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Driven toroidal helix as a generalization of the Kapitza pendulum
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We explore a model system consisting of a particle confined to move along a toroidal helix while being
exposed to a static potential as well as a driving force due to a harmonically oscillating electric field. It is
shown that in the limit of a vanishing helix radius, the governing equations of motion coincide with those of the
well-known Kapitza pendulum—a classical pendulum with oscillating pivot—implying that the driven toroidal
helix represents a corresponding generalization. It is shown that the two dominant static fixed points present
in the Kapitza pendulum are also present for a finite helix radius. The dependence of the stability of these two
fixed points on the helix radius, the driving amplitude, and the static potential are analyzed analytically. These
analytical results are subsequently compared to results corresponding of numerical simulations. Additionally,
the most prominent deviations of the driven helix from the Kapitza pendulum with respect to the resulting phase
space are investigated and analyzed in some detail. These effects include an unusual transition to chaos and an
effective directed transport due to the simultaneous presence of multiple chaotic phase space regions.
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I. INTRODUCTION

Helical shapes are naturally occurring in nature, arising,
e.g., through hydrogen bonds in alpha-helix segments of
proteins or in molecules such as DNA and alpha-keratin.
Furthermore, helical structures can emerge through long-
range order in self-organizing systems on cylindrical surfaces
[1–3] or can be artificially created by rolling up thin sheets
into cylinders [4–7]. Helical structures can also appear
in trapping potentials induced by light fields around op-
tical fibers [8,9] which can be loaded with neutral cold
atoms. An advantage of the helical shape is the increased
stability with regard to deformations [10,11], making heli-
cal nanostructures desirable for future applications, e.g., in
nanocircuits.

Besides occurring in nature, helical systems of charged
particles have recently been explored in the literature thereby
demonstrating a number of intriguing effects emerging due
to the geometry, such as interactions that oscillate with the
(parametrized) distance along the helix [12]. These effects
have been studied in lattice systems with long-range hopping
[13,14], as well as in more fundamental models of classical
charges moving on helices [15–22]. In such model systems,
it has been demonstrated that based on the oscillating effec-
tive interactions, static setups already become very complex
since particles are able to localize into irregular latticelike
structures [16,20] exhibiting a plethora of possible equilib-
rium configurations [12,21]. By varying the helix geometry,
it is possible to tune a variety of effects, such as scattering
of bound states at local defects [15], band structure inver-
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sion and degeneracies [16,17], or unusual pinned to sliding
transitions [18] in crystalline configurations on a toroidal
helix.

Inspired by the demonstrated richness of effects of charged
particles on a helix, we explore here a system consisting of a
single particle confined to a toroidal helix in the presence of
an oscillating driving field and a static potential. In a previous
study [22], the corresponding phase space in the absence of
the static potential and the related directed transport have been
investigated. Here, we build upon these results and explore the
effects of an additional spatially oscillating static potential.
We show that the governing equations map to the equations for
the Kapitza pendulum [23] in the limit of a vanishing helix
radius. For a nonvanishing helix radius, a dynamical behavior
beyond that of the Kapitza pendulum emerges. Our main
results include a stability analysis of two major fixed points
corresponding to the two major fixed points in the Kapitza
pendulum. We derive and analyze some of the most prominent
dynamical phases arising in the phase space of our driven
helical particle system.

