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We consider the parity-time (PT)-symmetric, nonlocal, nonlinear Schrödinger equation on metric graphs.
Vertex boundary conditions are derived from the conservation laws. Soliton solutions are obtained for the
simplest graph topologies, such as star and tree graphs. The integrability of the problem is shown by proving
the existence of an infinite number of conservation laws. A model for soliton generation in such PT-symmetric
optical fibers and their networks governed by the nonlocal nonlinear Schrödinger equation is proposed. Exact
formulas for the number of generated solitons are derived for the cases when the problem is integrable. Numerical
solutions are obtained for the case when integrability is broken.
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I. INTRODUCTION

The parity-time (PT)-symmetric nonlocal nonlinear
Schrödinger (NNLS) equation has attracted much attention
since the pioneering paper by Ablowitz and Musslimani
[1], where the soliton solutions are obtained using the
inverse-scattering-based approach. A remarkable feature of
the problem is its integrability, which was shown in [1].
Different aspects of the nonlinear nonlocal Schrödinger
equation, such as integrability, various soliton solutions, and
their properties have been studied over the past few years
[1–13]. In [2] a discrete version of the NNLS equation was
considered and its integrability was shown. In [3] an extended
analysis of the NNLS equation, which includes details
of the inverse scattering, Riemann-Hilbert, and Cauchy
problems, was presented. In [5] exact solutions of different
versions of the NNLS equation were obtained. The authos
of [6] presented a study of a physically significant version
of the NNLS equation, which can be derived from the
Manakov system. A general soliton solution of a nonlocal
nonlinear Schrödinger equation with zero and nonzero
boundary conditions was derived in [9]. Quasimonochromatic
complex reductions of a cubic nonlinear Klein-Gordon,
the Korteweg–De Vries (KdV), and water waves equations
and their relations to the nonlocal PT-symmetric nonlinear
Schrödinger equation were studied in [11]. Rogue waves and
periodic solutions in an NNLS-equation-based model were
studied in the recent paper [13]. In this paper we consider an
extension of the Ablowitz-Musslimani NNLS equation to the
case of branched one-dimensional (1D) domains called the
metric graphs. These are the 1D wires (bonds) connected
to each other according to some rule, which is called the
topology of a graph. Each bond is assumed to assigned a
length. We note that the evolution equations on metric graphs
are going to be a powerful tool for modeling wave propagation

and particle transport in branched structures and networks
(see [14–37] for a review). Using such an approach, we
develop a model for the generation of PT-symmetric solitons
in networks, which is described in terms of the initial value
(Cauchy) problem for NNLS equation on metric graphs.
THe motivation for the study of the NNLS equation on
networks comes from the following facts: (i) The dynamics
of solitons in networks is richer than that in line fibers;
(ii) choosing the proper network architecture (topology),
one can achieve the maximally acceptable soliton transport
regime, i.e., tunable soliton dynamics; (iii) in many practical
applications (e.g., in optoelectronics) the optical fibers appear
in the form of a network, rather than as line fibers. Also,
by choosing the initial pulse profile and network topology
properly, one can achieve the needed number of solitons
and controlled regime for soliton generation. All these make
soliton dynamics in optical fiber networks more attractive
than those in unbranched (line) fibers. In other words, in
such structures, the branching topology can be used for the
tuning of the fiber’s soliton transfer properties and controlling
the optical signal propagation. In particular, one can control
signal loss, back scattering, and modulation by tuning the
signal generation. This paper is organized as follows. In the
next section we briefly recall the NNLS equation on a line,
following [1]. Section III presents the formulation of the
problem, its soliton solutions, and integrability for star- and
tree-branched networks. In Sec. IV we provide a model for the
generation of PT-symmetric nonlocal solitons in optical fiber
networks. Finally, Sec. V presents some concluding remarks.

II. NONLOCAL NONLINEAR SCHRÖDINGER EQUATION
ON A LINE

The PT-symmetric version of the nonlocal nonlinear
Schrödinger equation on a line was proposed by Ablowitz and
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Musslimani in [1] and was studied later in different contexts.
Explicitly, NNLSE on a line can be written as

i
∂

∂t
q(x, t ) = ∂2

∂x2
q(x, t ) + 2q2(x, t )q∗(−x, t ). (1)

Equation (1) can be rewritten as

∂

∂t
q(x, t ) = −i

∂2

∂x2
q(x, t ) + iV (x, t )q(x, t ), (2)

where V = −2q(x, t )q∗(−x, t ) is the PT-symmetric self-
induced potential. Equation (2) describes the PT-symmetric
optical solitons propagating in the optical waveguide having a
“gain-and-loss” structure. The one-soliton solution of Eq. (1)
can be obtained using the inverse scattering method and given
as [1]

q(x, t ) = − 2(η1 + η̄1)eiθ̄1 e−4iη̄2
1t e−2η̄1x

1 + ei(θ1+θ̄1 )e4i(η2
1−η̄2

1 )t e−2(η1+η̄1 )x
. (3)

