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Localization and delocalization of quantum diffusion in a time-continuous one-dimensional Anderson model
perturbed by the quasiperiodic harmonic oscillations of M colors is investigated systematically, which has
been partly reported by a preliminary Letter [H. S. Yamada and K. S. Ikeda, Phys. Rev. E 103, L040202
(2021)]. We investigate in detail the localization-delocalization characteristics of the model with respect to
three parameters: the disorder strength W , the perturbation strength ε, and the number of colors, M, which
plays the similar role of spatial dimension. In particular, attention is focused on the presence of localization-
delocalization transition (LDT) and its critical properties. For M � 3 the LDT exists and a normal diffusion
is recovered above a critical strength ε, and the characteristics of diffusion dynamics mimic the diffusion
process predicted for the stochastically perturbed Anderson model even though M is not large. These results
are compared with the results of discrete-time quantum maps, i.e., the Anderson map and the standard map.
Further, the features of delocalized dynamics are discussed in comparison with a limit model which has no static
disordered part.
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I. INTRODUCTION

It has been theoretically and experimentally shown that
the three-dimensional random system undergoes an Ander-
son transition (AT) from insulator to metallic conductor due
to decrease in the potential disorder [1–4]. Furthermore, in
recent numerical experiments, the properties of AT in four-
dimensional and five-dimensional random systems have been
also studied [5–8]. In the system with the AT, a localization-
delocalization transition (LDT) can exist, and its existence
can be directly observed by the wave-packet dynamics of an
initially localized wave packet, where the delocalization is
observed as an appearance of normal diffusion.

In higher-dimensional Anderson models the appearance of
delocalized states is quite natural, and it is expected that the
self-consistent mean-field theory (SCT) works well in such
systems [9,10]. However, even in higher-dimensional Ander-
son models the deviation of the critical value and the critical
exponent predicted by the SCT was recently reported by using
the properties of the energy spectrum [8].

The relationship between the dimension of the Anderson
model and the characteristics of the LDT is an interesting
problem from a different point of view. Increase of the sys-
tem’s dimension d may be performed in a quite different way:
an alternative way to increase d is to make the system interact
with many dynamical degrees of freedom. Indeed, even in
the one-dimensional (1D) Anderson model exhibiting a strong
exponential localization, the localization is released and nor-
mal diffusion is induced by the application of arbitrarily small
stochastic perturbation, which can be considered as a super-
position of an infinite number of incommensurate harmonic

degrees of freedoms [11–14]. This can be considered as a
limiting example of delocalization realized in systems with
infinite degrees of freedom.

Then it is a quite natural question to inquire how the
number of the degrees of harmonic modes, M, controls the lo-
calization and delocalization in disordered systems. (The
harmonic modes may be replaced the active phonon modes.)
Indeed, in the case of chaotic quantum maps such as the
standard map (SM), the harmonic perturbation destroys the
dynamical localization and restores the chaotic diffusion
[15–20], which is supported by the Maryland transformation
asserting the equivalence between the SM and an (M + 1)-
dimensional lattice with a quasiperiodic disorder.

The quantum map is a very powerful model which can
easily be treated by numerical methods because its time
is discretized, but it is not a natural system. Instead, as
a time-continuous model, we proposed a time-continuous
1D Anderson model interacting with M incommensurate
harmonic modes [21,22]. For M = 1, the maintenance of lo-
calization can be shown by Floquet theory [23,24]. But for
M � 2, diffusionlike behaviors are observed numerically at
least on a finite time scale if the perturbation strength is
strong enough. In this system, the M modes can be treated
as quantum dynamical degrees of freedom, and so the whole
system can be regarded as an autonomous quantum dynam-
ical system with M + 1 degrees of freedom. There have
been some studies showing a strong localized property of
the dynamics for the same type of harmonically perturbed
models. It is inferred from analytical calculation and rigorous
proofs that the localization persists against the dynamical
perturbation consisting of a finite number of modes [25,26].
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In particular, the persistence of the localization for 1 �
M < ∞ is mathematically claimed in the regime of weak
enough dynamical perturbations and strong disorder potential
[26]. On the other hand, as mentioned above, a stochas-
tic perturbation which corresponds to M → ∞ can restore
a complete diffusion. The presence of the LDT in a har-
monically perturbed 1D Anderson model has not been yet
clarified.

In our preliminary report it was shown that if there exist
three or more harmonics (M � 3), the LDT occurs with the in-
crease of the perturbation strength and the Anderson localized
states can be delocalized [27]. This work is a full report of the
localization-delocalization characteristics of the 1D Anderson
model perturbed by polychromatic perturbations, which is nu-
merically observed by changing three parameters: the disorder
strength W , the perturbation strength ε, and the number of
modes, M, of the oscillations. We are particularly interested
in making clear how the number M controls the characteristics
of the LDT. Additionally as a limiting situation of our model
mentioned above, we can consider a model system without
the static random potential (model B). Such a version leads
to a quantum state that models the ultimate limit of delo-
calization exhibited by our model, which will be discussed
in detail.

Since the direct numerical wave-packet propagation of the
original continuous-time model is too time consuming, we
proposed a discrete-time quantum map version of the original
time-continuous model, which we called the Anderson map
(AM), and investigated its nature in comparison with the SM
and many-dimensional Anderson model [18–20]. Comparison
of the original time-continuous model with the AM is also a
purpose of this article.

Recently realization of an ergodic state in isolated quantum
systems with many degrees of freedom has been extensively
studied [28–32]. As mentioned above, our system is a closed
quantum dynamical system with M + 1 degrees of freedom,
and the LDT may be looked upon as a transition to an ergodic
state even though M is small. The transition to a delocalized
behavior is a “self-organization” of an irreversible relaxation
process in quantum systems with a small number of degrees
of freedom stressed in Ref. [33]. With this regard the minimal
number of M above which the LDT takes place is a quite
interesting problem.

The plan of the present work is as follows. In the next
section, the models used in the present paper are introduced.
In Sec. III, the characteristics of the localization phase which
is dominant when the number M is small, i.e., M = 0, 1, 2,
are explored. A hypothesis due to the intrinsic nature of the
time-continuous model, which was not taken into account
in our preliminary report [27], is discussed. In particular, in
Sec. III E, we give a different interpretation from Ref. [27] for
the color number M used as a base of the following analysis
in the later sections. Next, in Sec. IV, the presence of LDT
for the case of M � 3 is demonstrated and the characteristics
of the LDT are clarified on the basis of the one-parameter
scaling theory together with the above hypothesis. The pres-
ence of critical subdiffusion, the invariant nature of critical
perturbation strength, and their dependency upon M are fully
discussed. After these arguments, we reexamine the absence
of LDT in the case of M = 2 in Sec. V. Finally, in Sec. VI,

the characteristics of the normal diffusion in the delocalized
states are discussed in some detail, and compares with re-
sult in model B. A summary and discussion appear in the
last section.

