
PHYSICAL REVIEW E 105, 054203 (2022)

Machine-learning potential of a single pendulum

Swarnendu Mandal ,1,* Sudeshna Sinha ,2,† and Manish Dev Shrimali 1,‡

1Central University of Rajasthan, Ajmer, Rajasthan, India 305817
2Indian Institute of Science Education and Research Mohali, Punjab, India 140306

(Received 4 January 2022; revised 2 April 2022; accepted 7 April 2022; published 2 May 2022)

Reservoir computing offers a great computational framework where a physical system can directly be used
as computational substrate. Typically a “reservoir” is comprised of a large number of dynamical systems,
and is consequently high dimensional. In this work, we use just a single simple low-dimensional dynamical
system, namely, a driven pendulum, as a potential reservoir to implement reservoir computing. Remarkably
we demonstrate, through numerical simulations as well as a proof-of-principle experimental realization, that
one can successfully perform learning tasks using this single system. The underlying idea is to utilize the rich
intrinsic dynamical patterns of the driven pendulum, especially the transient dynamics which has so far been an
untapped resource. This allows even a single system to serve as a suitable candidate for a reservoir. Specifically,
we analyze the performance of the single pendulum reservoir for two classes of tasks: temporal and nontemporal
data processing. The accuracy and robustness of the performance exhibited by this minimal one-node reservoir in
implementing these tasks strongly suggest an alternative direction in designing the reservoir layer from the point
of view of efficient applications. Further, the simplicity of our learning system offers an opportunity to better
understand the framework of reservoir computing in general and indicates the remarkable machine-learning
potential of even a single simple nonlinear system.

DOI: 10.1103/PhysRevE.105.054203

I. INTRODUCTION

The ability of dynamical systems to process information
has commanded long-standing interdisciplinary research in-
terest [1–3]. There are several examples of natural systems
with the capability to perform different forms of intrinsic
computation [4–6]. In the context of machine learning, the
overarching question is how ideas from physics or physical
systems can enhance existing concepts. On one hand, research
directions that can enhance the performance of algorithms
in handling data from dynamical systems is a very pertinent
question [7–11]. On the other hand, research efforts to utilize
physical systems to implement machine-learning learning al-
gorithms have serious implications for new concepts in the
field of artificial intelligence. This line of enquiry also has
consequences for gauging the information processing capacity
of naturally occurring or human-engineered physical, chemi-
cal, and biological systems [12].

Here we consider the reservoir computing (RC) technique
to exploit a dynamical system for machine learning. RC is a
recurrent neural network (RNN) based computational frame-
work, in which the memory capability and rich dynamics of
an RNN can be used for computation without actually training
the network structure itself. Instead, training the readout layer
is sufficient to achieve good performance [13,14]. In this
framework, the network is called the reservoir, as it stores
the input as a high-dimensional spatiotemporal pattern, such
that a linear transformation can efficiently extract the desired

*swarnenduphy35@gmail.com
†sudeshna@iisermohali.ac.in
‡shrimali@curaj.ac.in

output in readout. Formally, a low-dimensional temporal in-
put u(t) is transformed into a much higher dimensional state
vector x(t) by the reservoir. These state vectors are processed
further by the linear readout to get a desired output. For
its simplicity, scalability, and lower training costs, reservoir
computing has attracted widespread research interest, both in
terms of applications [15–24] as well as basic development of
the general framework [25–29].

In this article, we show through both numerical simula-
tions and experimentation that a surprisingly simple system,
namely, a single forced pendulum, has sufficient richness in
its dynamics to process information for intelligent compu-
tation. The central idea is that, instead of multiplexing the
input in state space, we encode the inputs in the temporal
patterns, effectively making it act like a high-dimensional
system [30–33]. In this work, we will assess the performance
of our reservoir in the arena of both temporal and nontem-
poral tasks, and demonstrate that both these classes of tasks
can be performed using our minimal one-node reservoir with
strikingly good performance.

II. RESERVOIR DYNAMICS

Specifically, we consider a pendulum of length l with a bob
of mass m, periodically driven with a force of amplitude F ,
depicted schematically in Fig. 1. Given a damping coefficient
b of the medium, the equation of motion can be written as

d2x

dt2
= −g

l
sin(x) − k

dx

dt
+ f sign [sin(ωt)], (1)

where the sign[·] function represents a square wave that tog-
gles between +1 and −1 according to the argument being
positive or negative, respectively. Here f = F

m and k = b
m are

2470-0045/2022/105(5)/054203(9) 054203-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0560-5485
https://orcid.org/0000-0002-1364-5276
https://orcid.org/0000-0003-1633-469X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.054203&domain=pdf&date_stamp=2022-05-02
https://doi.org/10.1103/PhysRevE.105.054203

MANDAL, SINHA, AND SHRIMALI PHYSICAL REVIEW E 105, 054203 (2022)

FIG. 1. (a) Schematic of the reservoir, (b) dynamics of an under-
damped pendulum without forcing (solid black line) with the period
of the driving force shown by dotted red lines; and (c) transient
dynamics of the system (solid black line) under periodic forcing (in-
dicated by alternating red and blue backgrounds). In the presence of
periodic driving, the dynamics is quasiperiodic here, as the frequency
of force is not equal to the natural frequency of the pendulum.

the amplitude of the force and damping coefficient per unit
mass. This system can yield quasiperiodicity (as depicted in
Fig. 1) and has been studied extensively [34–36]. With no loss
of generality, we have considered k = 5 × 10−2 and l = 1.0
for the numerical simulations presented in this study.