As it was stated in [1], solution given by Eq. (3) describes
the breathing soliton, whose center of mass oscillates around
a fixed point. A bright (traveling) soliton solution was found
in the [7] and can be written as

q(x, t ) = αeξ̄1

1 + eξ1+ξ̄1+�
, (4)

and the parity transformed complex conjugate solution can be
obtained as [7]

q∗(−x.t ) = [q(x.t )]∗|x→−x = βeξ1

1 + eξ1+ξ̄1+�
, (5)

where ξ1 = ik1x − ik2
1t + ξ

(0)
1 , ξ̄1 = ik̄1x + ik̄2

1t + ξ̄
(0)
1 , e� =

−αβ

κ
, κ = (k1 + k̄1)2, k1, k̄1, α, β, ξ

(0)
1 , ξ̄

(0)
1 are arbitrary com-

plex constants and k̄1, β, ξ̄
(0)
1 are complex conjugates of

k1, α, ξ
(0)
1 , respectively. Two conservative quantities (integrals

of motion) can be determined for Eq. (1) as the norm

C0(t ) =
∫ +∞

−∞
q(x, t )q∗(−x, t )dx, (6)

and the energy

C2(t ) =
∫ +∞

−∞

[ ∂

∂x
q(x, t ) · ∂

∂x
q∗(−x, t )

+ q2(x, t ) · q∗2(−x, t )
]
dx. (7)

The integrability of Eq. (1) was proven in [1] by showing the
existence of the infinite number of conserving quantities. In
the next section we will extend the study of [1] to the case of
1D branched domains given in terms of the metric graphs.

FIG. 1. Star graph with six bonds.

III. EXTENSION TO A STAR GRAPH

A. Vertex boundary conditions and soliton solutions

Consider the following nonlocal nonlinear Schrödinger
equation which is written on the each bond of the star graph
with six bonds b± j (see Fig. 1), for which a coordinate x± j

is assigned. Choosing the origin of the coordinates at the
vertex, 0 for bond b− j we put x− j ∈ (−∞, 0] and for b j we
fix x j ∈ [0,+∞):

i
∂

∂t
q± j (x, t ) = ∂2

∂x2
q± j (x, t ) + √

β jβ− jq
2
± j (x, t )q∗

∓ j (−x, t ),

(8)

where q± j (x, t ) at x ∈ b± j and j = 1, 2, 3.
A very important feature of Eq. (8) is the fact that it is a

system of the NNLS equations, where components of q± j are
mixed in the nonlinear term. Unlike classical NLSE on graphs,
where the components of the solution are related to each other
via the vertex boundary conditions, in Eq. (8), components
with opposite signs are mixed via the nonlinear term, while
other components are connected to each other via the vertex
boundary conditions. Such mixing of the components, q± j

in Eq. (8) occurs due to the presence of the factor,
√

β jβ− j .
To solve Eq. (8), one needs to impose boundary conditions
at the graph branching point (vertex). Such conditions can
be derived from the fundamental conservation laws. Here we
use the norm and the energy conservation to derive the vertex
boundary conditions.

For the above nonlocal NLSE, the norm is determined
as [1]

C0(t ) =
3∑

j=1

[ ∫
b j

q j (x, t )q∗
− j (−x, t )dx

+
∫

b− j

q− j (x, t )q∗
j (−x, t )dx

]
. (9)

From the norm conservation, Ċ0 = 0 we have

3∑
j=1

Im
[

∂

∂x
q j (x, t ) · q∗

− j (−x, t )

]∣∣∣∣
x→+0

=
3∑

j=1

Im
[

∂

∂x
q− j (x, t ) · q∗

j (−x, t )

]∣∣∣∣
x→−0

. (10)

Another conserving quantity, i.e., the energy is given by
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C2(t ) =
3∑

j=1

[ ∫
b j

(
∂

∂x
q j (x, t ) · ∂

∂x
q∗

− j (−x, t ) +
√

β jβ− j

2
q2

j (x, t ) · q∗2
− j (−x, t )

)
dx

+
∫

b− j

(
∂

∂x
q− j (x, t ) · ∂

∂x
q∗

j (−x, t ) +
√

β jβ− j

2
q2

− j (x, t ) · q∗2
j (−x, t )

)
dx

]
. (11)

The energy conservation, Ċ2 = 0 leads to

3∑
j=1

Re
[

∂

∂t
q∗

− j (−x, t ) · ∂

∂x
q j (x, t )