II. MODELS

We consider a one-dimensional tightly binding disordered
system represented by the lattice site basis |n〉 (n inte-
ger) with the probability amplitude �n, which is driven by
time-dependent quasiperiodic perturbation. The Schrödinger
equation of the above system is represented by

ih̄
∂�n(t )

∂t
= �n−1(t ) + �n+1(t ) + V (n, t )�n(t ), (1)

where V (n, t ) is the time-dependent on-site potential. We deal
with the following two cases, VA(n, t ) and VB(n, t ), as V (n, t )
with coherent periodic perturbation fε (t ):

V (n, t ) =
{

VA(n, t ) = V (n)[1 + fε (t )] (model A)
VB(n, t ) = V (n) fε (t ) (model B). (2)

The coherent periodic perturbation fε (t ) is given as

fε (t ) = ε√
M

M∑
i

cos(ωit + θi ), (3)

where M and ε are the number of the frequency component
and the relative strength of the perturbation, respectively.
Note that the long-time average of the total power of the
perturbation is normalized to fε (t )2 = ε2/2. The frequencies
{ωi} (i = 1, . . . , M ) are taken as mutually incommensurate
numbers of order O(1) given in Appendix A. Here we take
θi = 0 (i = 1, 2, . . . , M) to see long-term results that do not
depend on the details of initial phases {θi}. The static on-site
disorder potential is represented as V (n) = W vn. W denotes
the strength of the potential, and vn is a uniform random
variable with the range [−1, 1] which is decorrelated between
different sites. In model A, it becomes the Anderson model if
we take ε = 0, and the Anderson localization occurs. How
the localization may become delocalized by increasing the
perturbation strength ε is the main problem to be clarified.
On the other hand, model B is controlled by the combined
parameter εW , and if we take εW = 0, the eigenstates are the
Bloch states. The issue is how the ballistic motion of ε = 0
may make the transition to a stochastic motion such as the
normal diffusion by increasing ε, which models stochastiza-
tion of ballistic electrons by dynamical impurities.

We remark that time-dependent model (1) has an au-
tonomous representation. The isolated harmonic modes form
an M-dimensional ladder of the eigenstate |{ni}〉 which is
assigned by the set of integers {ni} (1 � i � M) as the quan-
tum numbers and has the energy Eh({ni}) := ∑M

i=1 ωini. If we
denote the eigenstate of the 1D Anderson model of ε = 0
by |N〉, which are the Anderson localized state (model A) or
Bloch states (model B) having the energy eigenvalue EN , then
Eq. (1) is equivalent to the autonomous Schrödinger equation
describing the transition process in an (M + 1)-dimensional
lattice of sites assigned by (N, {ni}): let the probability ampli-
tude of the quantum state |N, {ni}〉 = |N〉|{ni}〉 be �(N, {ni}),
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then the Schrödinger equation is represented by

ih̄
d�(N, {ni})

dt
= [EN + Eh({ni})]�(N, {ni})

+ ε√
M

∑
N ′

M∑
j=1

WNN ′�(N ′,

n1, . . . , n j ± 1, n j+1, . . . , nM ), (4)

where WNN ′ is the transition element W
∑

n〈N |n〉vn〈n|N ′〉 and
{|n〉} is an orthonormalized basis set representing the lattice
site n. The equivalent of Eq. (4) to the autonomous version of
Eq. (1) is presented in Appendix B.

We basically limit the perturbation strength to ε < 0.3,
since we are interested in how small ε may destroy the lo-
calization effect. As ε increases far beyond the perturbation
regime, model A will gradually approach to model B.

As the tool of numerical integration of Eq. (1), we use the
second-order symplectic integrator

U (�) = e−i	t cos(n)/2h̄e−iV (n,ell	t )/h̄e−i	t cos(n)/2h̄ (5)

with the small-enough time step 	t = 0.02–0.05, where the
value of the Planck constant is taken as h̄ = 1/8. The sys-
tem and ensemble sizes are 215–216 and 10–50, respectively,
throughout this paper. We use a localized state at n = n0 as the
initial state and numerically observe the spread of the wave
packet measured by the mean square displacement (MSD),

m2(t ) =
∑

n

(n − n0)2〈|�(n, t )|2〉. (6)

In the limit M → ∞, the quasiperiodic perturbation fε (t )
can be identified with the δ-correlated stochastic force n(t )
characterized by 〈n(t )n(t ‘ )〉 = ε2

s δ(t − t ‘ ) with the strength εs.
In this paper, corresponding models A and B, we consider the
stochastic version of the two models in which the harmonic
force fε (t ) is replaced by the noise force n(t ) = εsn1(t ), which
varies at random in time uniformly in the range [−1, 1]:{

VSA(n, t ) = V (n)[1 + εsn1(t )] (model SA)
VSB(n, t ) = V (n)εsn1(t ) (model SB). (7)

We call these models SA and SB, respectively. In model SA,
the localization is destroyed by the stochastic perturbation and
the normal diffusion m2(t ) = Dt with the diffusion constant
D appears for t → ∞ [21,22], as was first pointed out by
Haken and co-workers [11,12]. They predicted analytically
the diffusion constant D for the white Gaussian noise as

D = lim
t→∞

m2(t )

t
∝ ε2

s

ε4
s + W 2/3

(8)

for weak enough εs. The diffusion constant increases as D ∝
ε2

s for εs 	 1 and it reaches a maximum at ε∗
s = W√

3
, and it

finally decreases as D ∝ ε−2
s . The noise-induced diffusion has

been extended for a random lattice driven by the colored noise,
including the hopping disorder effect [13,14].

For finite M, fε (t ) can no longer be replaced by the random
noise, and it plays as a coherent dynamical perturbation, and
the system corresponds to a quantum dynamical system with
M + 1 degrees of freedom.
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FIG. 1. The plots of m2(t ) as a function of time for different
values of ε increasing from bottom to top in the perturbed Anderson
model: (a) M = 1, W = 1.0; (b) M = 2, W = 1.0. Note that the
horizontal axes are in the logarithmic scale.

III. LOCALIZED STATES OF MODEL A

First of all we show in this section the localization char-
acteristics exhibited by our model in Eq. (1). The cases of
M = 1, 2 are particularly focused on, and a basic hypothesis
to interpret all our numerical results is discussed in connection
with the localization characteristics of our system.

A. Dynamics toward localization, localizing evolution

Figure 1(a) shows the time dependence of the MSD for
some typical cases of the monochromatically perturbed model
A, for which the growth of time dependence is saturated at a
certain level. The spread of the wave packet becomes larger as
the perturbation strength increases. This is the same tendency
as was observed for the Anderson map. In this paper, we
directly compute the localization length (LL) by

ξM =
√

m2(∞), (9)

where m2(∞) indicates the numerically saturated MSD
reached after a sufficiently long time evolution. For M = 1 the
localization is manifest. Even in the case of M = 2, localiza-
tion occurs and the LL increases as the perturbation strength
increases, as can be seen from Fig. 1(b).