This paper is structured as follows: In Sec. II, we explain
our setup and derive the underlying equations of motion. We
show that in the limit of a vanishing helix radius, the equa-
tions of motion simplify to those of the Kapitza pendulum.
Therefore, the main features of the Kapitza pendulum are
briefly summarized in Sec. III. The main results are provided
in Secs. IV and V, addressing the driven helix away from
the Kapitza limit. In Sec. IV, the influence of a finite helix
radius on the stability of the two fixed points of the Kapitza
pendulum is analyzed analytically. These analytical results are
then compared with the results of corresponding numerical
simulations. In Sec. V, major dynamical effects emerging for
a finite helix radius are investigated. A discussion and outlook
are presented in Sec. VI.
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FIG. 1. (a) A 3D sketch of the torus and the toroidal helix with
the parametric function r(u), for M = 10, r = 0.8, and R = 2.5. The
inset in the top right visualizes the direction of the driving electric
field. (b) The potential energy created by the driving electric field
E (t ) (TIP, orange and WIP, green) and the static potential V (u)
(blue) shown for a toroidal helix with M = 10, R = 2.5, V0 = 5,
and a helix radius of r = 0.1. (c) Visualization of the Kapitza limit
r → 0. The toroidal helix becomes a circle in the xy plane. The
potential energy induced by the static potential is indicated by the
color. For comparison, a schematic of the Kapitza pendulum is shown
in the inset on the left. (d) Visualization of the Ince-Strutt diagram
highlighting the regions where the two major fixed points of the
Kapitza pendulum are stable (white) or unstable (red). (e) Poincare
surface of section (PSOS) in the Kapitza limit r → 0 for V0 = 5
and E0 = 3. The most prominent types of trajectories are shown:
(I) rotators that are not significantly affected by the driving, (II)
trajectories circling in phase around the ring with the driving, (III)
bounded trajectories centered at the minimum of the static potential,
and (IV) chaotic trajectories. Trajectories marked II circle around the
ring in the opposite direction as those trajectories marked II.

II. DRIVEN TOROIDAL HELIX

We consider a charged particle with charge q confined to
frictionlessly move on a geometry of the shape of a toroidal
helix [see Fig. 1(a)]. Additionally, the particle is subject to a
static potential and driven by a harmonically oscillating elec-
tric field. The confining geometry is parametrized as follows:

r(u) :=

⎛
⎜⎝

(R + r cos(u)) cos(u/M )

(R + r cos(u)) sin(u/M )

r sin(u)

⎞
⎟⎠, u ∈ [0, 2πM], (1)

where M, R, r are the number of helix windings, the radius
of the torus, and the radius of the helix, respectively. The
parametrized position u on the helix can be interpreted as an
angle. If u changes by 2π , the particle moves by exactly one
helical winding. The static potential V (u) at each position r(u)
is defined as

VS (u) = V0 cos

(
u

M

)
. (2)

The potential created by the periodic driving electric field E(t )
is modeled according to the corresponding Stark term:

VE (u, t ) = qE(t ) · r(u) = q cos(ωt )E0 · r(u). (3)

We consider a sinusoidally oscillating electric field with a
polarization in the torus plane (x direction). With this, the
potential energy induced by the driving field becomes

VE (u, t ) = qE0(R + rcos(u))cos(u/M ) cos(ωt ). (4)

This potential consists of two parts: one depending on the
torus radius R and one depending on the helix radius r. They
will from now on be referred to as torus-induced potential
(TIP) and winding-induced potential (WIP), respectively. An
understanding of the potential experienced by the particle
while moving along the helix can be gained from Fig. 1(b).
The figure shows the energy due to the static potential [blue
curve, compare Eq. (2)] and the energy due to the driving
field at t = 0 [orange and green curves for the TIP and WIP
respectively, see Eq. (4)] for a toroidal helix with M = 10,
R = 2.5, V0 = 5, and r = 0.8. The total potential Vtot(u, t ) =
VE (u, t ) + VS (u) contains both the static potential VS (u) and
the field potential VE (u, t ). Due to the time dependence of the
driving field, the total potential energy is, of course, also time
dependent. Specifically, the shown TIP and WIP will oscil-
late with cos(ωt ), resulting in the total energies Vtot(u, t = 0)
[pink dotted line in Fig. 1(b)] for a field aligned in positive x
direction, and Vtot(u, t = 0.5π/ω) [pink densely dotted line in
Fig. 1(b)] half a driving period later when the field is aligned
in the negative x direction. The pink shaded area indicates the
range of potential energies covered for each position u during
a driving period. An increase of r will lead to an increase of
the amplitude of the WIP. In the limit of r → 0, the WIP will
vanish and the fine structure of Vtot disappears. The number of
extrema in the total potential energy can therefore be tuned by
varying r.