]∣∣∣∣
x→+0

=
3∑

j=1

Re
[

∂

∂t
q∗

j (−x, t ) · ∂

∂x
q− j (x, t )

]∣∣∣∣
x→−0

. (12)

Equations (10) and (12) are compatible with the following two sets of the vertex boundary conditions:

α1q1(x, t )|x=0 = α−1q−1(x, t )|x=0 = α2q2(x, t )|x=0 = α−2q−2(x, t )|x=0 = α3q3(x, t )|x=0 = α−3q−3(x, t )|x=0,

1

α1

∂

∂x
q1(x, t )

∣∣∣∣
x=0

+ 1

α2

∂

∂x
q2(x, t )

∣∣∣∣
x=0

+ 1

α3

∂

∂x
q3(x, t )

∣∣∣∣
x=0

= 1

α−1

∂

∂x
q−1(x, t )

∣∣∣∣
x=0

+ 1

α−2

∂

∂x
q−2(x, t )

∣∣∣∣
x=0

+ 1

α−3

∂

∂x
q−3(x, t )

∣∣∣∣
x=0

. (13)

It should be noted that Eqs. (10) and (12) follow from the
boundary conditions (13), but the opposite is not true. Let
q(x, t ) eb the solution of the nonlocal nonlinear Schrödinger
equation given by

i
∂

∂t
q(x, t ) = ∂2

∂x2
q(x, t ) + 2q2(x, t )q∗(−x, t ). (14)

Then the solution of the problem given by Eqs. (8) and (13)

can be expressed in terms of q(x, t ) as q± j (x, t ) =
√

2
β± j

q(x, t )

and fulfills the boundary conditions (13), provided the follow-
ing constraints hold true:

α± j

α1
=

√
β± j

β1
,

1

β1
+ 1

β2
+ 1

β3
= 1

β−1
+ 1

β−2
+ 1

β−3
.

(15)

One of the explicit (static) soliton solutions of Eq. (8) on a line
was obtained in [3]. Using this solution, the corresponding
soliton solution on a graph can be written as

q± j (x, t ) = −
√

2

β± j

4ηeiϕ̄e−4iη2t e−2ηx

1 + ei(ϕ+ϕ̄)e−4ηx
. (16)

ϕ, ϕ̄, η are arbitrary complex constants. Similarly, one can
write a traveling soliton solution as

q± j (x, t ) =
√

2

β± j

αeξ̄1

1 + eξ1+ξ̄1+�
, (17)

and the parity transformed complex conjugate solution

q∗
± j (−x, t ) =

√
2

β± j

βeξ1

1 + eξ1+ξ̄1+�
. (18)

B. Integrability of the problem

Here we will show the integrability of the NNLSE on a
metric star graph, given by Eqs. (8) and (13) by proving the

existence of the infinite number of conservation laws. This
can be done following the prescription used for the usual (not
nonlocal) NLS on metric graphs in [14]. The soliton solutions
of the problem on the infinite linear chain satisfy an infinite
number of conservation laws given by∫ +∞

−∞
μn[q(x, t ), q∗(−x, t )]dx = Cn, (19)

where Cn is a constant, μn is a polynomial of
q(x, t ), q∗(−x, t ), and their derivatives with respect to x
[3]. Using this relation, we now investigate the following
quantities, which for are given on the metric star graph:

Qn =
3∑

j=1

[
β−1

j

∫
b j

μn[q(x, t ), q∗(−x, t )]dx

+β−1
− j

∫
b− j

μn[q(x, t ), q∗(−x, t )]dx

]
, (20)

where q(x, t ) is the solution of Eq. (14) and
μn[q(x, t ), q∗(−x, t )] obeys the recursion relation

μn+1 = q
∂

∂x

(
μn

q

)
+

n−1∑
m=0

μmμn−m−1, (21)

μ0 = q(x, t )q∗(−x, t ), μ1 = q(x, t )∂xq∗(−x, t ).

(22)

Using Eq. (15), from the right-hand side (r.h.s.) of Eq. (20) we
can get

Qn = (
β−1

−1 + β−1
−2 + β−1

−3

) ∫ 0

−∞
μn[q(x, t ), q∗(−x, t )]dx

+ (
β−1

1 + β−1
2 + β−1

3

) ∫ +∞

0
μn[q(x, t ), q∗(−x, t )]dx

= (
β−1

1 + β−1
2 + β−1

3

) ∫ +∞

−∞
μn[q(x, t ), q∗(−x, t )]dx

= (
β−1

1 + β−1
2 + β−1

3

)
Cn. (23)
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FIG. 2. Plot of soliton on a metric star graph obtained from nu-
merical solution of Eq. (8) for the values of β j fulfilling the sum rule
in Eq. (8) (β−1 = 1, β1 = 1.15, β−2 = 2.19, β2 = 1.91, β−3 = 2.42,
β3 = 2.09). The initial conditions are given on the bonds b−1 and b1.