Application of harmonic perturbation in general enhances
the LL. The enhancement of LL is conspicuous for M = 2,
and the numerical evaluation of ξM directly from the long time
behavior of MSD is possible only in the limited range of ε <

0.4.

B. W dependence of localization length

Figure 2 shows the W dependence of the LL ξM for M =
0, 1, 2. In all cases, it is naturally found that for ε 	 1 the
larger W , the stronger the localization is, and the LL follows
the rule

ξM ∼ AM (ε)

W 2
, (10)

where AM (ε) depends on M and ε. The W −2 dependence of
the LL has been commonly observed in the case of quantum
map systems [20]. For M = 1 the persistence of localization
can be expected as is argued in Appendix C.
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FIG. 2. Localization length ξM of model A as a function of dis-
order strength W for M = 0, 1, 2 and ε = 0.05.

C. ε dependence of localization length (ε � 1)

Figure 3(a) shows the result of the ε dependence in model
A of M = 1, M = 2 for some W ’s. It is obvious that the LL
grows exponentially as the perturbation strength ε increases
in all cases:

ξM ∼ ecMε . (11)

When W is the same, the exponential growth rate cM of M = 2
is larger than that of M = 1, and it can be seen that the
coefficient cM does not depend on the disorder strength W .
To confirm this more concretely, we plot the ε dependence
in Fig. 3(b) of the scaled LL ξ × W 2. At least when ε is
small (ε < 0.3), they all overlap well, and the coefficient cM

is almost constant and has no W dependence. Therefore,

ξM � exp{cMε}
W 2

. (12)

This is similar to what was found for the monochromatically
perturbed Anderson map [19] in a small region of ε.

100

� �

0.300.200.100.00
�

 (a) 
 M=2,  W=1
 M=2, W=2
 M=2, W=1.5
 M=1, W=1
 M=1, W=1.5
 M=1, W=2

9
100

2

3

4

5

W
2 
� �

0.300.200.100.00
�

M=2

M=1

 (b) 

FIG. 3. (a) Localization length ξM of model A as a function
of perturbation strength ε for M = 1, 2 and W = 1.0, 1.5, 2.0.
(b) ξMW 2 as a function of ε. Note that the vertical axes are in
logarithmic scale.
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FIG. 4. Scaling property m2(t )/ξ (ε)2 as a function of t/ξ (ε)2 in
the dichromatically perturbed model A of W = 1 for various ε’s.
(a) ε = 0.40, 0.50, 0.55, 0.60 and (b) ε = 0.55, 0.70, 0.80.

Although it is difficult to obtain the LL ξM directly from the
long time behavior of MSD, it can be expected that a similar
tendency to the cases of M = 1 and M = 2 will be observed
even in the localized region of M � 3 for small enough ε.
However, as is the case in the high-dimensional disordered
lattices and also in the Anderson map system, if LDT takes
place at some critical εc, the LL grows divergently as ε → εc.

D. ε dependence of localization length for large ε

We observed that, at least, the wave packet localizes com-
pletely when M = 2 in the region where the perturbation
strength is relatively small, ε < 0.4. We would like to investi-
gate the localization length ξM for M = 1 and M = 2 when ε

increases beyond the perturbation region. In the region where
ε is large, the localization length ξM cannot be estimated
directly by the saturation level of the MSD.

Here, we try to determine ξM indirectly by supposing that
the MSD data follow the common scaling form independent
of ε as

m2(t ) ∼ ξ (ε)2F

(
t

ξ (ε)2

)
, (13)

where F (x) is a scaling function. To confirm this, we show in
Fig. 4 the plots of m2/ξ (ε)2 as a function of t/ξ (ε)2, which
manifests the scaling hypothesis of Eq. (13).

We can estimate the localization length ξM (ε) by using,
and sometimes by repeatedly using, the scaling hypothesis of
Eq. (13) even for ε > 0.4.

Figure 5 shows the ε dependence of a wide range of the
localization lengths, including indirectly determined ξM with
the scaling hypothesis (13). For comparison, ξM of M = 3,
which exhibits a clear LDT as discussed in detail later, is also
shown. The localization, of course, occurs in the case of M =
1.

Then what is the difference of the localizations between
the case of M = 1 and the cases of M = 2? In both cases of
M = 1 and M = 2, the localization lengths grow exponen-
tially when the ε is small enough (ε < 0.8 for M = 1 and
ε < 0.3 for M = 2).

For M = 1, it is obvious that the localization occurs no
matter how large ε may be, but, as for M = 2, the presence
or absence of LDT is still unclear. We will discuss again the
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FIG. 5. Localization length as a function of ε for M = 1, 2, 3
with W = 1. Some LLs of M = 2 are obtained by the scaling hy-
pothesis of Eq. (13) for ε > 0.4. Note that the horizontal axis is in
logarithmic scale. The dashed lines are e5.5ε and e3.8ε , respectively.
The lines ε = 0.18 and ε = 0.6 are shown as a reference.

persistence of localization for M = 2 in Sec. V after Sec. IV,
in which the presence of LDT is confirmed for M � 3. In
the next section we consider the substantial dimension of our
system which may dominate the upper-bound dimension of
localization.

E. The effective dimension

Our model (1) is very similar to that of the AM perturbed
by M harmonic modes, which is represented by the symplectic
propagator (5) of 	t = 1. It is formally transformed into
a d (= M + 1)-dimensional quasirandom lattice by the so-
called Maryland transformation [20], and d = 2, i.e., M = 1,
is the upper bound of dimension in which delocalization does
not happen. Unlike this, in the present model the numerical
observations suggest M = 2 may be the upper-bound dimen-
sion of the localization. Why is there such a difference?

In the case of the AM, time is not continuous and there is
no conserved quantity. However, in the present case, Eq. (1)
is rewritten as Eq. (B3) given in Appendix B, which yields
a severe constraint of energy conservation. In the transition
process by the interaction among the harmonic modes and the
isolated 1D random lattice the constraint due to the energy
conservation,∣∣∣∣∣

M∑
m=1

	nmωm

∣∣∣∣∣ <
|EN − EN ′ |

h̄
<

C

h̄
, (14)

exists, where EN and EN ′ are the energies of the localized
eigenstates and 	ni = n′

i − ni is the change of excitation
number of the ith harmonic mode. The upper bound of C =
Max{|EN − EN ′ |} is estimated as C < 4 + 2W . If C = 0, the
number of degrees of freedom reduces by exactly 1, and

d f = (M − 1) + 1 = M (15)

is the effective dimension of the system. However, since C
is finite, the system should be regarded as the “quasi-d f ”-
dimensional system in the sense that M − 1 quantum numbers

can arbitrarily be changed but the Mth mode is restricted
by Eq. (14). If d f corresponds to the spatial dimension of
the irregular lattice, then the maximal dimension in which
only the localization exists can be d f = M = 2 if the scaling
theory of the localization is followed. In the present paper
we interpret the results presented below on the hypothesis
that Eq. (15) is the “effective dimension.” We emphasize that
the hypothesis was not taken into account in our previous
Letter, and M + 1, instead of M = d f , was used as the system
dimension [27].