The driven helix is then described by the following La-
grangian:

L = m

2

(
dr(u)

dt

)2

− q cos(ωt )E0 · r(u) − V0 cos

(
u

M

)

= m

2
(r2 + a2(R + r cos(u))2)u̇2

− qE0(R + r cos(u)) cos(ωt ) cos(au) − V0 cos(au), (5)

where a = 1/M is the inverse of the winding number. It is
sensible to introduce the parameter l (u) defined as

l2(u) := 1

a2
(r2 + a2(R + r cos(u))2). (6)
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Using this expression, the Lagrangian can be written as

L = ma2

2
l2(u)u̇2

−
(

V0 + qE0

√
l2(u)a2 − r2

a
cos(ωt )

)
cos(au). (7)

With p = ∂L/∂ u̇ = ma2l2(u)u̇, the Lagrangian in Eq. (7)
corresponds to the following Hamiltonian:

H = [2ma2l2(u)]−1 p2

−
(

V0 + qE0

√
l2(u)a2 − r2

a
cos(ωt )

)
cos(au). (8)

The Lagrangian in Eq. (7) efficiently accounts for the con-
fining forces by only allowing positions along the helix r(u).
From this Lagrangian, we obtain the following equation of
motion:

m[r2 + a2(R + r cos(u))2]ü − V0a sin(au)

− qE0 cos(ωt )[r sin(u) cos(au) + a(R + r cos(u)) sin(au)]

+ ma2r sin(u)(R + r cos(u))u̇2/2 = 0. (9)

Some of the parameters in the Lagrangian of Eq. (7) and
of the equation of motion in Eq. (9) are redundant and can be
absorbed by other parameters. The redundant parameters are
the driving frequency ω, the torus radius R, the particle mass
m, and charge q of the particle. These quantities can, without
loss of generality, be eliminated by rescaling the remaining
relevant parameters as follows:

t̃ = t
ω

2π
, r̃ = r

R
, Ẽ = 4π2qE

mRω2
, Ṽ = 4π2V

mR2ω2
. (10)

In the limit of r → 0, we get l2(u) = R2, and the La-
grangian from Eq. (7) becomes the Lagrangian of the Kapitza
pendulum [23]:

LK = m

2
a2R2u̇2 + (V0 + qE0R cos(ωt )) cos(au). (11)

The equivalence between the Kapitza pendulum and the
toroidal helix in the limit of r → 0 is further indicated in
Fig. 1(c) and its inset. The driving electric field and static
potential along the toroidal helix are, respectively, equivalent
to the oscillating pivot and the gravitation potential in the
Kapitza pendulum.

III. THE KAPITZA PENDULUM LIMIT

To be self-contained, we briefly demonstrate the main fea-
tures of our system that are already known from the Kapitza
pendulum. The Kapitza pendulum is a classical pendulum
with an oscillating pivot as depicted in the inset of Fig. 1(c).
One of the most interesting aspects of the Kapitza pendulum
is regarding the fixed points in the underlying equations of
motion. In addition to the expected fixed point where the
pendulum is in its potential minimum (corresponding to u =
Mπ ), the Kapitza pendulum can have another stable fixed
point in the upper position (corresponding to u = 0). This sec-
ond fixed point is stabilized due to the driving forces from the

oscillating pivot. In the Kapitza limit of r → 0, the equation of
motion shown in Eq. (9) simplifies to

ma2R2ü = [V0a + qE0 cos(ωt )aR] sin(au). (12)

From Eq. (12), the two fixed points at u = 0 and u = Mπ—
respectively corresponding to the Kapitza pendulum in the
upper and lower position—can be easily identified. The sta-
bility of these fixed points can be determined by linearizing
Eq. (12) around these two fixed points. This results in the
following equation:

mR2ü = u( ± V0 + qE0R cos(ωt )), (13)

where in case of the fixed point at u = 0 we obtain a positive
sign of the first summand and a negative sign in the case of
the fixed point at u = Mπ . Equation (13) is also known as the
Mathieu equation [compare Eq. (14) below]. The parameter
regions for which the Mathieu equation has periodic bounded
solutions can be determined from the Ince-Strutt diagram
[24] shown in Fig. 1(d). In this diagram, the white areas
mark regions where periodic solutions of Eq. (13) exist, i.e.,
where the fixed point is stable, whereas in the red regions,
no bounded solutions exist, i.e., the fixed point is unstable,
which can lead to an exponential increase of |p|. Further away
from the fixed point, this unbounded growth of energy and
momentum is suppressed by the nonlinearities of Vtot(u, t ). As
can be seen from Eq. (13), positive values on the (V0/R2)-=
axis of Fig. 1(d) describe the stability of the fixed point at
u = 0, whereas negative values describe the stability of the
fixed point at u = Mπ .

