behind bald spots [38] does not
exist for the quartic oscillator, and these saddles require both
parameter variation and complex time paths to discover and
treat. Thus, some saddles require the use of complex time
for generating trajectories on the correct sheets. The practical
resolution of the phase index problem outlined in this work
(continuous parameter variation along with requiring continu-
ity of the phase) continues to hold nevertheless even for these
more difficult-to-locate saddles.
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