It is clear that, due to the conservation law given by Eq. (19),
Qn is constant, i.e., conserving quantity. Therefore, Qn is the
constant of motion. This implies that the nonlocal NLSE on
the metric star graph has an infinite number of conservation
laws and hence is integrable.

C. Numerical results

It is clear that the above proven integrability of NNLSE (8)
holds true for the case when constraints given by Eq. (15) are
fulfilled. Such integrable NNLSE approves different soliton
solutions, such as the breathing given by Eq. (3) and the trav-
eling given by Eq. (4) solitons. For the case, when constraints
in Eq. (15) are broken, one needs to solve Eq. (8) numerically
as the initial value problem. As the initial conditions, we will
choose values of exact (soliton) solutions Eqs. (17) and (18)
at t = 0. The discretization scheme from [2] is used in the
numerical solution of Eq. (1). In Fig. 2 the plots of |q± j (x, t )|2
obtained by solving Eq. (8) numerically for the initial con-
ditions imposed on the bond b−1 and b1 are presented for
different time moments, t = 0, 0.05, 0.1 at the values of
β± j fulfilling the sum rule in Eq. (15). A remarkable feature of
the traveling solitons is the reflectionless transmission through
the vertex. Figure 3 presents similar plots for those values of
β± j , which do not fulfill the sum rule in Eq. (15). Unlike the
solitons in Fig. 2, the reflection at the vertex can be observed
in this plot. Thus one can conclude that the integrable case
provides the reflectionless transmission of solitons through
the branching point of the graph. Earlier, such a feature was
observed for other evolution equations on graphs, such as the
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FIG. 3. Plot of soliton on a metric star graph obtained from
numerical solution of Eq. (8) for the values of β j breaking the
sum rule in Eq. (8) (β−1 = 0.65, β1 = 0.79, β−2 = 2.7, β2 = 2.09,
β−3 = 3.06, β3 = 2.87). The initial conditions are given on the bonds
b−1 and b1.

NLS [14], sine-Gordon [23], and nonlinear Dirac [28] equa-
tions. The reason for such behavior of solitons described by
the nonlinear Schrödinger equation on graphs was explained
in [32].

D. Extension to a tree graph

The above treatment can be extended to the case’s other
graphs. Here we will demonstrate that for a tree graph.
One of the possible tree graphs, on which one can write
NNLSE, is presented in Fig. 4. The central branch, i.e.,
the branch at the middle of the graph, is chosen as an ori-
gin of the coordinates. Then the bonds can be determined
as b−1, b−1mn ∼ (−∞; 0], b−1m ∼ [−L1m; 0], b1m ∼ [0; L1m],
b1, b1mn ∼ [0; +∞), where L1m are the lengths of b±1m bonds

FIG. 4. A sketch of tree graph adopted for nonlocal nonlinear
Schrödinger equation.
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and m = 1, 2, n = 1, 2. Here the “+” sign is for right-handed
bonds and the “−” sign is for left-handed bonds from the
center of the tree graph.

On each bond of such a graph, one can write the non-
local nonlinear Schrödinger equation given by Eq. (8) with
j = ±1, ±1m, ±1mn.

The vertex boundary conditions following from the conser-
vation laws are given as

α±1q±1(x, t )|x=0 =α∓11q∓11(x, t )|x=0 =α∓12q∓12(x, t )|x=0,

1

α±1

∂

∂x
q±1(x, t )

∣∣∣∣
x=0

= 1

α∓11

∂

∂x
q∓11(x, t )

∣∣∣∣
x=0

+ 1

α∓12

∂

∂x
q∓12(x, t )

∣∣∣∣
x=0

, (24)

α±1mq±1m(x, t )|x=±L1m = α±1m1 lim
x→±0

q±1m1(x, t )

= α±1m2 lim
x→±0

q±1m2(x, t ),

1

α±1m

∂

∂x
q±1m(x, t )

∣∣∣∣
x=±L1m

= 1

α±1m1
lim

x→±0

∂

∂x
q±1m1(x, t )

+ 1

α±1m2
lim

x→±0

∂

∂x
q±1m2(x, t ). (25)

Assuming that the following sum rules hold true:
α±1√
β±1

= α∓11√
β∓11

= α∓12√
β∓12

,

1

α±1
√

β±1
= 1

α∓11
√

β∓11
+ 1

α∓12
√

β∓12
,

1

β±1
= 1

β∓11
+ 1

β∓12
. (26)