The unique dynamics arising at each point in f -ω param-
eter space is evident from the bifurcation diagrams shown in
Fig. 2. Unlike most studies, here we examine the temporal pat-
terns arising, not just in the asymptotic case but in the transient

-2

-1

 0

 1

 2

 0 0.5 1 1.5 2 2.5

x
*

f

(a)

-2

-1

 0

 1

 2

 0 0.5 1 1.5 2 2.5

x
*

f

(b)

-2

-1

 0

 1

 2

 0 0.3 0.6 0.9 1.2 1.5

x
*

ω

(c)

-2

-1

 0

 1

 2

 0 0.3 0.6 0.9 1.2 1.5

x
*

ω

(d)

FIG. 2. Bifurcation diagram of the reservoir dynamics, (a, b)
with respect to amplitude f of the driving force, with ω = 1.0, and
(c, d) with respect to the driving frequency ω, with f = 1.5. The first
column (a, c) represents the asymptotic dynamics, and the second
column (b, d) shows the transient dynamics starting from initial state
[x, ẋ] = [0, 0]. The regions between dashed red lines are used to
encode the input to the reservoir.

dynamics as well. The comparative features of the transient
reservoir dynamics and the asymptotic dynamics can be seen
from the two columns displayed in the figure. Clearly, the
transient dynamics provides a richer repertoire of nonlinear
patterns than the asymptotic behavior, and we will crucially
use this aspect to encode information more efficiently.

III. INPUT ENCODING

Multiplexing the input signal efficiently into the reservoir
dynamics is a crucial step for reservoir computing. The com-
plete information should be stored into the reservoir. For our
case, we have three possible choices to feed the input to the
system. One option is to encode the input information with
the initial condition. But this is not an efficient choice. As
different trajectories can evolve to the same attractor, the pre-
images are not unique after transience, with different initial
conditions producing the same asymptotic trajectories. Hence
this will lead to input information loss and hinder robust and
consistent input encoding. Alternatively, one can encode the
input using the two system parameters: amplitude (f) and
frequency (ω) of the applied force. Either of these two options
is a better choice than input encoding with initial conditions,
as each point in f -ω space gives rise to a unique dynamical
sequence.

In this work we focus on tasks involving one-dimensional
inputs, and hence only one parameter needs to be varied for in-
put encoding while the other parameter can be kept fixed. We
will consider input encoding using both the amplitude and the
frequency of forcing in order to compare the efficacy of these
two alternative methods of input encoding for different tasks,
including their robustness in the presence of noise. We will
denote the scheme of input encoding using forcing amplitude
f as amplitude encoding, while the scheme where inputs are
encoded using the forcing frequency ω will be simply referred
to as frequency encoding.

First consider the amplitude encoding scheme where we
multiplex the input with the amplitude of force f . In this
scheme we need to choose a range of the parameter, say
f ∈ [fmin, fmax], and we then need to scale all input points
into this range. This scaling transformation (u → f) can be
expressed as f = fmin + (fmax − fmin)u, where u is the nor-
malized input in range [0,1]. Formally, u = min[ũ(t)]+ũ(t)

max[ũ(t)]−min[ũ(t)] ,
ũ(t) being the original input signal. Specifically, the range of
f for this scheme is taken to be [1,2] as shown in Fig. 2(b).
For the frequency encoding scheme, we can proceed in a
similar fashion, with parameter ω replacing parameter f in
the formalism.

As a testbed to gauge the performance of our system we
will consider two distinct classes of tasks: one task will in-
volve processing nontemporal signals and another task will
consider processing temporal signals. In general, reservoir
computing has proven to be successful in solving time-
dependent data processing, stemming from the nonlinear
memory effect of the reservoir. But for nontemporal tasks,
we need to remove the memory effect. This can be achieved
by resetting the reservoir to a fixed point after feeding an
input data point to it. Specifically for our case, the reservoir
is set to [x, ẋ] = [0, 0] after each input. A step-wise detailed

054203-2

MACHINE-LEARNING POTENTIAL OF A SINGLE … PHYSICAL REVIEW E 105, 054203 (2022)

discussion of the training procedure can be found in Ap-
pendix A 1 of this article.

IV. RESERVOIR STATE AND REGRESSION

The transient dynamics of the reservoir is stored in a dis-
cretized form as the state vector. Only the transient part of
the dynamics is considered as it produces a richer nonlinear
repertoire than its asymptotic behavior. More formally, the
state vector is the set of variables x(t) recorded at a fixed
sampling rate κ� [κ = 1, 2, 3, . . .], an integer multiple of the
sampling cycle frequency �; i.e., for each sampling cycle
we record κ values of x(t). Thus if we store the data for N
cycles for each input, states to be stored can be written as
S = [x(0), x(τ), x(2τ), . . . , x(κNτ)], where τ = 2π

κ�
is the

sampling interval. For each point ũ(ti), i = 1, 2, 3, . . ., of in-
put signal, one reservoir state Si is noted. Note that, after
driving the reservoir with each input point therewith noting
corresponding S, we reset the reservoir to [x, ẋ] = [0, 0].

