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We present a family of graphs with remarkable properties. They are obtained by connecting the points of a
random walk when their distance is smaller than a given scale. Their degree (number of neighbors) does not
depend on the graph’s size but only on the considered scale. It follows a gamma distribution and thus presents
an exponential decay. Levy flights are particular random walks with some power-law increments of infinite
variance. When building the geometric graphs from them, we show from dimensional arguments that the number
of connected components (clusters) follows an inverse power of the scale. The distribution of the size of their
components, properly normalized, is scale invariant, which reflects the self-similar nature of the underlying
process. This allows to test if a graph (including nonspatial ones) could possibly result from an underlying Levy
process. When the scale increases, these graphs never tend towards a single cluster, the giant component. In other
words, while the autocorrelation of the process scales as a power of the distance, they never undergo a phase
transition of percolation type. The Levy graphs may find applications in community detection and in the analysis
of collective behaviors as in face-to-face interaction networks.
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I. INTRODUCTION

Graphs describe a set of relations (edges) among some
objects (vertices) and are thus the fundamental entities for
analyzing interactions in complex systems. The celebrated
work of Erdös and Rényi [1–3] marks the beginning of graph
structure exploration. In this reference model, still often used
today to generate null tests, edges are randomly chosen among
all possibilities with some given probability p. Many results
have been established for these graphs, the most salient feature
being that a transition similar to percolation[4] appears be-
yond some critical connectivity (pc = 1/N , N being the graph
size) with a “giant component” containing an extensive num-
ber of vertices. The distribution of the number of neighbors in
these graphs (called the degree) is a Poisson one and therefore
strongly peaked around the mean value pN especially when
this one is large.

Graphs embedded in space, i.e., where each vertex has
some associated coordinates, are often called “spatial net-
works.” Some adaptation of random graphs to them was
proposed [5] by linking nearby points. The resulting graph is
now called a random geometric graph (RGG). The standard
procedure is to first populate randomly N points in the plane
and create the edge e ji if the distance between the i and j
vertices is below some given cutoff d (i, j) < R. The resulting
geometric graph is closely related to a pure random one with
a connection probability p = πR2 (in dimension 2, assuming
a unit total surface) and a mean degree

〈k〉 = pN = πR2N. (1)
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RGGs also exhibit a critical transition above which a giant
component develops which happens around 〈k〉c = 4.5 in two
dimensions (2D) [6]. Although there exist some differences
between pure random graphs and geometric ones, in particular
on the density of triangles, the degree distribution of RGGs is
still a Poisson one while many real-world networks are more
heavy tailed, going up to power-law (scale-free) distributions
[7]. In spatial networks, cost considerations (energetical, eco-
nomical) tend to restrict the appearance of very large degrees
[8], but the degree distributions are still broad.

Several works have focused on ways to obtain a scale-free
degree distribution. For RGG, this can be achieved by chang-
ing the probability distribution of the points from uniform
to a more general form p(x) [9], or by changing the space
geometry to a hyperbolic one [10]. But the most influential
step in that direction is the one by Barabási and Albert [11]
who introduced the notion of growth (one starts with very few
vertices and then adds new ones) and preferential attachment
(edges are connected depending on the degree of the already
present vertices). The success of this approach somewhat
shifted the paradigm for graph generation and representation
[4] to an iterative process governed by some rules, tightening
the links with statistical physics.

Random walks have a long and rich history [12,13] and
are of capital importance in statistical physics. By random
walk we loosely speak about the repeated sum of the same
stochastic processes (steps) and we will restrict ourselves to
continuous processes in space. The standard one is based on
normally distributed increments (Wiener process) and most
walks converge to it since the sum of random variables always
converges to a Gaussian thanks to the central limit theorem.
This is in fact only valid if the variance of the increment is
finite. More generally, the generalized central limit theorem
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[14] states that the sum of any distribution, even with an
infinite variance, converges to a stable distribution for which
the normal distribution is a particular case.

In what follows we wish to connect the two domains
of graph structure exploration and stochastic processes by
building a geometric graph from random-walk points. Since
power-law interactions are ubiquitous in physics and biology
we will put particular emphasis on Levy flights which lead to
some remarkable graph properties.

We will first review in Sec. II the fundamentals of Levy
flights and the type of geometric graphs produced from them
which we shall call Levy geometric graph (LGG), general-
izing them to any dimension and discussing the effect of
dimensionality. We will then discuss in Sec. III the degree of
the graph, making thus a first connection with the random-
walk properties. In Sec. IV we study the number and size of
the connected components which have some unique proper-
ties, and give insights about their structure. Finally, in Sec. V,
we shall compare these results to the ones obtained with stan-
dard (Gaussian) random walks that will help understand what
makes the Levy graphs special. We shall conclude with some
possible applications, and defer to more technical Appendixes
the computation of the autocorrelation function for a 2D Levy
process and of the mean degree of a standard random-walk
graph.