α±1m√
β±1m

= α±1m1√
β±1m1

= α±1m2√
β±1m2

,

1

α±1m
√

β±1m
= 1

α±1m1
√

β±1m1
+ 1

α±1m2
√

β±1m2
,

1

β±1m
= 1

β±1m1
+ 1

β±1m2
, (27)

the soliton solutions on each bond can be written as

q±1(x, t ) =
√

2

β±1
q(x + S±1, t ),

q±1m(x, t ) =
√

2

β±1m
q(x + S±1m, t ), (28)

q±1mn(x, t ) =
√

2

β±1mn
q(x + S±1mn, t ),

where S±1 = S±1m = x0, S±1mn = ±L1m + x0, x0 is the coor-
dinate of the center of the soliton at t = 0. The integrability of
the nonlocal nonlinear Schrödinger equation on a tree graph
presented in Fig. 4 (for the case when the above sum rules
are fulfilled) can be shown similarly to that for the star graph.
Also, one can show by numerical computations that, for the

integrable case, the transmission of nonlocal PT-symmetric
solitons are reflectionless. We note that the above treatment
can be directly extended to other graph topologies, provided
a graph consists of an even number of bonds symmetrically
positioned with respect to the origin of the coordinates, i.e.,
one has an equal number of bonds on each side of the origin
of the coordinates. In addition, at least four bonds of the
graph should be semi-infinite. Unlike the solution of the usual
nonlinear Schrödinger equation on graphs, the solution of the
PT-symmetric nonlocal nonlinear NLSE on graphs is much
more complicated which makes the dynamics of nonlocal
solitons richer than that for the usual soliton. This last also
implies the existence of more tools for tuning the soliton
dynamics.

IV. SOLITON GENERATION

A. Soliton generation in linear PT-symmetric optical fibers

Here we consider the problem of soliton generation de-
scribed in terms of the nonlocal nonlinear Schrödinger
equation (1). The problem of soliton generation in optical
fibers is of fundamental and practical importance for modern
optoelectronics and information technologies. Hasegawa and
Tappert [38] first proposed using optical solitons as carriers
of information in high-speed communication systems in the
early 1970s. Further development of the idea later led to
advanced optoelectronic and information technologies based
on the use of solitons in optical fibers (see, e.g., [39–47]
for a review). The dynamics of generated solitons strongly
depends on the shape of the initial pulse profile. This makes
choosing an initial pulse profile an effective tool for tuning the
soliton propagation. Mathematically, the problem of soliton
generation is reduced to the Cauchy problem for the nonlinear
evolution equation, governing the dynamics of the soliton. An
important task arising in this context, besides soliton dynam-
ics, is finding the number of generated solitons using the given
initial condition. In the case of long (unbranched) fibers such
a problem was studied in [48–56]. In [49], an effective method
for computing the number of generated solitons was proposed.
The extension of the approach for other initial pulse profiles
was proposed later in [50]. The mathematical treatment of
soliton generation on a half line was considered [52]. The
generation in optical solitons in fibers with a dual-frequency
input was considered in [53]. Soliton generation and their
instability are investigated in a system of two parallel-coupled
fibers, with a pumped (active) nonlinear dispersive core and
a lossy (passive) linear one in [57]. Unlike the problem of
soliton dynamics, studied in the previous sections, the prob-
lem of soliton generation can be reduced to an initial value
problem for Eq. (1). The solution of such problems are dif-
ferent than those single- and multisoliton ones, obtained from
inverse scattering and Hirota’s method. Therefore, the shape
of such generated solitons are no longer maintained during
their propagation due to the radiation effects. An important
task of soliton generation problem is finding the number of
solitons generated for a given initial pulse profile. An effective
method for solving such a task was proposed in [49], which
was later applied for different types of the pulse profile in
[50,53]. Thus, from the mathematical viewpoint, the problem
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of generation of PT-symmetric, nonlocal solitons is given in
terms of Eq. (1) for which the following initial condition is
imposed:

q(x, 0) = f (x). (29)

The starting point in the calculation of the number of
solitons generated for a given initial pulse profile is
the Zakharov-Shabat problem. For Eq. (1) the Zakharov-
Shabat problem is given in terms of the following AKNS
system:

∂v(1)

∂x
= −ikv(1) + q(x, 0)v(2),

∂v(2)

∂x
= ikv(2) − q∗(−x, 0)v(1). (30)

Let us consider the special family of the initial potentials

q(x, 0) = Q(x, 0)ei(δ+π/2),

q∗(−x, 0) = Q(−x, 0)e−i(δ+π/2), (31)

where Q(x, 0) is the real function and δ (0 � δ � 2π ) is the
arbitrary constant. One can show that the transformations

v(1) → V (1)eiγ , v(2) → V (2)ei(γ−δ) (32)

lead to the following eigenvalue problem:

∂V (1)

∂x
= −ikV (1) + iQ(x, 0)V (2),

∂V (2)

∂x
= ikV (2) + iQ(−x, 0)V (1). (33)

Following [50], one can define the number of the zeros of the
Jost coefficients a(k) at k = 0.