Now, for the regression, a state vector Xi is formed
corresponding to each input point u(ti) using the set of
noted Si. For nontemporal tasks, Xi is a function of only
the current state Si. For that, we produce the state vec-
tor simply as the column matrix Xi = [Si]T , where [·]T

represents the transpose. For temporal tasks, we form the
state vector corresponding to any particular input with the
current states as well as states corresponding to a cer-
tain number of previous input points; i.e., we take Xi =
[w0Si−m, w1Si−m−1, . . . , wm−1Si−1, wmSi]T , where w j, j =
0, 1, 2, . . . , m, are the weights of previous input states, fol-
lowing a linear distribution in the range [0,1]. The linear
distribution was found to work well in this case [37–39].
Please refer to Appendix A 2 for details. Here m is the finite
memory, which can be considered as a hyperparameter to be
tuned for different kinds of temporal tasks and allows us to
achieve the required fading memory to process temporal data.
In our numerical simulations, we have considered m = 100.

For the two schemes of input encoding the value of � is
different. In the amplitude encoding scheme we take � = ω,
the frequency of driving force, and for the frequency encoding
scheme we consider � = ω0, the natural frequency of the
oscillator. In general, � can be treated as another hyperpa-
rameter for both schemes.

Thus, for a complete input signal ũ(t) one has the reser-
voir state vector matrix � = [X1, X2, X3, . . . , XL], L being the
length of the input signal. So the matrix � has the dimension
κN × L for task I and mκN × L for task II, where κ and N are
hyperparameters that can be optimized for best results.

Now if the corresponding output for ũ(t) is ṽ(t), the linear
transformation between the output signal and the reservoir
state vector matrix can be written as ṽ = W �, where W is
the (1 × κN)-dimensional connection matrix. This matrix can
be evaluated using a training data set by a regression method
as W = ṽ�−1. Specifically for this purpose, we have used the
Moore-Penrose pseudoinverse [40].

V. MACHINE-LEARNING TASKS

To check the performance of the reservoir we consider two
tasks. The first task is nontemporal, and involves the learning

-50

 0

 50

-3 -2 -1 0 1 2 3

f(
x)

x

Target Output
Predicted Output

(a)

-50

 0

 50

-3 -2 -1 0 1 2 3

f(
x)

x

Target Output
Predicted Output

(b)

 0

 20

 40

 0 100 200 300 400 500 600 700 800 900 1000

v
(t

)

Predicted Output
Target Output

(c)

 0

 20

 40

 0 100 200 300 400 500 600 700 800 900 1000

v
(t

)

time

Predicted Output
Target Output

(d)

FIG. 3. The comparison of predicted output with target for (a, b)
task I and (c, d) task II. (a) and (c) are the results obtained with the
amplitude encoding scheme and (b) and (d) are those obtained with
frequency encoding.

of a high-degree polynomial. The second task involves tem-
poral data processing, and considers the difficult task of using
data from one state variable to infer another state variable in a
chaotic system.

Specifically, the aim of task I is to approximate a
seventh-degree polynomial given by f (x) = (x − 3)(x −
2)(x − 1)x(x + 1)(x + 2)(x + 3) in the range x ∈ [−3, 3]. As
this task corresponds to nontemporal input processing, one in-
put point x is necessary and sufficient to get the corresponding
output f (x).

Our second task (task II) pertains to the inferring of a
missing variable of a chaotic attractor dealing with temporal
data processing. As an illustrative example, here we consider
the state variable x(t) of a chaotic Lorenz system [ẋ = 10(y −
x), ẏ = x(28 − z) − y, ż = xy − 8z/3] [41,42] as input to in-
fer another state variable, y(t) or z(t), as output.

This class of tasks is considered to be a benchmark to test
the performance of a reservoir [43,44].

VI. RESULTS

The efficiency of the reservoir is analyzed by estimating
the accuracy of the tasks it performs, quantified by root mean
square error (RMSE) of the predicted output with reference
to the target one. We find that the reservoir works with great
accuracy for both temporal and nontemporal tasks, for both
schemes, as is clearly discernible from Fig. 3. The success of
our single-node reservoir is also evident quantitatively from
Table I, which lists the order of accuracy obtained for the
tasks.

For task I, we find that a reservoir trained with only 500
data points can approximate the polynomial with RMSE of the
order of 10−10. Further, smaller training data sets do not sig-
nificantly degrade the accuracy obtained. For instance, even

054203-3

MANDAL, SINHA, AND SHRIMALI PHYSICAL REVIEW E 105, 054203 (2022)

TABLE I. Comparison of performance, as quantified by the
RMSE, under two different schemes of input encoding, with one
method using the forcing amplitude f and the other method using
forcing frequency ω to encode inputs. The first value reports the
testing phase result as the order of average RMSE obtained with 100
time series samples, for noise-free systems, while the second value
gives that obtained in the presence of noise.

Input encoding Task I Task II

f 10−10, 10−2 10−5, 10−5

ω 10−8, 10−3 10−5, 10−5

training data sets with size as low as 100 yields accuracy of
the order of 10−6.

For the case of task II, the reservoir was trained with data
set of length 5000, and it yielded an accuracy of the order of
10−5. While the prediction of both variables y(t) and z(t) was
found to be very good, we present the result of the x(t) → z(t)
prediction in Table I. For the tasks we have considered, the
prediction accuracy of the trained reservoir is independent of
the testing data length, and for the numerical results listed
in Table I we have taken the testing data length to be the
same as the training data length. So from the results it is
clear that, even for the tasks involving intensive and complex
information processing, the one-node reservoir predicts the
output successfully.