IV. LOCALIZATION-DELOCALIZATION TRANSITION:
MODEL A

In this section, we investigate the LDT of model A with
increasing the number of colors from M = 3 to M = 7 while
paying attention to the correspondence with result in the An-
derson map system. The case of M = 2, which has a large
localization length but is expected to have no LDT, will be
discussed again in the next section.

A. Dynamical LDT

In Fig. 6, typical examples indicating the LDT for M � 3
are depicted. They are the double logarithmic plot of the time
evolution of MSD for an increasing series of the perturbation
strength ε. For both examples one can recognize that with an
increase in ε the time evolution of MSD exhibits a transition
from a saturating behavior to a straight line of slope 1 im-
plying the normal diffusion m2 ∝ t . A remarkable fact is that
the transition proceeds through a time evolution represented
by a straight increase with a fractional slope 0 < α < 1 at
a particular value ε = εc. It can be regarded as the critical
subdiffusion m2 ∝ tα . Indeed, for M � 3 the numerical results
indicate that the asymptotic behavior of the MSD in the limit
t → ∞ changes as

m2(t ) ∼
⎧⎨
⎩

t0 (localization), ε < εc

tα (subdiffusion), ε � εc

t1 (delocalization), ε > εc,

(16)

which fully follows the numerical observations in the AM and
SM [20].

To confirm numerically the critical behavior represented by
Eqs. (16), it is very convenient to introduce the local diffusion
exponent defined as the instantaneous slope of the log-log plot
of MSD,

αins(t ) = d log m2(t )

d log t
, (17)

as a function of t , where m2(t ) is appropriately smoothed.
Figures 6(a)–6(c) and 6(d)–6(f) are examples of the tran-

sition process modeled by Eqs. (16) for M = 3 and M = 5,
respectively. Figures 6(a) and 6(d) represent the change of
MSD from the localized states to the normal diffusion state.
Transition from the localized state to the normal diffusion
is directly recognized by the change of αins(t ) plots demon-
strated in Figs. 6(b) and 6(e). It either decays to zero or
increases toward 1, and it keeps a constant value only at a
particular ε = εc, indicated by broken lines, which means the
existence of the critical subdiffusion m2(t ) ∝ tαc at ε = εc,
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FIG. 6. Localization-delocalization transition for model A exhibited by the change of time dependence of MSD: (a-c) M = 3 and W = 1
and (d–f) M = 5 and the same W = 1. (a) The double-logarithmic plots of MSD m2(t ), (b) the diffusion index αins(t ), and (c) the scaled MSD
(ε, t ) = m2(t )/tαc , where αc = 0.66, as functions of time for increasing perturbation strengths ε = 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23,
0.25 from below. The broken line in (b) indicates the critical subdiffusion line αins(t ) = αc = 0.66 predicted by the scaling theory. Plots (d–f)
are the counterparts of (a–c), respectively, for M = 5, where ε is increased as ε = 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.12 from below and
αc = 0.40.

where 0.60 < αc < 0.70 and 0.35 < αc < 0.45 in Figs. 6(b)
and 6(e), respectively.

These facts suggest the so-called one-parameter scaling
theory, which was successfully used in the analyses of AM
and SM, is applicable to our model, identifying the effective
dimension in Eq. (15) as the dimension d of the random
system. It predicts the critical subdiffusion index as

α = 2

d f
= 2

M
. (18)

The theoretical value α ∼ 0.66 for M = 3 and α ∼ 0.40 for
M = 5 are drawn in Figs. 6(b) and 6(e) by broken lines,
respectively. Agreement with the critical lines suggested by
αins(t ) plots is evident. We note that in our preliminary report
we took d f = M + 1, instead of Eq. (15), because the restric-
tion (14) was not taken into account. However, as M increases
beyond 5, Eq. (18) become less confirmative.

To make a further check of the LDT close to the critical
point, it is instructive to use the MSD (t ) divided by the

critical subdiffusive increase:

(t ) ≡ m2(t )

t
2
M

. (19)

Then (t ) � const indicates the critical point, and (t ) grows
upward for ε > εc, while it decays downward for ε < εc, as
seen in Figs. 6(c) and 6(f). The feature for which the (t )
curves expands like a trumpet-shaped suggests the existence
of the LDT.

As shown in Fig. 7, we confirm that the critical subdiffu-
sion can be observed at certain critical point ε = εc even if M
is increased beyond 3, and it is evident that the subdiffusion
index α at the critical point decreases as M increases, and it is
numerically consistent with the prediction of Eq. (18).

B. M dependence of the scaling property for the LDT

In Fig. 8(a), we show result of finite-time scaling analysis
for model A of M = 3. The method used here is the same as
that used in Ref. [20]. We choose the following quantity as a
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FIG. 7. The double-logarithmic plots of m2(t ) as a function of
time near the critical points εc in the polychromatically perturbed 1D
Anderson model (M = 3, 4, 5 from top) with W = 1.

scaling variable,

s(ε, t ) = log (ε, t ) = F (x), (20)

by shifting the time axis to x,

x = ξM (ε)tα/2ν, (21)

for different values of ε by using the critical exponent ν to
characterize the divergence of the localization length around
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FIG. 8. The results of the critical scaling analysis for trichro-
matically perturbed model A (M = 3) with W = 1.0. (a) The scaled
MSD s(ε, t ) = log (ε, t ) as a function of x = ξM (ε)tα/2ν for some
values of ε. (b) The scaled s(ε, t ) with α = 0.66 as a function of
ε for some pickup times. The crossing point is εc � 0.21. (c) s(t ) as
a function of t . The critical exponent ν � 1.81 is determined by a
scaling relation [Eq. (23)] by the least-squares fit.
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FIG. 9. (a) The critical perturbation strength εc as a function of
M − 2 for model A with W = 1. The black solid line shows εc ∝
1/(M − 2)0.5. (b) The effective dimensionality df = M dependence
of the critical exponent ν which characterizes the critical dynamics.
The red solid line and green dashed line are the results of the analyti-
cal prediction by νVW and νG, respectively. The thick line denotes the
lower bound by the Harris critical inequality.

the LDT:

ξM ∼ |ε − εc|−ν . (22)

F (x) is a differentiable scaling function and α is the diffusion
index.