The below-given discussions in Secs. IV and V feature
an analysis of the phase space for r > 0 to understand the
dynamics for a wide range of initial conditions. To better
contextualize these results, the most prominent types of tra-
jectories in the Kapitza limit are now discussed. Since our
phase space is made up of three parameters (position u,
momentum p, and time t), we can use a Poincaré surface
of section (PSOS)– -specifically, a stroboscopic map—to vi-
sualize the phase space in a two-dimensional stroboscopic
u(p) mapping. A general overview of the most prominent
possible types of trajectories in the Kapitza limit is given
in Fig. 1(e). For large enough momentum, there will al-
ways be (quasi)periodic trajectories bounding the chaotic sea,
corresponding to a fast rotational motion around the torus
which is not significantly affected by the driving. They are
marked (I) in the figure (or I for trajectories moving in the
opposite direction). With increasing |p|, the corresponding
invariant tori approach a constant behavior. Islands of regular
motion around the two fixed points at u = 0 and u = Mπ

and are marked (III). Additionally, it is possible to stabilize
(quasi)periodic trajectories circling around the torus in phase
with the driving field. This type of motion occurs in the
regions marked (II) and (II) in Fig. 1(e). Chaotic trajecto-
ries [marked (IV)] will in general be present for all E0 > 0.
Through variation of E0 and V0, it is possible to tune the pres-
ence of the trajectories of types (II)–(IV). All these trajectories
are also encountered for arbitrary r > 0—albeit for different
parameter combinations than for r = 0.
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FIG. 2. Comparison of numerical calculations to the analytically predicted stability of the major fixed points in the generalized Kapitza
pendulum. (a)–(c) Maximal distance in phase space between the fixed point (at u = Mπ for α > 0 and at u = 0 for α < 0) and a trajectory
starting at a distance of 10−8 from this point after a simulation time of 1000 driving periods. White color indicates that the particle moves at
least once around the torus. The parameter regions where our analytical calculations based on Eqs. (14)–(16) predict the fixed points to be
stable are marked by the dotted red lines. (d)–(f) The time needed for the particle to move once around the torus. The used trajectories are the
same as in (a)–(c). Again, the corresponding Ince-Strutt diagram is indicated by the dotted red lines. (g), (h) Example PSOS for trajectories
from the purple and white regions.

IV. STABILITY ANALYSIS

We will now consider the general case of a finite helix
radius r > 0 and investigate how the helix radius influences
the stability of the two fixed points discussed in Sec. III. The
persistence of these fixed points in the generalized setup can
be directly verified by inserting the initial conditions u̇ = 0
and u = 0 (or u = Mπ for the second fixed point) into the
general equations of motion given by Eq. (9). In addition to an
analytical stability analysis through linearization of the equa-
tions of motion in the vicinity of the fixed point, we investigate
the particle dynamics close to the fixed point via numerical
simulations. Note that from now on, all calculations are per-
formed using the scaling introduced in Eq. (10). We start with
the analytical considerations and linearize the general equa-
tions of motion in Eq. (9) around the two fixed points. Similar
to the Kapitza limit, the resulting approximate equations of
motion are described by the Mathieu equation, except that
this time the coefficients of the Mathieu equation additionally
depend on the helix radius. The general Mathieu equation is
given by

ü + (α − β cos(τ ))u = 0. (14)

For the first fixed point at u = 0, the parameters α and β are
given by

α1 = − V0a2

4π2(r2 + a2(1 + r)2)
,

β1 = E0(a2(1 + r) + r)

4π2(r2 + a2(1 + r)2)
. (15)

For the second fixed point at u = Mπ we have

α2 = V0a2

4π2[r2 + a2(1 + (−1)Mr)2]

β2 = E0(a2(1 + (−1)Mr) + (−1)Mr)

4π2[r2 + a2(1 + (−1)Mr)2]
. (16)

The factor (−1)M in Eq. (16) accounts for the difference in the
potential energy at u = Mπ between setups with even and odd
winding numbers. In the following, all shown data are for an
even winding number M = 10. For even M, we get α1 = −α2

and β1 = β2 and we can therefore visualize the stability of
both fixed points in the same diagram. Different choices (i.e.,
odd values) of M will change the parameters α and β but to
the best of our knowledge do not lead to significantly different
behavior or dynamics.