A. Performance in presence of noise

We now assess the robustness of the performance in the
presence of a noise floor. In order to examine the effect of
noise on the performance, we have perturbed each state vari-
able with a random noise, uniformly distributed in the range
[−0.01 : 0.01]. The results are displayed in Table I. It is clear
that the performance is reasonably stable even in the presence
of such significantly large noise. Further, we notice that en-
coding inputs via the frequency of the drive is more robust and
accurate than encoding inputs via the amplitude of forcing.
This suggests that for optimal and most robust implementa-
tion, different control parameters for encoding information
should be investigated, as the nature of the dynamics could be
quite different under variation of different parameters, leading
to different robustness in the presence of noise.

B. Comparison of performance with multinode reservoirs

We have also compared the efficiency of our single-node
reservoir with the multinode reservoirs utilized in earlier stud-
ies. As a representative example, we have considered the
reservoir of an environmentally coupled Lorenz oscillator net-
work [45] to show the comparison in terms of the similar
tasks performed by the two reservoirs. The tasks considered
are the attractor reconstruction of chaotic Rössler and chaotic
Chua systems, and the filtering of a Mackey-Glass time series.
Table II lists the accuracy obtained for these tasks performed
by both the reservoirs when trained with same training data.
These results suggest that our single-node reservoir has the
potential to perform better than a reservoir comprised of a
large network of dynamical systems.

TABLE II. Comparison of performance, as reflected by the
RMSE obtained from reservoir computing implemented by a multin-
ode network reservoir and a single-node pendulum reservoir, for
three illustrative tasks (from left to right): attractor reconstruction of
a chaotic Rössler system, attractor reconstruction of a chaotic Chua
system, and filtering of a Mackey-Glass time series.

Reservoir/Tasks Rössler Chua Mackey-Glass

Multinode network 10−9 10−6 10−4

Single pendulum 10−14 10−6 10−11

C. Utilizing a single Duffing oscillator for machine learning

In order to explore the generality of our results we have
investigated another low-dimensional nonlinear system that
can be readily implemented in the laboratory. We have also
chosen a system which allows us to gauge the comparative
performance of the systems as the reservoir with different
dynamical complexity. Specifically we implement reservoir
computing with a single Duffing oscillator serving as a “reser-
voir.” The dynamics is given by the evolution equations

ẋ = y,
(2)

ẏ = −δy − βx − αx3 + f cos(ωt),

with parameter set chosen as follows: δ = 0.2, β = −1.0, α =
1.0, and ω = 1.0. The comparison of transient and asymptotic
dynamics at complexity is depicted in Fig. 4.

The results of Table III offer us a testbed for gauging the
comparative performance of systems with different dynamical
complexity serving as a single-node reservoir. The crucial
feature we exploit here is that transient periodic and quasiperi-
odic behavior offers a rich repertoire of temporal sequences,
while not suffering from the extreme sensitivity to initial con-
ditions that comes alongside the complexity of chaos. So we
find that the combination of stability and complexity offered
by periodic and quasiperiodic transient dynamics makes this
class of dynamical behavior most suited as a reservoir.

-3
-2
-1
 0
 1
 2
 3

 0 1 2 3 4 5 6 7

x
*

f

(a)

 0.8 1.05 1.3

x
*

f

(b)

 5.4 5.65 5.9

x
*

f

(c)

 6 6.25 6.5

x
*

f

(d)

FIG. 4. (a) Bifurcation diagram of the asymptotic dynamics of
the Duffing oscillator. (b–d) Bifurcation diagrams for the transient
counterpart in the periodic, chaotic, and quasiperiodic regions, re-
spectively, as marked in (a) by dashed rectangles.

054203-4

MACHINE-LEARNING POTENTIAL OF A SINGLE … PHYSICAL REVIEW E 105, 054203 (2022)

TABLE III. Comparison of performance quantified by RMSE, obtained by reservoir computing implemented using a single periodic,
quasiperiodic, and chaotic Duffing oscillator as a reservoir. The first row presents results obtained using asymptotic dynamics, and the second
row presents results obtained using transient dynamics.

Periodic Quasiperiodic Chaotic

Task I Task II Task I Task II Task I Task II

Asymptotic 2 × 10−7 3 × 10−3 1 × 10−7 1 × 10−2 1 × 100 2 × 100

Transient 6 × 10−12 2 × 10−3 2 × 10−8 1 × 10−3 1 × 10−8 7 × 10−3

D. Proof-of-principle experiment

We have also investigated the performance of a single-
node reservoir that utilizes actual laboratory data from an
experimental realization of a forced pendulum. Remarkably,
even this simple experimental system yields very good per-
formance, as seen from the results displayed in Fig. 5. The
detailed discussion of experimental setup and procedure is
listed in Appendix B.

VII. CONCLUSIONS

In summary, we have successfully demonstrated that a
single simple dynamical system, such as a pendulum, can be
used effectively as a reservoir in reservoir computing. Specif-
ically, we exploited the rich dynamics of a driven pendulum
for a single-node reservoir to perform complex artificial in-
telligence tasks. The efficacy of our idea is demonstrated
through a range of tasks, and further verified using an ex-
perimental system as a reservoir computer. Earlier attempts
to implement machine learning with single classical systems
have employed time-delay systems [32,33]. However, it is
well known that such systems are effectively very high di-
mensional. So our central result of successfully implementing
reservoir computing using just a simple, low-dimensional sys-
tem, is noteworthy and surprising in its effectiveness.