Figure 8(b) shows a plot of s(t ) as a function of ε at
several times t , and it can be seen that this intersects at the
critical point εc. In addition, Fig. 8(c) shows a plot of

s(t ) = s(ε, t ) − s(εc, t )

|εc − ε| ∝ tα/2ν (23)

as a function of t , and the critical localization exponent ν is
determined by best fitting this slope. This is consistent with
formation of the one-parameter scaling theory (OPST) of the
localization. As a result, even in model A, the OPST is well
established for the LDT regardless of the number of colors,
M, and the disorder strength W .

The critical exponent evaluated using the data (α =
0.66, εc = 0.21) at W = 1 for M = 3 is ν � 1.81. The same
is true for the other M(� 4) color perturbations. Appendix D
shows the results of the finite-time scaling analysis when
M = 4 and M = 7. These results are similar to that of the AM
system perturbed by the M − 1 colors and of numerical cal-
culations using finite-size scaling in the d f (= M )-dimensional
random systems. Note that pursuing the numerical value of ν

with high accuracy is not the purpose of this paper.

C. M dependence of critical strength εc

We return to the story of critical perturbation strength εc.
As is seen in Fig. 9(a), εc definitely decreases with increase
in M for M � 3. Looking upon εc as the function of M − 2,
the double-logarithmic plots are on a straight line with the
approximate tangent −0.5, namely,

εc ∼ 1

(M − 2)δ
, δ � 0.5. (24)
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FIG. 10. The critical perturbation strength εc as a function of W
in model A of M = 4, 5, 6 (from top).

This result suggests that εc diverges at M = 2, and the LDL
transition does not exist at M = 2. Evident dependence of εc

on M for large M contradicts the prediction of the SCT [20].
The critical exponent ν, which characterizes the divergence

of the localization length at the critical point, is numerically
evaluated, and plotted against M, as shown in Fig. 9(b). As a
result, it can be seen that the tendency for M � 3 is close to
that in the Anderson map.

D. W dependence of the critical point εc

Figure 10 shows the W dependence of the critical pertur-
bation strength εc for M = 4, M = 5, and M = 6. From this
result, it can be inferred that the critical perturbation strength
εc of the LDT keeps an almost constant value insensitive to
the disorder strength W and is only determined by the number
of colors, M. Such a feature agrees with that observed in
the Anderson map system with M � 2 for which the LDT
emerges. We show another direct evidence manifesting that
the magnitude of W does not influence the LDT. The time
evolution of the MSD at εc is shown for several values of W
in Fig. 11. First, looking at the case of M = 4 in Fig. 11(a),
the spread m2(t ) of the wave packet becomes larger with
decrease in W , as is expected. But in all cases we see that
for the same ε = εc = 0.115 a subdiffusive increase at the
same index α � 0.5 emerges regardless of W . Similarly, in
the case of M = 6, regardless of W , for the same εc � 0.058
the subdiffusion of α � 0.33 emerges, as seen in Fig. 11(c).

Figures 11(b) and 11(d) are the enlargement of the initial
growth of MSD for t < 102 of Figs. 11(a) and 11(c), respec-
tively. In all cases, the wave packet starts with a ballistic
expansion m2 ∼ t2 and changes to exhibit the critical subd-
iffusion after a lapse of characteristic time. A paradoxical fact
is that the characteristic time required for realizing the subd-
iffusive delocalization decreases with increase in the disorder
strength W .

The larger the W , the stronger the localization, and as
the localization becomes stronger, delocalization occurs more
promptly. This means that what is important for delocalization
is not to activate the ballistic expansion of the wave packet, but
to promote its decomposition into particlelike quantum states
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FIG. 11. The double-logarithmic plots of m2(t ) as a function of
time t near the critical points εc for different W in model A of
(a) M = 4 and (c) M = 6. Panels (b) and (d) show the enlarged view
of the short-time region t < 102 in the double-logarithmic plots of
m2(t ) in model A of (b) M = 4 and (d) M = 6.

called localized states due to the accumulation of scattering by
disorder. Delocalization emerges as the diffusive motion over
the localized particlelike states.

V. RECONSIDERATION OF WEAK DYNAMICAL
LOCALIZATION FOR M = 2

We return to the problem on the presence of LDT
in the case of M = 2. It is very hard to numerically prove
the persistence of localization, either by directly pursuing time
evolution dynamics or by applying the scaling hypothesis [see
Fig. 12(a)]. However, there are some evidences manifesting
that there exists no critical subdiffusion such that m2 ∝ tα

with 0 < α < 1. To numerically prove the presence of critical
subdiffusion, an explicit method is to use the αins(t ) plots
presented in the previous section. We examine in Fig. 12(b)
the αins(t ) plots for M = 2. All the curves go downward and
it can hardly be expected that a horizontal line locates in
the narrow gap between the line α = 1 and the uppermost
downward curve, which implies that α = 1 plays the role of
“critical diffusion.” This fact is consistent with the results of
the previous section represented by Eqs. (18) and (24) for
M � 3, which predict α = 1 and εc = ∞, respectively, for
M = 2.

We further examine in Fig. 12(c) the  plots of Eq. (19),
namely, the MSD scaled by the critical MSD m2(t ) ∝ tα ,
which is (α = 1, t ) = m2(t )

t supposing α = 1. All the curves
go downward for t � 1 to form the lower half of the
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FIG. 12. (a) The double-logarithmic plots of m2(t ) as a function of time for some values of the perturbation strength ε increasing from
ε = 0.1 to ε = 1.3 in model A of M = 2 with W = 1. (b) The instantaneous diffusion index αins(t ) as a function of time. (c) The double-
logarithmic plots of the scaled MSD (α = 1, t ) = m2(t )

t as a function of time for some ε’s from ε = 0.1 to ε = 1.3.

precritical trumpet-shaped shown in Figs. 6(c) and 6(f) for
M � 3. All the above results allow us to regard the nor-
mal diffusion m2(t ) ∝ t as an ultimate limit of the critical
subdiffusion for M = 2, and d f = M = 2 is just the critical
dimension of localization exhibited by model A.

Furthermore, we confirmed that the above features do not
change when the random potential V (n, t ) is replaced by

V (n, t ) = V1(n) + V2(n) fε (t ), (25)

where V1(n) and V2(n) are different random sequences. The
same is true if binary random sequences taking −W or W are
used for V1(n) and V2(n).

VI. DELOCALIZED STATES

In this section, we investigate the characteristics of the
delocalized states which emerge for M � 3 and ε > εc in
comparison with the stochastic model. Results are compared
also with model B with no static random potential.
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FIG. 13. The m2(t ) as a function of time in model A of (a) M = 3
and (b) M = 7 with W = 1 for some values of the perturbation
strength ε, increasing from ε = 0.1 (bottom) to ε = 0.2 (top) for
M = 7 and from ε = 0.2 (bottom) to ε = 0.3 (top) for M = 3, re-
spectively. Note that the axes are in the real scale.