Using Eqs. (14) to (16), we can establish and analyze
the Ince-Strutt diagram to determine the parameter sets for
which the two fixed points of our driven helix are stable.
This is illustrated in Fig. 2 for several values of the helix
radius r. The boundaries of the analytically obtained stability
tongues (i.e., regions where the fixed points are predicted to
be stable) obtained from Eqs. (14)–(16) are marked by red
dotted lines. The colors in Fig. 2 visualize the results of the
numerical calculations and provide insight into the dynamics
in the immediate vicinity of the fixed points. These numerical
results are obtained by calculating the trajectory of a particle
starting within an ε environment of the fixed points. If the
fixed point is stable, the resulting motion is (quasi)periodic;
in case it is unstable, the particle will explore a significant
region of the phase space. More specifically, we use the initial
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condition of (u, p) = (Mπ + 10−8, 0) and simulated the dy-
namics for 1000 driving periods. For each trajectory, the
maximal phase space distance of the trajectory to the fixed
point is determined. These results are shown in Figs. 2(a)–
2(c), where each pixel corresponds to a distance obtained
from a single trajectory. In total, 675 000 trajectories were
simulated for each of the subfigures Figs. 2(a)–2(c). The black
areas indicate that the particle stays in the immediate vicinity
of the fixed point, whereas the white color shows that the
particle moves at least once around the torus. The agreement
with the analytically determined stability diagrams can be
clearly seen in Fig. 2. However, an increase of the helix radius
r leads to a significant change of the dynamics of unbounded
trajectories for the fixed point at u = Mπ (i.e., positive values
of V0 in the figure). Increasing r increases the size of the
regions where the particle moves a significant distance away
from the fixed point but does not explore the complete phase
space (i.e., the purple and blue regions in the figure). In the
white regions of the figure, the unstable fixed point is (usually)
part of the chaotic sea, allowing the particle to explore the
entire toroidal helix. A PSOS for a corresponding example
trajectory can be seen in Fig. 2(h). An example PSOS for
a trajectory from the purple and blue regions is shown in
Fig. 2(g). The dynamics in the blue and purple regions of the
figures will be described in more detail in Sec. V.

In contrast to the fixed point at u = Mπ , judging from
Figs. 2(a)–2(c), the behavior outside of the analytically ob-
tained stability tongue for the fixed point at u = 0 (negative
values of V0 in the figure) seems to be hardly affected by
changes of r. One intuitive explanation for this is that VS (u)
has a maximum at u = 0 and at infinitesimal distances from
this point the particle will experience a force away from the
fixed point, thereby preventing the existence of trajectories
similar to the one shown in Fig. 2(g).

To provide insight into the trajectories in the white re-
gions,we determine the time needed until a distance of 2πM
is reached for the first time. The corresponding results are
shown in Figs. 2(d)–2(f). We observe that for increasing r the
transition from (quasi)periodic to chaotic trajectories in the
vicinity of the analytically obtained stability-tongue borders
changes from a (relatively) smooth transition for r = 0 to a
rather abrupt transition for large r.

V. PHASE-SPACE ANALYSIS

In addition to the modifications of the stability of the two
fixed points of the Kapitza pendulum, the driven helix also
exhibits various dynamical phases that appear only for a non-
vanishing radius r > 0. In this section, the most significant of
these features are described and analyzed.