II. CONSTRUCTION

A. Levy flight

Mandelbrot [15,16] has introduced the concept of Levy
flight (or walk) as a tribute to his teacher’s work on stable dis-
tributions (for an introduction, see [17]). The method consists
first in drawing some radial random number (X ) according to a
power-law distribution but only above some cutoff value (r0).
Mandelbrot dubbed it the Pareto-Levy distribution. Its cumu-
lative distribution function (also called survival probability) is

P(X > r) =
{( r0

r

)α
for r � r0,

1 else,
(2)

which, by taking the derivative, gives for the probability den-
sity function

f (r) =
{ α

r0

( r0
r

)1+α
for r � r0,

0 for r < r0.
(3)

An interesting feature of this distribution is that for the Levy
index α < 2 its variance is infinite, meaning that for samples
drawn according to it, the measured standard deviation does
not converge with the sample size. From Eq. (2) one derives
a straightforward way of drawing numbers according to a
Pareto-Levy distribution by first drawing a value ui from a
[0,1] uniform distribution and transforming it according to
r0u−1/α

i . By also drawing an isotropic angle in [0, 2π ], we
obtain the coordinates of a point and build the random walk
by accumulating the Euclidean positions [see an example in
Fig. 1(a)].

The properties of such a random point process are very
unusual to scientists familiar with the convergence proper-
ties coming from the central limit theorem, which is not

FIG. 1. (a) Example of a Levy flight (α = 1.5, r0 = 1,

N = 100) and (b), (c) of two geometric graphs built from it at
different scales.

applicable here due to infinite variances. The process is actu-
ally nonhomogeneous; there is no mean density as in a Pois-
son process, or, in the point-process vocabulary [18], a first-
order intensity function. However, the process has an isotropic
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autocorrelation function (second-order intensity function) de-
fined as the conditional probability of finding a point at a
distance r from a point of the process. Its computation is
explained in detail in Appendix A and leads to

f (r) ∝ 1

r2−α
for 0 < α < 2 and r � r0. (4)

This power-law behavior can be understood considering the
asymptotic tail of the Pareto-Levy distribution (3) which is
that of a stable distribution [19] with a characteristic function
φ(k) = e−ckα � 1 − ckα in the low k (large r) limit. Fourier
integrating it on a space of dimension 2 leads to the result.

By integrating the process on a disk of radius R, one then
finds that the mean number of points in it is

N̄ (< R) ∝
(

R

r0

)α

for 0 < α < 2 and R � r0, (5)

exhibiting a fractal dimension in the power law. A process
with a power-law autocorrelation function is scale free or
more precisely self-similar [20].

We emphasize that these results rely on some approx-
imations that we highlight in Appendix A. In particular,
it is sometimes stated that for α � 2 the process becomes
Gaussian. Although this is valid for large values of α we
show that this transition is progressive. While the power-law
description is excellent for α values close to 1, around α = 2
the conditional distribution becomes a complicated mixture of
power-law and Gaussian functions.

B. Levy geometric graphs (LGG)

The Levy flight is an oriented path. We obtain an undi-
rected graph by applying some scale, i.e., we consider it
at some given “resolution.” We use the standard geometric
graph recipe by connecting points if their Euclidean distance
is below some cutoff value R:

‖X i − X j‖ � R. (6)

What matters here is the relative value between the R cutoff
and the minimal step size r0 of the Pareto-Levy distribution,
so that, in what follows, we will only use the scales ≡ R

r0
or,

equivalently, always work setting r0 to 1 so that s represents
the geometric cutoff.

Increasing the s cutoff, one obtains fewer and fewer
clusters which become bigger and bigger as illustrated in
Figs. 1(b) and 1(c). Although the resulting graph is a metric
one (positions are properties of the vertices) we will only
consider their connectivity structure.

For given α exponent and s scale values, we call the result-
ing graphs the Levy geometric graphs (LGG) and note them
Lα (s). The fractal properties are valid for s � 1 (which will
be made more precise in Sec. III) and for α � 2. However
for α < 1 the mean of the Pareto-Levy distribution diverges
and all statistics are governed by rare events leading to very
noisy results. So, we shall not consider α < 1 values. In what
follows, our range of interest for the LGG parameters will be

1 � α � 2, (7a)

s � 2. (7b)

TABLE I. Return probability as defined in the text measured for
Levy graphs with different Levy indices in several dimensions.

d α = 1 α = 1.5 α = 2

2 0.192 ± 0.002 0.444 ± 0.015 0.709 ± 0.036
3 0.067 ± 0.001 0.141 ± 0.002 0.233 ± 0.002
4 0.031 ± 0.000 0.064 ± 0.001 0.103 ± 0.001
5 0.017 ± 0.001 0.035 ± 0.001 0.055 ± 0.001

C. Dimensionality

Although Levy flights are generally studied in dimen-
sion d = 2 or 3 we generalize them to any other dimension
d by building the walk using 2 for the radius and draw-
ing an isotropic direction, for instance, from a standard
d-dimensional normal distribution. The edge assignment is
still performed using 6 in the d-dimensional space.