A. Comparison with stochastic models

We investigate the dependency upon the two parameters W
and ε in comparison with the D of the stochastic model by
Haken and others [11–14].

Typical examples of the m2(t ) for ε � εc in the cases of
M = 3 and M = 7 are shown in Figs. 13(a) and 13(b), respec-
tively. If ε is large enough, it is evident that MSD follows
asymptotically the normal diffusion m2 = Dt , which implies
that only a finite number of coherent modes plays the same
role as the stochastic perturbation.

Indeed, the W dependence of the diffusion coefficient D
depicted in Fig. 14 follows the main feature of the stochasti-
cally induced diffusion constants regardless of the number of
colors M(� 3). The dependence changes in the weak regime
and strong regime of W as

D ∝
{

W −2 (W 	 1)
W −4 (W � 1).

(26)
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W

slope -2
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FIG. 14. The diffusion coefficient D of the quantum diffusion as
a function of W in model A with ε = 0.2 or ε = 0.3 of M = 3, 4, 6.
Note that the axes are in the logarithmic scale. D ∝ W −2 and D ∝
W −4 are shown by black solid and black dotted lines, respectively,
for reference.
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FIG. 15. The diffusion coefficient D as a function of ε for model
A with W = 1 and M = 3, 5, 7, 10. Note that the axes are in the
logarithmic scale. D ∝ ε2 is shown by a black line for reference.

The weak regime result follows Eq. (8) if W � ε. The strong
regime behavior agrees with the result obtained by Moix et al.
[13] for the stochastic model in the very large limit of W .

Next, we examine the ε dependence of D, which is shown
in Fig. 15 for some M’s. As a whole, the ε dependence almost
follows Eq. (8) for all M. [We note that Eq. (8) is valid
for small ε and W , and it cannot be directly applied to the
interpretation of our result.] If ε is weak D increases as

D ∝ ε2 (27)

for M � 1 in agreement with Eq. (8), and after going over the
maximum value at ε∗ ∼ O(1), it decreases. In particular in
the regime ε > ε∗, D has no significant M dependence. This
fact implies a remarkable feature that the diffusion induced
by the coherent perturbation composed of only three incom-
mensurate frequencies mimics the normal diffusion induced
by a stochastic perturbation containing an infinite number of
colors.

B. Comparison with model B

In the case of ε = 0, model B becomes a spatially periodic
system without potential part, and the wave packet exactly
shows ballistic motion as m2(t ) ∝ t2. We consider the MSD
for finite ε in model B in comparison with model A. Fig-
ure 16(a) shows the time evolution of the MSD of model B
with M = 3 for some values of ε. We can see the ballistic
growth m2(t ) ∼ t2 in the short time regime in all cases. As
seen in the M dependence in Fig. 16(b), in model B of M = 1,
the wave packet localizes. In contrast, for M � 2 the normal
diffusive behavior m2 ∝ t , which loses significant M depen-
dence, appears as time proceeds. For more detailed features
of the MSD of model B, see Appendix E.

Figure 17 compares the ε dependence of the diffusion co-
efficients D of model B with those of model A. The difference
between models A and B is evident in the region εc < ε < ε∗.
In model A, as was stated above, D increases first like ε2

in ε < ε∗ and it decreases beyond ε∗. But in model B, D
decreases monotonously. In the regime ε < ε∗, D decreases
in contrast to Eq. (27) as

D ∝ ε−2. (28)
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FIG. 16. The double-logarithmic plots of m2(t ) as a function of
t in model B with W = 1. (a) M = 3,W = 1. (b) M = 1, 2, 3 and
W = 1. Note that the axes are in the logarithmic scale. The black
dotted line shows m2(t ) ∝ t1 for reference.

Beyond ε∗, D continues to decrease, which is closely followed
by model A. Thus the diffusion processes of the two models
become indistinguishable in the region ε � ε∗ for M � 3.
The above tendency is the same even when we examine the
stochastic model by replacing fε (t ) with n(t ). For ε > ε∗, the
ε dependence of the diffusion coefficient D of model SA also
approaches that of model SB (see Fig. 22 in Appendix E).

VII. SUMMARY AND DISCUSSION

We investigated systematically the localization-
delocalization transition (LDT) of the one-dimensional
Anderson model which is dynamically perturbed by
polychromatically quasiperiodic oscillations by changing
three parameters: the disorder strength W , the perturbation
strength ε, and the number of colors, M, of the oscillations.
The dynamical localization length (LL) was evaluated by the
MSD computed by the numerical wave-packet propagation.
Although our model consists of M + 1 degrees of freedom,
we analyzed the numerical results under the hypothesis that

100
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 B-model M=3
 B-model M=7

 
 A-model M=3 
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FIG. 17. The diffusion coefficient D of the quantum diffusion as
a function of ε in models A and B for several M with W = 1. The
corresponding results for the ballistic model are also provided. Note
that the axes are in logarithmic scale. D ∝ ε−2 is shown by a black
line for reference.
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TABLE I. Dimensionality of the LDT. For 4 � M < ∞ the re-
sult is the same as the case of M = 3. The lower lines are a result
of the d-dimensional disordered systems by the scaling theory of
the localization. Loc, exponential localization; LDT, localization-
delocalization transition, Diff, normal diffusion.

M 0 1 2 3 4

This study (model A) Loc Loc Loc LDT LDT
This study (model B) Bali Loc Diff Diff Diff
Anderson map [20] Loc Loc LDT LDT LDT
Standard map [20] Loc Loc LDT LDT LDT
d 1 2 3 4 5
Anderson model Loc Loc LDT LDT LDT

the effective dimension d f is M, not M + 1, considering
the energy conservation. The transition to delocalization
is observed for M = d f + 1 � 3, and for M = d f + 1 � 2
only localization takes place, which is consistent with the
d-dimensional Anderson model if d f is identified with d .

For M � 2 the LL increases exponentially with respect to
ε if ε is relatively small. On the other hand, the W dependence
of the LL is also scaled by the disorder strength W as in the
case of the Anderson map (AM).

For M � 3 the LDT always takes place with increase in
the perturbation strength ε, and at the critical point εc the
fractional diffusion MSD ∝ tα (0 < α < 1) is observed. The
critical diffusion exponent decreases as α � 2/M with M
in accordance with the prediction of one-parameter scaling
theory (OPST) under the hypothesis d f = M. The numerical
results reveal that the critical perturbation strength decreases
as εc ∝ 1/(M − 2)1/2 with an increase of M. These properties
are different from those of the AM system reported in previous
papers [20]. On the other hand, the dimensional dependence of
the critical exponent ν of the localization length (LL) roughly
estimated by the numerical data was a result qualitatively
consistent with those of the polychromatically perturbed AM
system with M − 1 colors and the LDT in the d-dimensional
Anderson model.