In this study, we have undertaken two classes of tasks,
one processing temporal signals and the other nontemporal

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

-3 -2 -1 0 1 2 3

f(
x

)

x

Target Output
Predicted Output

FIG. 5. Accuracy of task I, using the time series of a laboratory
realization of a pendulum as a reservoir, demonstrating the ability of
a simple experimental system to execute computational tasks. Here
the frequency encoding scheme is used.

inputs. One of the directions our work suggests is the use
of the transient dynamics of nonchaotic nonlinear systems
as the “reservoir” in single-node reservoir computing, as it
offers both stability and complexity. The temporal patterns
embedded in the transient dynamics of a nonlinear system
can thus provide a rich set of transformations for the readout
layer. We present results from numerical simulations, with the
parameters of the dynamical system utilized as a reservoir
chosen in such a way that it can be easily realized in laboratory
experiments.

Importantly, this work can also be extended to deal with
noisy real-world data sets containing impurities. Further,
physical implementations of the idea can be potentially ex-
tended to much smaller, faster, and power-efficient systems,
for instance, dynamical systems realized with integrated cir-
cuit chips. So these ideas can lead to the foundation of
powerful machine-learning enabled chips.

In conclusion then, we have demonstrated that a single
low-dimensional nonlinear dynamical system has remarkable
potential for information processing, and can serve as a “reser-
voir” for reservoir computing. These results also open up the
possibility of other simple dynamical systems for single-node
reservoir computing, and a wide variety of natural systems
can be considered as potential candidates for the reservoir.
Thus this work provides a significant step forward towards the
broad goal of exploiting intrinsic dynamics of natural systems
for intelligent computation.

ACKNOWLEDGMENTS

M.D.S. acknowledge financial support from SERB, De-
partment of Science and Technology (DST), India (Grant
No. CRG/2021/003301). M.D.S. and S.M. are also sup-
ported by the Department of Science and Technology (DST),
India, under the Indo-Russian Joint Research Programme
(Grant No. INT/RUS/RSF/P-18). S.S. acknowledges sup-
port from the J.C. Bose National Fellowship (Grant No.
JBR/2020/000004).

APPENDIX A: TRAINING OF THE RESERVOIR

1. Details of the procedure

Step 1. Produce the training data set as input u(t) =
[u(t1), u(t2), . . . , u(tL)] and the corresponding output v(t) =
[v(t1), v(t2), . . . , v(tL)].

For example, in task I, u(t) is a set of x values randomly
distributed over the domain [−3 : 3] and v(t) is corresponding
f (x) in the same order. For task II, u(t) is the x state variable
data of a chaotic Lorenz system in a prescribed time interval

054203-5

MANDAL, SINHA, AND SHRIMALI PHYSICAL REVIEW E 105, 054203 (2022)

FIG. 6. Top: The schematic for the training procedure. u(ti), which refers to one particular point of input data set u(t), is fed to the reservoir
by setting the driving force amplitude (f) and frequency (ω) accordingly (refer to step 3). Bottom: The process to form reservoir state vector
Xi using reservoir dynamics Si, in which the fading color intensity represents decreasing weights for the temporal task case (see step 4).

(for instance, in a time interval of length 0.1) and v(t) is the
corresponding z state variable data.

Step 2. Scale the input u(t) in a selected range of the
encoding parameter (f or ω). For amplitude encoding, u(t)
is scaled to [fmin, fmax] range and ω is held constant for
all u(ti)’s. So the updated input to the reservoir becomes
[(f1, ω), (f2, ω), . . . , (fL, ω)] in the form of magnitude and
frequency of the driving force. Similarly for frequency en-
coding, u(t) is scaled to the [ωmin, ωmax] range and f is
held constant for all u(ti)’s. Hence the input to the reservoir
becomes [(f , ω1), (f , ω2), . . . , (f , ωL)].

For example consider task I performed with the amplitude
encoding scheme; the range of f is taken to be [1 : 2]. So the
input x in the range [−3 : 3] needs to be scaled into [1 : 2].
Hence, the x → f scaling is defined as f = 1 + (x + 3)/6.

Step 3. Run the reservoir starting with initial state [x, ẋ] =
[0, 0] with driving force parameters [fi, ωi] corresponding
to input u(ti). The reservoir state x(t) is recorded at a fixed
sampling rate κ� [κ = 1, 2, 3, . . .], an integer multiple of the
sampling cycle frequency �; i.e., for each sampling cycle
we record κ values of x(t). Thus if we store the data for N
cycles for each input, states to be stored can be written as
S = [x(0), x(τ), x(2τ), . . . , x(κNτ)], where τ = 2π

κ�
is the

sampling interval.
For the two schemes of input encoding the value of � is

different. In the amplitude encoding scheme we take � = ω,
the frequency of driving force, and for the frequency encoding
scheme we consider � = ω0, the natural frequency of the
oscillator. In general, � can be treated as another hyperpa-
rameter for both schemes.

For each point u(ti), i = 1, 2, 3, . . ., of the input sig-
nal, one reservoir state Si is noted. That is, Si is the
reservoir’s transient dynamics corresponding to the pa-
rameter [fi, ωi] determined by a single input point u(ti).

Step 3 is repeated for i = 1, 2, 3, . . . , L (see Fig. 6 for
schematic).