If the initial condition is symmetric to the point x = 0:
Q(x, 0) = Q(−x, 0) then the formal solution of Eq. (33) with
k = 0 are

V (1)(x, 0) = exp [−iS(x)]

(
C(1)

∫ x

−∞
Q(x′, 0) exp [2iS(x′)]dx′ + C(2)

)
,

V (2)(x, 0) = − iC(1) exp [iS(x)] − V (1), (34)

where

S(x) =
∫ x

−∞
Q(x′, 0)dx′.

If one chooses V (1)(x, 0) → 0 for x → −∞, then C(2) = 0, and we have

a(0) = lim
x→+∞V (2)(x, 0)

= − iC(1)

(
exp(iS0) − i exp(−iS0)

∫ +∞

−∞
Q(x, 0) exp[2iS(x))dx

]
= −iC(1) cos S0, (35)

where

S0 =
∫ +∞

−∞
Q(x, 0)dx. (36)

From Eq. (35) for the soliton number we get

N =
〈

1

2
+ S0

π

〉
. (37)

Noting that for the initial pulses given by Eq. (31) for any x
and with Q(x, 0) > 0,

S0 ≡
∫ +∞

−∞
Q(x, 0)dx =

∫ +∞

−∞
|q(x, 0)|dx = F, (38)

we have, from Eqs. (37) and (38),

N =
〈

1

2
+ F

π

〉
. (39)

Here we consider the number of generated solitons for the
rectangular initial pulse profile (see Fig. 5):

q(x, 0) =
{

0, for |x| > 1
2 a,

b, for |x| � 1
2 a,

b > 0.

Using the above approach for this profile leads to

F =
∫ +∞

−∞
|q(x, 0)|dx = ab, N =

〈
1

2
+ ab

π

〉
.

This equation provides the relation between the initial pulse
profile and number of generated solitons, described by the PT-
symmetric nonlocal nonlinear Schrödinger equation (1).

To demonstrate the soliton generation visually, in Fig. 6 we
present the plots of the numerical solution of the initial value

FIG. 5. Initial pulse profile.
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FIG. 6. Numerical solution of initial value problem given by
Eqs. (1) and (29) for rectangular initial pulse profile, demonstrating
generation of two solitons on a line.

problem given by Eqs. (1) and (29), where the initial pulse
profile, q(x, 0), is chosen in rectangular form (see Fig. 5) with
a = 3 and b = 2.

B. Soliton generation in star-shaped optical waveguide network

The above approach can be applied for soliton generation
in branched waveguides, by modeling these later in terms
of metric graphs. Earlier, soliton generation in networks de-
scribed in terms of the usual (classical) nonlinear Schrödinger
equation on graphs was studied in [35]. Here we address the
model for generation of PT-symmetric nonlocal solitons in
a six-bond, star-branched network (see Fig. 1) described in
terms of the initial value problem for Eq. (8).

Here, using the prescription of the previous section, we will
provide brief derivation of the relation between the number of
generated solitons and the initial pulse profile in a branched
optical waveguide, which is modeled in terms of the star graph
presented in Fig. 7. Consider the following Zakharov-Shabat
problem for the NNLS equation (8):

∂v
(1)
± j

∂x
= −ikv

(1)
± j +

√
β± j

2
q± j (x, 0)v(2)

± j ,

∂v
(2)
± j

∂x
= ikv

(2)
± j −

√
β∓ j

2
q∗

∓ j (−x, 0)v(1)
± j , (40)

FIG. 7. Initial pulse profile for the star graph.

where q± j (x, 0) are the initial conditions (initial pulse pro-
files) for Eq. (8). Introducing the special family of the initial
potentials given by

q± j (x, 0) = Q± j (x, 0)ei(δ± j+π/2),

q∗
± j (−x, 0) = Q± j (−x, 0)e−i(δ± j+π/2), (41)

where Q± j (x, 0) are the real functions and δ± j (0 � δ± j �
2π ) are arbitrary constants, one can show that the transfor-
mations

v
(1)
± j → V (1)

± j eiγ± j , v
(2)
± j → V (2)

± j ei(γ± j−δ± j ) (42)

lead to the following eigenvalue problem:

∂V (1)
± j

∂x
= −ikV (1)

± j + i

√
β± j

2
Q± j (x, 0)V (2)

± j ,

∂V (2)
± j

∂x
= ikV (2)

± j + i

√
β∓ j

2
Q∓ j (−x, 0)V (1)

± j . (43)

From a physical viewpoint, the generation of the single quies-
cent soliton will occur with a smaller energy than the soliton
pair. Therefore, following [50], we will define the number
of the zeros of the Jost coefficients a± j (k) at k = 0. If the
initial condition is symmetric with respect to the point x = 0:

Q∓ j (−x, 0) =
√

β± j

β∓ j
Q± j (x, 0).