One interesting characteristic concerns the unusual mech-
anism by which the dynamics in the vicinity of the fixed point
at u = Mπ transitions from (quasi)periodic to chaotic motion.
It might be natural to expect that the breakup of invariant
tori happens first for those trajectories with larger phase-
space distance to the fixed point when the system is exposed
to a perturbation. However, in contrast to this expectation,
we observe that trajectories close to the fixed point become
chaotic—resulting in a chaotic phase space region that is
centered around an unstable fixed point and separated from the

FIG. 3. (a) Poincare surface of sections (PSOS) for r = 0.1,
E0 = 5, and V0 = 10. Trajectories close to the fixed point at
(u, p) = (Mπ, 0) (indicated by the arrow) become chaotic while
(quasi)periodic trajectories with greater phase space distances from
the fixed point prevail. (b) Potential energy due to the WIP, as well as
the range of kinetic energy values taken by one of the (quasi)periodic
trajectories that separates the two chaotic regions shown in (a). (c),
(d) PSOS for r = 0.5, E0 = 2 and V0 = 0 (c), V0 = 2 (d). The two
separated chaotic seas marked V and V in (c) become connected
when V0 is of similar order as E0. (e), (f) PSOS for r = 0.1, E0 = 7,
and V0 = 0.9 showing the presence of three distinct chaotic regions.
The upper chaotic region is highlighted in (f).

main chaotic sea by a region with (quasi)periodic trajectories,
i.e., a regular island. The size of this chaotic region can be
tuned by varying the helix radius r. The results are chaotic
trajectories with a tunable motional amplitude (i.e., tunable
maximal distance from the fixed point) around the fixed point.
This effect is demonstrated in the PSOS in Fig. 3(a). In the
figure, one can clearly identify the (quasi)periodic trajectories
and regular regions separating the chaotic trajectories that are
trapped around the fixed point at (u, p) = (Mπ, 0) from those
chaotic trajectories that can explore the entire toroidal helix.
For small parameter regions, the simultaneous presence of
multiple bands of (quasi)periodic trajectories centered around
the (unstable) fixed point at (u, p) = (Mπ, 0), but separated
from one another by chaotic phase space regions, could be
observed.

The reason for this peculiar transition to chaos can be eluci-
dated by the changes in the potential landscape for increasing
r. For r � R, the radius dependent oscillations (the WIP, with
a period of 2π ) of the potential can be treated as a perturbation
to the r → 0 limit. This perturbation will be largest at the
global extrema of the potential at u = 0 and u = Mπ and will
vanish at u = Mπ/2 and u = 3Mπ/2 [see Fig. 1(b)]. This
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heavy oscillatory character of the time-dependent potential
landscape can induce chaotic motion—provided the particle
moves slow enough to be affected. From a comparison with
Fig. 1(e), it can be seen that this is more likely for trajecto-
ries oscillating closer to the fixed point and less likely with
increasing phase space distance of the trajectory from the
fixed point. Consequently, trajectories closer to the fixed point
(i.e., closer to the global minimum of the potential landscape)
will be stronger affected by this perturbation and will be-
come chaotic for smaller values of r than their more distant
counterparts. These arguments are supported by Fig. 3(b),
which shows the WIP-potential energy at t = π , together with
the set of kinetic energy values {Ekin(u(t )) | 0 < t < 2000π}
taken by the particle during a representative (quasi)periodic
example trajectory confining the chaotic phase space region
around the fixed point. It can be seen that the kinetic energy
is for the most part much larger than the perturbation by
the WIP. Only close to those points where the WIP van-
ishes does the kinetic energy also become comparatively
small.

Another interesting effect that is absent in the Kapitza
limit concerns the emergence of chaos in the regime of weak
driving forces. In the regime of small driving amplitudes, two
separate chaotic phase space regions, that are arranged sym-
metrically with respect to a point inversion symmetry through
the point (u, p) = (Mπ, 0), can appear—one consisting of tra-
jectories with only positive momenta, the other consisting of
trajectories with only negative momenta [see regions marked
V and V in Fig. 3(c)]. They are similar to the trajectories
marked (II) and (II) in Fig. 1(e) in the sense that they also
correspond to motion around the torus with strictly positive
or negative momentum. However, instead of moving once
around the torus during each driving period, these trajectories
are chaotic and move on average by one helix winding during
each driving period. The average velocity in these trajectories
is therefore slower by a factor of 1/M compared to the average
velocity of the type-II (and -II) trajectories. These trajecto-
ries appear only in the case of a finite helix radius r. The
(quasi)periodic trajectories separating the two chaotic regions
correspond mostly to very slow (quasi)periodic motion of the
particle around the torus and in some cases to (quasi)periodic
oscillations of the particle within one helix winding. The ori-
gin and mechanism of this effect has previously been explored
in the absence of the static potential [22]. When the static
potential is added, the two chaotic regions will persist while
V0 � E0. However, when V0 is increased, the chaotic regions
also increase and will fuse when V0 is of similar order of
magnitude as E0, thereby resulting in a phase space similar
to the one shown in Fig. 3(d). In the figure, V0 is sufficiently
large, such that all slowly moving (quasi)periodic trajectories
will be part of the regular island around the fixed point at
(u, p) = (Mπ, 0) [marked III in Fig. 3(d)] and none of the
separating trajectories persist.