Step 4. A reservoir state vector Xi corresponding to a sin-
gle input point u(ti) is produced from stored dynamics Si’s.
For nontemporal tasks, Xi = [Si]T . But for temporal tasks,
Xi = [w0Si−m,w1Si−m−1, . . . ,wm−1Si−1,wmSi]T , where w j ,
j = 0, 1, 2, . . . , m, are the weights of previous input states,
following a linear distribution in the range [0,1]. Here m is
the finite memory. In our numerical simulations, we have
considered m = 100.

So, for temporal tasks, an initial m number of input points
are used only to generate the dynamics required to achieve the
memory effect to form reservoir state X . This implies the very
first reservoir state X1 corresponds to input data point u(tm+1).

Step 5. All reservoir state vectors Xi are stacked to
form state vector matrix �. Thus, for a complete in-
put signal, one has the reservoir state vector matrix � =
[X1, X2, X3, . . . , XL], L being the length of the input signal.
The matrix � has the dimension κN × L for nontemporal
tasks and mκN × L for temporal tasks, where κ and N are
hyperparameters that can be optimized for best results.

The output data set v(t) is used for regression to find the
set of output connection W . Now if the corresponding output
for u(t) is v(t), the linear transformation between the output
signal and the reservoir state vector matrix can be written as
v = W �, where W is the (1 × κN)-dimensional connection
matrix. This matrix can be evaluated using a training data
set by regression method as W = v�−1. For this purpose, we
have specifically employed the Moore-Penrose pseudoinverse.

2. Linear memory

For sequential information processing, the memory of pre-
vious inputs is essential to be taken care of. That is the

054203-6

MACHINE-LEARNING POTENTIAL OF A SINGLE … PHYSICAL REVIEW E 105, 054203 (2022)

FIG. 7. Experimental setup.

reason why reservoir computing has been so successful in
performing sequential tasks using its echo state properties.
Information regarding any particular input is echoed into the
reservoir dynamics corresponding to subsequent inputs. But
for our scheme, to utilize the transient dynamics, we need to
reset the reservoir after each input point multiplexing. Thus
reservoir dynamics corresponding to any input becomes com-
pletely independent of each other. So to achieve the memory
effect for sequential task processing, we manually stack the
previous input dynamics with any particular input dynamics
with gradually lesser weights than the previous ones. The
weights for our case are considered to be a uniform linear
distribution in the range [0 : 1] with previous dynamics having
lesser weights. The linear distribution works better than a
few other nonlinear distributions like exponential decaying
weights, because the memory stored in a dynamical system
is degraded with increase in nonlinearity [37,38].

APPENDIX B: EXPERIMENTAL REALIZATION OF THE
SINGLE PENDULUM RESERVOIR

1. Components

The components used for this experiment are listed and
described below (see Fig. 7).

(1) A hollow aluminium rod of length 50 cm and cross-
section diameter of 1 cm is used, with one end attached to a
rigid platform to hang from by a pivot. A bob is attached to
the other end.

(2) A cylindrical bob of length 6 cm and cross-section di-
ameter 4.5 cm holds two opposite facing propellers aligned in
the plane of oscillation. This also contains the control unit of
propellers inside with some added weight. The total weight of
the bob is 0.5 kg approximately.

(3) Two A2212/13T (1000 kV) brushless DC (BLDC)
motors are attached to the bob with two 10-in. (1045) pro-
pellers each.

(4) Two 30-A electronic speed controllers (ESCs), kept
inside the bob, are used for controlling the speed of two
motors by a microcontroller.

(5) A microcontroller (Arduino Nano) attached with the
bob is used to receive wireless data and pass it to the ESCs.
This is actually the part of the circuit responsible for generat-
ing the driving force function.

(6) An HC 05 Bluetooth module enables the possibility to
receive control input wirelessly without affecting the natural
dynamics.

(7) An MPU-6050 GY-521 gyro sensor is attached to the
pendulum near the pivot to collect the angular deflection data
of the pendulum with time. This sensor is interfaced with
another microcontroller via fine flexible wires.

(8) An Arduino Uno is used to receive and decode the
gyro sensor data and to communicate with the computer for
calculation.

(9) An external DC power supply is used to power the
whole setup.

2. Experimental steps

(a) Step I. We start by setting up the system with all the
components and required circuit connections.

(b) Step II. First, we need to calibrate two brushless DC
motors. The controllers (ESCs) take a high-frequency square
wave signal input and according to its pulse width the speed
is decided. So, by the microcontroller we need to generate a
pulse width modulated (PWM) signal specifying the width in
the range [0,180]. Basically, 0 corresponds to no rotation and
180 to full speed. Now, the speed decides the amount of force
exerted (F) by the propellers. We need to find out a relation
between f = F/m and the input pulse width for the pulse
width modulation.

This is done using a simple setup. Say, for pulse width p
a propeller generates a force F and due to that the pendulum
rests at an angular displacement θ . In this case, F = mg sin(θ)
or f = g sin(θ). Hence, for any p we can find the value of
f . Repeating this process with both the motors a sufficient
number of times with the setup, and fitting the data to straight
lines, we can find calibration curves for any value of f for the
two motors.

(c) Step III. We need to program the microcontrollers ac-
cording to the requirement of operation. The Arduino Nano,
attached to the bob, should receive the wireless signal of the
ESC inputs and the ω value to generate the driving force func-
tion. Similarly, the Arduino Uno interfacing the gyro sensor
should be programed to sample data at rate defined by τ .