The formal solutions of Eq. (43) with k = 0 are

V (1)
− j (x, 0) = exp [−iS− j (x)]

(
C(1)

− j

∫ x

−∞
Q−j (x

′, 0) exp [2iS−j (x
′)]dx′+C(2)

− j

)
,

V (2)
− j (x, 0) = − iC(1)

− j exp [iS− j (x)] − V (1)
− j ,

V (1)
j (x, 0) = exp [−iS j (x)]

(
C(1)

j

∫ x

0
Qj (x

′, 0) exp [2iS j (x
′)]dx′ + C(2)

j

)
,

V (2)
j (x, 0) = − iC(1)

j exp [iS j (x)] − V (1)
j ,

S− j (x) =
√

β− j

2

∫ x

−∞
Q− j (x

′, 0)dx′,
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and

S j (x) =
√

β j

2

∫ x

0
Qj (x

′, 0)dx′.

If one chooses V (1)
− j (x, 0) → 0 for x → −∞ and V (1)

j (x, 0) → 0 for x → +0, then C(2)
± j = 0, and we have

a− j (0) = lim
x→−0

V (2)
− j (x, 0)

= − iC(1)
− j

(
exp(iF− j ) − i exp(−iF− j )

∫ 0

−∞
Q− j (x, 0) exp[2iS− j (x)]dx

)
= −iC(1)

− j cos F− j, (44)

aj (0) = lim
x→+∞V (2)

j (x, 0)

= − iC(1)
j

(
exp(iFj ) − i exp(−iFj )

∫ +∞

0
Qj (x, 0) exp[2iS j (x)]dx

)
= −iC(1)

j cos Fj . (45)

Noting that, for the initial pulses given by Eq. (41) for any x
and with Q± j (x, 0) > 0,

F± j =
√

β± j

2

∫
b± j

Q± j (x, 0)dx =
√

β± j

2

∫
b± j

|q± j (x, 0)|dx.

(46)
From Eqs. (44) and (45) for the soliton number we get

N± j =
〈

1

2
+ F± j

π

〉
, N =

3∑
j=1

(N− j + Nj ). (47)

Now consider the star graph with rectangle initial pulse
(see Fig. 7). For such a profile, the initial condition is given

at the vertex and can be written as q± j (x, 0) =
√

2
β± j

ψ± j (x):

ψ− j (x) =
{

0, for x < − 1
2 a,

b, for − 1
2 a � x � 0,

ψ j (x) =
{

0, for x > 1
2 a,

b, for 0 � x � 1
2 a,

where b > 0.
The number of generated solitons can be written as

F± j =
√

β± j

2

∫
b± j

|q± j (x, 0)|dx = ab

2
,

N = 6

〈
1

2
+ ab

2π

〉
. (48)

Another initial pulse profile is the Gaussian one, given by

q± j (x, 0) =
√

2

β± j
A exp

[
−1

2
(1 − iα)

( x

σ

)2m
]
. (49)

Utilizing the above approach for this profile leads to

F± j =
√

β± j

2

∫
b± j

|q± j (x, 0)|dx = 2
1

2m Aσ

2m
�

(
1

2m

)
,

N = 6

〈
1

2
+ 2

1
2m Aσ

2πm
�

(
1

2m

)〉
.

We note that Eq. (47) for the number of generated solitons
is derived under the assumption that the sum rule in Eq. (15)
is fulfilled, which is equivalent to the integrability of the

NNLS equation on the graph. For the case, when the sum
rule is broken, one needs to solve the problem numerically, by
imposing, e.g., the initial conditions given by Eq. (49). The
plots of the soliton profiles obtained by numerical solution of
Eq. (8) are presented in Fig. 8 for the time moments, t = 0,
t = 0.06, and t = 0.12. The same discretization scheme as in
the previous section is used for the numerical solution of the
initial value problem for the NNLS equation on a star graph.
An important feature of the soliton generation, i.e., breaking
of the initial pulse profile due to the radiation can be observed
from the plots of Fig. 8.