Another interesting effect concerns the influence of a finite
helix radius on the trajectories moving around the torus in
phase with the driving [see regular islands marked II and II
in Fig. 1(e)]. As shown in Figs. 3(e) and 3(f), chaotic regions
separated from the main chaotic region which is centered
around p = 0 can appear around these regular islands. The
dynamics in the chaotic regions that surround the regular

islands marked II and II in Fig. 3(e) correspond to motion
where the particle moves around the torus (on average) in
phase with the driving frequency. A necessary condition for
this effect to occur is that the driving amplitude is small
enough, such that the chaotic sea centered around p = 0 does
not surround the corresponding two regular islands. Analo-
gous to the effect shown in Figs. 3(a) and 3(b), these chaotic
regions are caused by perturbations of the trajectories due to
the WIP. One difference to this previously discussed effect
is that the regular islands marked II and II are, respectively,
located at the positions u = Mπ/2 and u = 3Mπ/2 where the
WIP vanishes. The perturbation is consequently stronger for
trajectories with larger phase space distances from the fixed
point.

VI. SUMMARY AND DISCUSSION

We have demonstrated that the dynamics of a charged
particle confined to a toroidal helix while being exposed
to a static potential and a driving electric field represent a
generalization of the Kapitza pendulum in the sense that in
the limit of a vanishing helix radius their equations of mo-
tion coincide. We discuss the effects of a finite helix radius
while focusing on two different aspects: the stability of the
two prominent fixed points of the Kapitza pendulum, and
the impact of a nonzero helix radius on the structure of the
phase space and the corresponding dynamics. For a finite helix
radius, the dynamics in the linearized neighborhood of the
main fixed points can be approximated by a Mathieu equa-
tion with modified parameter values. From this, the general
stability of both fixed points for different driving amplitudes
E0, static potential amplitudes V0, and helix radii r have been
determined analytically. These analytical results agree with
those of corresponding numerical simulations. The latter show
that the dynamics in the extended neighborhood of the fixed
point at u = Mπ can change significantly for increasing r,
whereas for the fixed point at u = 0 no such changes could be
observed. Specifically, the change in dynamics can be directly
observed in the phase space, where for an increasing helix
radius the fixed point at (u, p) = (Mπ, 0) can undergo an
unusual transition to chaos. Additionally, two other promi-
nent dynamical phases that only appear for finite helix radii
have been discovered. These phases are characterized by the
presence of multiple separate chaotic seas in the phase space.
Especially notable is that the presence of multiple chaotic seas
allows for chaotic particle trajectories with nonzero average
velocity (i.e., directed transport), even though the spatiotem-
poral symmetries that are usually associated with a vanishing
directed transport [here (u, p, t ) → (−uMod (2Mπ ),−p, t )
and (u, p, t ) → (u,−p,−t )] are not broken by the driving
field. Notable are also the (quasi)periodic trajectories separat-
ing the two chaotic seas for small driving amplitudes and finite
r, since they correspond to regular (directed) motion with very
low momentum around the torus.

The observed dynamics in our driven helix to be seen as a
generalized Kapitza pendulum is a direct consequence of the
additional WIP appearing in the corresponding equations of
motion. Some of the described effects are even occurring in
parameter regimes where the WIP can be treated as a per-
turbation to the Kapitza pendulum. Therefore, an educated
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guess would be that other periodic position-dependent small
amplitude perturbations of the Kapitza pendulum will result in
a dynamic similar to the one observed here. Consequently, we

expect that many of the described effects can be found, e.g.,
in a mechanical Kapitza pendulum with position-dependent
length.
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