(d) Step IV. The setup is run with required inputs and the
gyro sensor data from the Arduino Uno are stored. Reservoir
states are generated for both training and testing data inputs.

(e) Step V. Training reservoir states are used for regression
with their corresponding output.

(f) Step VI. Using the optimal output weight evaluated by
regression, test reservoir states are used to find the output, and
the predicted output is compared with the target output.

3. Drop in performance with the amplitude encoding scheme

Figure 5 of the article shows the results from this exper-
iment using the frequency encoding scheme. However, there
is a significant effect of noise on the performance when the
amplitude encoding scheme is used. The factors that affect the
performance under the amplitude encoding scheme are ratio-
nalized as follows. To use the amplitude encoding scheme one
needs to multiplex the input with the amplitude of force. In the
experimental setup, we can control only the pulse width of the
ESC input, and two transformations need to be implemented.
First, the pulse width information is converted into speed,
and second, according to varying speeds, different magnitudes
of the reaction force generated by the propellers are exerted

054203-7

MANDAL, SINHA, AND SHRIMALI PHYSICAL REVIEW E 105, 054203 (2022)

on the system. So there are many potential factors affecting
the control of input force, such as the electronic or thermal
noise affecting the ESCs and air density, ambient temperature,
the environment’s aerodynamics, and so on. So there is no
direct control over the forcing amplitude, i.e., the value of

f . On the other hand, the frequency encoding scheme simply
encodes input information using the frequency of the force ω,
on which there is a direct control. Since the frequency can be
controlled with a precision of ∼(μs)−1 by the microcontroller,
the frequency encoding scheme yields better results.

[1] R. Shaw, Strange attractors, chaotic behavior, and information
flow, Z. Naturforsch. A 36, 80 (1981).

[2] S. Sinha and W. L. Ditto, Dynamics Based Computation, Phys.
Rev. Lett. 81, 2156 (1998).

[3] T. Munakata, S. Sinha, and W. Ditto, Chaos computing: Im-
plementation of fundamental logical and arithmetic operations
and memory by chaotic elements, IEEE Trans. Circuit Syst. 49,
1629 (2002).

[4] J. P. Crutchfield, W. L. Ditto, and S. Sinha, Introduction to
focus issue: Intrinsic and designed computation: Information
processing in dynamical systems–beyond the digital hegemony,
Chaos: Interdiscip. J. Non. Sci. 20, 037101 (2010).

[5] K. Mainzer, Thinking in Complexity: The Computational
Dynamics of Matter, Mind, and Mankind (Springer, Berlin,
Heidelberg, 2007).

[6] T. Toffoli, Nothing makes sense in computing except in the light
of evolution, Int. J. Unconv. Comput. 1, 3 (2004).

[7] A. Choudhary, J. F. Lindner, E. G. Holliday, S. T. Miller, S.
Sinha, and W. L. Ditto, Physics-enhanced neural networks learn
order and chaos, Phys. Rev. E 101, 062207 (2020).

[8] S. T. Miller, J. F. Lindner, A. Choudhary, S. Sinha, and W. L.
Ditto, The scaling of physics-informed machine learning with
data and dimensions, Chaos, Solitons Fractals: X 5, 100046
(2020).

[9] A. Choudhary, J. Lindner, E. Holliday, S. Miller, S. Sinha, and
W. Ditto, Forecasting Hamiltonian dynamics without canonical
coordinates, Nonlinear Dyn. 103, 1553 (2021).

[10] C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai, Adaptable Hamil-
tonian neural networks, Phys. Rev. Research 3, 023156 (2021).

[11] J. Meiyazhagan, S. Sudharsan, and M. Senthilvelan, Model-free
prediction of emergence of extreme events in a parametrically
driven nonlinear dynamical system by deep learning, Eur. Phys.
J. B 94, 156 (2021).

[12] D. Beniaguev, I. Segev, and M. London, Single cortical neurons
as deep artificial neural networks, Neuron 109, 2727 (2021).

[13] H. Jaeger, The echo state approach to analysing and training re-
current neural networks-with an erratum note, Bonn, Germany:
German National Research Center for Information Technology
GMD Technical Report 148 (2001), p. 13.

[14] W. Maass, T. Natschläger, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).

[15] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).

[16] M. Lukoševičius, H. Jaeger, and B. Schrauwen, Reservoir com-
puting trends, Künstliche Intelligenz 26, 365 (2012).

[17] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent

advances in physical reservoir computing: A review, Neural
Networks 115, 100 (2019).

[18] K. Nakajima, Physical reservoir computing—an introductory
perspective, Jpn. J. Appl. Phys. 59, 060501 (2020).

[19] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[20] Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, and H. Wu, Dy-
namic memristor-based reservoir computing for high-efficiency
temporal signal processing, Nat. Commun. 12, 1 (2021).

[21] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan,
Large-Scale Optical Reservoir Computing for Spatiotempo-
ral Chaotic Systems Prediction, Phys. Rev. X 10, 041037
(2020).

[22] S. Ghosh, A. Senapati, A. Mishra, J. Chattopadhyay, S. K.
Dana, C. Hens, and D. Ghosh, Reservoir computing on epi-
demic spreading: A case study on COVID-19 cases, Phys. Rev.
E 104, 014308 (2021).