Again, to show the soliton generation visually, in Fig. 9,
presents the plots of the numerical solution of the initial value
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FIG. 8. Evolution of the solitons profile on time at t = 0 (red
line), t = 0.06 (green line), and t = 0.12 (blue line) on the star graph,
showing the radiation during the soliton propagation.

054205-8



NONLOCAL NONLINEAR SCHRÖDINGER EQUATION ON … PHYSICAL REVIEW E 105, 054205 (2022)

-4 -2 0

x

0

5

10

15

|q
-1

|2

b
-1

0 2 4

x

0

5

10

15

|q
1|2

b
1

-4 -2 0

x

0

5

10

15

|q
-2

|2

b
-2

0 2 4

x

0

5

10

15
|q

2|2
b

2

-4 -2 0

x

0

5

10

15

|q
-3

|2

b
-3

0 2 4

x

0

5

10

15

|q
3|2

b
3

t=0
t=0.02
t=1

FIG. 9. Numerical solution of initial value problem given by
Eqs. (8) and (13), for the initial rectangular pulse profile (see Fig. 7),
demonstrating generation of six solitons on a star graph. The non-
linearity coefficients are chosen as β−1 = 1, β1 = 1.15, β−2 = 2.19,
β2 = 1.91, β−3 = 2.42, β3 = 2.09.

problem given by Eqs. (8) and (13), by imposing the initial
condition in the form of the rectangular pulse (see Fig. 7)
with a = 3 and b = 2. The sizes of the initial pulses, i.e., the
values of a and b correspond to the generation of six solitons
in Eq. (48).

C. Extension to a tree graph

The approach developed in the previous subsection can be
extended for modeling of soliton generation in arbitrary net-
works. Here we demonstrate this for tree-branched networks
presented in Fig. 4. Choosing the initial pulse profile at each

vertex [qe(x, 0) =
√

2
βe

ψe(x)] in the forms (see Fig. 10)

ψ±1(x) =
{

0, |x| > 1
2 a,

A, 0 � |x| � 1
2 a,

ψ±1m(x) =
⎧⎨
⎩

A, 0 � |x| � 1
2 a,

0, 1
2 a < |x| < L1m − 1

2 a,

An, L1m − 1
2 a � |x| � L1m,

ψ±1mn(x) =
{

An, 0 � |x| � 1
2 a,

0, |x| > 1
2 a,

for the number of solitons we have

Ne =
〈

1

2
+ Fe

π

〉
, N =

∑
e∈�

Ne, (50)

FIG. 10. Initial pulse profile for the tree graph.

where � = {±1; ±1m; ±1mn} and

F±1 =
√

β±1

2

∫
b±1

|q±1(x, 0)|dx = aA

2
,

F±1m =
√

β±1m

2

∫
b±1m

|q±1m(x, 0)|dx = a

2
(A + Am),

F±1mn =
√

β±1mn

2

∫
b±1mn

|q±1mn(x, 0)|dx = aAm

2
.

Again, for the case, when the constraints given by Eqs. (26)
and (27) are not fulfilled, Eq. (50) cannot be used for
finding the number of solitons generated and the NNLS equa-
tion should be solved numerically.

V. CONCLUSION

In this paper we studied the dynamics of solitons described
by PT-symmetric nonlocal nonlinear Schrödinger equation on
networks by modeling these later in terms of metric graphs.
The integrability of the problem in the case of fulfilling cer-
tain constraints given in terms of nonlinearity coefficients
is shown. Exact soliton solutions, which are valid for this
case, are obtained. For the case, when the constraints are
broken the problem is solved numerically. The analysis of the
soliton dynamics shows the absence of the back scattering
in the transmission of the soliton through the graph node, is
the sum rule in Eq. (15) is fulfilled. When this sum rule is
broken, the transmission is accompanied by the scattering of
solitons at the node. The treatment is extended for the tree
graph and the possibility for the extension for other com-
plicated graphs is discussed. The problem of generation of
PT-symmetric nonlocal solitons is also studied with the focus
on the calculation of the (generated) soliton number. A model
for the generation of (more than one) solitons from a given
initial pulse in line and branched optical fibers is proposed.
The exact expression for the number of solitons generated
is derived. In the case of optical waveguide networks, the
problem is solved for star- and tree-branched networks. The
approach used in this paper can be directly extended to arbi-
trary network topologies. The above model can be applied for
describing the soliton generation and propagation in optical
fiber networks, where each branch has self-induced gain-loss
and other branched waveguides generating a self-induced PT-
symmetric potential. The experimental realization of such
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a model is of importance for the engineering and practi-
cal implementation of PT-symmetric optical fiber networks,

capable of generating solitonic pulses and tunable signal
propagation.
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