Table I summarizes the localization and delocalization phe-
nomena of the random systems, including the case of the
random system of the spatial dimension d and the perturbed
quantum map systems.

We also studied the delocalized states for ε > εc. Even
though M is not large, the W and ε dependence of the diffusion
coefficient of the delocalized states mimics those predicted for
the stochastically perturbed 1D Anderson model.

As ε > O(1) the characteristics of diffusion of our model
approach closely those of model B which contains only the
quasi-periodically-oscillating random potential and has no
static randomness.

Recently tight-binding models have been implemented
by ultracold atoms in the optical lattice [16,17]. If ran-
dom potential can experimentally be prepared by an optical
lattice, for example, by superposing static incommensurate
optical standing waves in multiple boundary mirrors, exper-
iments simulating the models discussed in our paper can be
implemented under the application of optical harmonic per-
turbations.

TABLE II. The frequencies S1 we mainly used are the fol-
lowing: ω1 = (1 + √

5)/2, ω2 = 2π/λ, ω3 = 2π/λ2, ω4 = √
3 − 1,

ω5 = √
2 − 1, ω6 = √

13/2 − 1, ω7 = √
11 − 3, ω8 = √

10/2 − 1,
ω9 = 5

√
17 − 20, and ω10 = 2

√
19/2 − 1, where λ denotes the real

root of the cubic equation x3 − x − 1 = 0. We have checked for
another set of the frequencies. The whole tendency of the main result
in the present paper is not dependent on the choice for the long-time
calculation with large system size. S2 and S3 are used to get the data
of M = 6 and M = 7 for checking. rk (k = 1, . . . , 7) take uniform
random numbers within [0,1].

ωM S1 S2 S3

ω1 σ 1+√
1/7 1/2+r1

ω2 ν1 1+√
2/7 1/2+r2

ω3 ν2 1+√
3/7 1/2+r3

ω4

√
3 − 1 1+√

5/7 1/2+r4

ω5

√
2 − 1 1+√

7/7 1/2+r5

ω6

√
13/2 − 1 1+√

10/7 1/2+r6

ω7

√
11 − 3 1+√

11/7 1/2+r7

ω8

√
10/2 − 1

ω9 5
√

17 − 20
ω10 2

√
19/2 − 1

In the case of a system in which polychromatic perturba-
tion is applied to a three-dimensional disordered system, it
is expected that the phenomenon observed will differ greatly
depending on the disorder strength W . In the metallic regime
of W < Wc, the diffusion coefficient of normal diffusion is
enhanced by an increase of perturbation strength ε, while
in the insulating regime of W � Wc, the LDT occurs at the
critical perturbation strength and diffusion is generated, as in
the case of the one-dimensional system.
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APPENDIX A: FREQUENCY SET USED IN THE
CALCULATION

Table II shows the sets, S1, S2, S3, of the frequency set {ωi}.
S1 is mainly used in the text and, as mentioned in the text, is
set to be O(1) in the incommensurate as much as possible. The
frequency set relatively affects the numerical result compared
to the case of the Anderson map system, although the larger
the M, the smaller the influence of how to select the frequency.
Therefore, in addition to the fundamental frequency set S1, we
investigated the result in model A with the other frequency
sets S2, S3 given in Table II. Randomly chosen values are used
for S3. S2 was used for numerical calculation by sixth-order
symplectic integrator in our previous paper [22].

APPENDIX B: AUTONOMOUS REPRESENTATION OF
THE TIME-DEPENDENT SCHRÖDINGER EQUATION (1)

Let the wavefunction describing the whole system com-
posed of the one-dimensional lattice and the M harmonic
modes be |�(t )〉. We introduce the set of the action-angle
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FIG. 18. The results of the critical scaling analysis for model A
of M = 4 with W = 1.0. (a) The scaled MSD (ε, t ) as a function
of x = ξMtα/2ν in logarithmic scale for some values of ε, where ξM

is the localization length as a scaling parameter. (b) The scaled (t )
with α = 0.5 as a function of ε for some pickup times. The crossing
point is εc � 0.115. (c) s(t ) as a function of t . The critical exponent
ν � 0.9 is determined by a scaling relation [Eq. (23)] by the least-
squares fit.

operators (Ĵi, φ̂i ) := (−ih̄ ∂
∂φi

, φi ) (i = 1, 2, . . . , M) represent-

ing the harmonic modes, and let Ĥ0 be the part of Hamiltonian
in Eq. (1) without the harmonic perturbations (i.e., ε = 0)
and introduce the Hamiltonian ĥ = ∑M

i=1 ωiĴi representing the
harmonic modes. The autonomous version of Eq. (1) is written
as the evolution equation,

ih̄
|∂�(t )〉

∂t
= Ĥtot|�(t )〉, (B1)

of the whole system with the total Hamiltonian

Ĥtot = Ĥ0 + ĥ + W ε√
M

∑
N

vn|n〉〈n|
M∑

i=1

cos(φi ), (B2)

where H0 = ∑
n(|n + 1〉〈n| + |n〉〈n + 1|) + W vn|n〉〈n| =∑

N EN |N〉〈N | is the unperturbed Hamiltonian, and |n〉 is the
base specifying the site n of the 1D Anderson model. The
eigenstate of the action operator, which is angle represented
as 〈φi|Ji〉 = eiJiφi/h̄/

√
2π with the action eigenvalue Ji = nih̄,

is written as |ni〉, and we let the eigenstate of the isolated
one-dimensional lattice H0 be |N〉 with eigenvalue EN :
H0|N〉 = EN |N〉. By decomposing the quantum state of the
total system as |�(t )〉 = ∑

N,{ni} �(N, {ni})|N, {ni}〉, Eq. (B2)
is rewritten by Eq. (1).

Let Ûtot = exp{−iĤtott/h̄} be the unitary evolution opera-
tor of the total system, and introduce the new operator Û by
Ûtot = e−iĥt/h̄Û . Then the evolution equation

ih̄
∂Û

∂t
=

[
H0 + W ε√

M

∑
n

vn|n〉〈n|
M∑

i=1

cos(ωit + φi)

]
Û
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FIG. 19. The results of the critical scaling analysis for model A
of M = 7 with W = 1.0. (a) The scaled MSD (ε, t ) as a function
of x = ξM (ε)tα/2ν in logarithmic scale for some values of ε, where
ξM is the localization length as a scaling parameter. (b) The scaled
(t ) with α = 0.28 as a function of ε for some pickup times. The
crossing point is εc � 0.042. (c) s(t ) as a function of t . The critical
exponent ν � 0.52 is determined by a scaling relation [Eq. (23)] by
the least-squares fit.

is immediately obtained, which is equivalent to Eq. (1) if
the phase eigenstate |φ1〉, |φ2〉, . . . , |φM〉 is supposed at t = 0.
The identity

eiĴωt/h̄e−iK cos φ/h̄e−iĴωt/h̄ = e−iK cos(φ+ωt )/h̄ (B3)

is used.