[23] S. Saha, A. Mishra, S. Ghosh, S. K. Dana, and C. Hens,
Predicting bursting in a complete graph of mixed population
through reservoir computing, Phys. Rev. Research 2, 033338
(2020).

[24] H. Zhang, H. Fan, L. Wang, and X. Wang, Learning Hamil-
tonian dynamics with reservoir computing, Phys. Rev. E 104,
024205 (2021).

[25] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos, Backpropagation algorithms and
reservoir computing in recurrent neural networks for the fore-
casting of complex spatiotemporal dynamics, Neural Networks
126, 191 (2020).

[26] T. L. Carroll and L. M. Pecora, Network structure effects in
reservoir computers, Chaos 29, 083130 (2019).

[27] N. A. Silva, T. D. Ferreira, and A. Guerreiro, Reservoir com-
puting with solitons, New J. Phys. 23, 023013 (2021).

[28] T. L. Carroll, Do reservoir computers work best at the edge of
chaos?, Chaos 30, 121109 (2020).

[29] L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi,
and T. A. Ohki, Quantum reservoir computing with a single
nonlinear oscillator, Phys. Rev. Research 3, 013077 (2021).

[30] J. H. Jensen and G. Tufte, Reservoir computing with a chaotic
circuit, in Artificial Life Conference Proceedings 14 (MIT Press,
Cambridge, MA, 2017), pp. 222–229.

[31] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert,
S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I.
Fischer, Information processing using a single dynamical node
as complex system, Nat. Commun. 2, 1 (2011).

[32] G. Dion, S. Mejaouri, and J. Sylvestre, Reservoir computing
with a single delay-coupled non-linear mechanical oscillator, J.
Appl. Phys. 124, 152132 (2018).

054203-8

https://doi.org/10.1515/zna-1981-0115
https://doi.org/10.1103/PhysRevLett.81.2156
https://doi.org/10.1109/TCSI.2002.804551
https://doi.org/10.1063/1.3492712
https://doi.org/10.1103/PhysRevE.101.062207
https://doi.org/10.1016/j.csfx.2020.100046
https://doi.org/10.1007/s11071-020-06185-2
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1140/epjb/s10051-021-00167-y
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.35848/1347-4065/ab8d4f
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/PhysRevX.10.041037
https://doi.org/10.1103/PhysRevE.104.014308
https://doi.org/10.1103/PhysRevResearch.2.033338
https://doi.org/10.1103/PhysRevE.104.024205
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1063/1.5097686
https://doi.org/10.1088/1367-2630/abda84
https://doi.org/10.1063/5.0038163
https://doi.org/10.1103/PhysRevResearch.3.013077
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1063/1.5038038

MACHINE-LEARNING POTENTIAL OF A SINGLE … PHYSICAL REVIEW E 105, 054203 (2022)

[33] N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and
D. J. Gauthier, Reservoir computing with a single time-
delay autonomous boolean node, Phys. Rev. E 91, 020801(R)
(2015).

[34] F. J. Romeiras and E. Ott, Strange nonchaotic attractors of the
damped pendulum with quasiperiodic forcing, Phys. Rev. A 35,
4404 (1987).

[35] A. Bondeson, E. Ott, and T. M. Antonsen, Quasiperiodi-
cally Forced Damped Pendula and Schrödinger Equations with
Quasiperiodic Potentials: Implications of their Equivalence,
Phys. Rev. Lett. 55, 2103 (1985).

[36] M. Ding, C. Grebogi, and E. Ott, Evolution of attractors in
quasiperiodically forced systems: From quasiperiodic to strange
nonchaotic to chaotic, Phys. Rev. A 39, 2593 (1989).

[37] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen,
Memory versus non-linearity in reservoirs, in Proceedings of
the 2010 International Joint Conference on Neural Networks
(IJCNN) (IEEE, Piscataway, NJ, 2010), pp. 1–8.

[38] M. Inubushi and K. Yoshimura, Reservoir computing beyond
memory-nonlinearity trade-off, Sci. Rep. 7, 1 (2017).

[39] R. Falahian, M. Mehdizadeh Dastjerdi, M. Molaie, S. Jafari,
and S. Gharibzadeh, Artificial neural network-based modeling
of brain response to flicker light, Nonlinear Dyn. 81, 1951
(2015).

[40] J. C. A. Barata and M. S. Hussein, The Moore-Penrose pseu-
doinverse: A tutorial review of the theory, Braz. J. Phys. 42,
146 (2012).

[41] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20,
130 (1963).

[42] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors, Vol. 41 (Springer Science & Business
Media, 2012).

[43] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E.
Ott, Reservoir observers: Model-free inference of unmeasured
variables in chaotic systems, Chaos 27, 041102 (2017).

[44] J. Choi and P. Kim, Reservoir computing based on quenched
chaos, Chaos Solitons Fractals 140, 110131 (2020).

[45] S. Mandal and M. D. Shrimali, Achieving criticality for reser-
voir computing using environment-induced explosive death,
Chaos 31, 031101 (2021).

054203-9

https://doi.org/10.1103/PhysRevE.91.020801
https://doi.org/10.1103/PhysRevA.35.4404
https://doi.org/10.1103/PhysRevLett.55.2103
https://doi.org/10.1103/PhysRevA.39.2593
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1007/s11071-015-2118-x
https://doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1063/1.4979665
https://doi.org/10.1016/j.chaos.2020.110131
https://doi.org/10.1063/5.0038881