APPENDIX C: AN ALTERNATIVE REPRESENTATION OF
EQ. (4)

Equation (B2) allows us to introduce an alternative rep-
resentation of Eq. (4) based upon the quantum state of a
single lattice site dressed with harmonic modes interacting
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FIG. 20. The double-logarithmic plots of m2(t ) as a function of
t for different values of ε in model B with W = 1: (a) M = 1 and
(b) M = 2. Black dotted and thick lines show m2(t ) ∝ t2 and m2(t ) ∝
t1, respectively, for reference.
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with it. We demonstrate the M = 1 case. Let us focus on
the part of Hamiltonian (B2), from which the transfer term∑

n(|n + 1〉〈n| + |n〉〈n + 1|) is neglected,

Ĥ (n) = ωĴ + W vn(1 + ε cos φ)|n〉〈n|, (C1)

which represents the nth site interacting with the harmonic
mode. We set ω1 = ω. Suppose its eigenstates of the form
|n, K〉 = |n〉|K〉n, satisfying Ĥn|n, K〉 = En,K |n, K〉, where K
is the new quantum number associate with the harmonic mode
to be introduced later. One can readily find that the φ represen-
tation 〈φ|K〉n := uK,n(φ) of |K〉n satisfies the simple equation

iω
∂uK,n

∂φ
= [W vn(1 + ε cos φ) − En,K ]uK,n, (C2)

which leads to

uK,n(φ) = 1√
2π

exp

[
i
(En,K − W vn)φ − W vnε sin φ

h̄ω

]
,

(C3)

where the quantization condition En,K − W vn = Kωh̄ (K is an
arbitrary integer) is required for the 2π periodicity of uK,n(φ).
Using the new basis |n, K〉 = |n〉|K〉n we expand the wave-
function as �(t ) = ∑

n,K �(n, K )|n, K〉, and the Schödinger
equation in Eqs. (B1) and (B2) is rewritten into the following
form, instead of Eq. (4) with M = 1:

ih̄
d�(n, K )

dt
= (Kωh̄ + W vn)�(n, K ) +

∑
K ′

[
T n,n+1

K−K ′

×�(n + 1, K ′) + T n,n−1
K ′−K �(n − 1.K ′)

]
.

(C4)

Then the effective position-dependent hopping is given as

T n,n′
K−K ′ :=n 〈K|K ′〉n′ = JK−K ′

(
εW (vn − vn′ )

h̄ω

)
, (C5)

where Jn(x) is the first kind of Bessel function. We can see
that the monochromatic perturbation combined with the ran-
domness is completely incorporated into the hopping terms.
The amplitude �(n, K ) at each lattice site (n, K ) is con-
nected to those at the sites (n ± 1, K − K ′). It follows that
for εW/h̄ω 	 1 the hopping coefficients decay along the K
direction, and the system becomes a quasi-1D tight-binding
model because Jn(x) ∼ xn

2nn! as n → ∞.
Similarly, in the case of model B of M = 1, the model can

be converted into a tight-binding model without the on-site
randomness and with hopping randomness.

APPENDIX D: RESULT OF FINITE-TIME CRITICAL
SCALING ANALYSIS

Figures 18 and 19 display the results of the finite-time scal-
ing analysis for model A of M = 4 and M = 7, respectively.
As a result, the OPST is well established for the LDT regard-
less of the number of colors, M, and the disorder strength W .

APPENDIX E: NORMAL DIFFUSION OF MODEL B

Unlike model A, in model B the system starts with the
ballistic motion m2 ∝ t2, and the motion gradually changes as
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FIG. 21. The double-logarithmic plots of m2(t ) as a function of t
for different values of ε in models A and B with W = 1: (a) M = 1
and (b) M = 2.

the perturbation becomes effective. The time dependence of
the MSD of M = 1 and M = 2 is shown in Fig. 20. As shown
in Fig. 20(a), in the case of M = 1, irrespective of the mag-
nitude of ε, the double-logarithmic plots of m2(t ) tell that its
instantaneous slope αinst (t ) finally decreases gradually below
α = 1, and we cannot find any sign that αinst (t ) converges to
a nonzero value. We, therefore, conjecture that delocalization
does not occur for M = 1.

On the other hand, in the case of M = 2, as shown
in Fig. 20(b), the time domain in which the ballistic mo-
tion is taking place is reduced by increasing ε, and normal
diffusion, m2(t ) � Dt , finally appears. (Due to the system
size of numerical calculation, it tends to be saturated when
it reaches the boundary.) We conjecture that, no matter
how small the magnitude of ε may be, the ballistic mo-
tion m2(t ) � t2 changes into diffusive motion m2(t ) � t1

in a long-time limit, if the system size is infinite. Simi-
lar behavior can be expected also for M � 3, and there is
no LDT.

Figure 21 shows a comparison of m2(t ) for some ε’s in
models A and B. Figure 21(a) is for M = 1. The MSD of
model A increases as ε increases, but it decreases for ε > ε∗,

054201-13



HIROAKI S. YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 105, 054201 (2022)
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FIG. 22. The diffusion coefficient D of the quantum diffusion as
a function of ε in models SA and SB with W = 2.0. Note that the
axes are in logarithmic scale and ε∗

s � 1.15 for W = 2. D ∝ ε−2
s is

shown by black dotted lines as a reference.

where ε∗ ∼ 1 is the characteristic value given in the text. At
ε � ε∗, it can be seen that the m2(t ) of model A approaches
the result of model B, and it overlaps for ε = 5 with that of
model B. Both cases become localized. As mentioned in the
main text, it can be said that it is an asymptotic transition from
model A to model B as ε increases. Figure 21(b) is the result
for M = 2. For ε = 5.0 both cases show normal diffusive
behavior for ε � 1.

Moreover, as can be seen in the localized case of ε = 0.7
and ε = 2.0 in model A of M = 1 in Fig. 21(a), the time
dependence of m2(t ) intersects. It follows that the two types
of regions, ε < ε∗ and ε > ε∗, do not follow the same scaling
curve towards localization even if the localization length is the
same

Figure 22 shows a comparison of the εs dependence of the
diffusion coefficient in models SA and SB. It can be seen that
model SA has a peak around ε∗

s � 1.15 and D(εs) gradually
approaches that of model SB for εs � ε∗

s . This tendency is the
same as the relationship between model A and model B.
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