The conditional probability is similar to the 2D case by
replacing the exponent 2 in 4 by d . The mean number of points
in a ball of radius R [Eq. (5)] is then unchanged up to the
normalization factor.

Levy flights may be viewed as a sequence of “local” points
followed by some “long” jump. Due to isotropy some new
points may “come back” close to some previous ones as in
Fig. 1. The probability that this happens, that we call the “re-
turn probability,” should decrease with dimension, eventually
going to 0 as d → ∞ since the path will go to other parts of
space.

To be more quantitative, we define a return probability for
the Levy process in the following way. Let us first suppose that
we have switched “off” the angular part of the process and we
only keep the radial steps in an additive way. Then, all pairs of
points are separated by a distance of at least r0 = 1. Building
a Levy graph that connects points below r0 = 1 [Lα (s = 1)]
just leads to a disconnected set of points where there are
as many connected components as points (Nclus = N). When
switching the angular part “on,” some points do come back
close to previous ones, sometimes below the r0 = 1 cut, and
some clusters start to form (Nclus < N). We then propose the
following definition for a Levy flight return probability:

P0 = lim
N→∞

(
1 − Nclus

N

)
, (8)

where Nclus is the number of clusters in aLα (s = 1) of size N .
We estimate those numbers in dimensions 2 to 5 by build-

ing 100 Lα (s = 1) graphs (N = 105), counting each time the
number of connected components, and computing the mean
and standard deviation of the (1 − Nclus

N ) values. Results are
reported in Table I.

In dimension 2, the return probability is between 19%
and 71% depending on the Levy index. If we rescale the
d = 3, 4, 5 probabilities by P0(2) we obtain for P0(d =
3, 4, 5)/P0(2)

(0.350 ± 0.006, 0.163 ± 0.003, 0.089 ± 0.003) α = 1,

(0.318 ± 0.011, 0.144 ± 0.005, 0.078 ± 0.003) α = 1.5,

(0.329 ± 0.017, 0.145 ± 0.008, 0.078 ± 0.004) α = 2,
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FIG. 2. Mean degree measured on dimension-2 Levy graphs
varying the scale for several indices values. Full lines represent the
Eq. (11) best fits performed in the s � 2 region and the dashed ones
their extension to lower values.

which shows in each case a strong effect between dimensions
2 and 3 (about a factor 3), and then milder ones (about a factor
2) when going from dimensions 3 → 4 and 4 → 5. This effect
essentially depends on the space dimension, not on the details
of the Levy walk (α). It is worth noticing that these values are
similar to the ones obtained for a standard random walk but
on a lattice (i.e., a square grid) where the relative probabilities
(with respect to dimension 2) to come back to a previous site
are [21]

P(d )/P(2) = (0.340, 0.193, 0.135). (9)

III. DEGREE

We first consider the average degree of the graph. For
a geometric graph cut at some distance R, the number of
neighbors (degree) at a given vertex is the number of points
within a disk of radius R centered on it minus one (the vertex
itself). The mean degree is then

〈k〉 = N̄ (< R) − 1. (10)

From Eq. (5) we then use the following model for the mean
degree:

〈k〉(s) = ADsαD − 1, (11)

where the amplitude AD and power exponent αD will be ad-
justed from the results of simulations.

We measure the mean degree by running 100 Lα (s) simu-
lations of size N = 10 000 varying the scale and we show the
average values with standard deviations for α = 1, 1.5, 2 in
Fig. 2 together with the best fit to Eq. (11). The agreement is
excellent down to s = 2 which fixes our lower limit. We have
also checked that the power-law model agrees nicely for any
Levy index α and in any dimension.

Figure 3 shows the best-fit coefficients in several dimen-
sions. For small values of α, αD � α, but gets smaller when
approaching 2. This is to be attributed to the approximations
which entered in the derivation of (5) and that are discussed
in Appendix A. While αD is practically independent of the
dimension, the amplitude parameter AD exhibits a strong

FIG. 3. Best fit parameters values measured on simulations from
Lα (s) mean degree according to the Eq. (11) model in several dimen-
sions d . The points show the measured values and the lines the best
quadratic fits (or linear in the case of AD for d = 3, 4, 5). The upper
dashed line shows the αD = α diagonal.

dimension dependence. This is due to the fact that in low
dimensions increasing the return probability does increase the
mean degree.

In dimension 2, one may use the following approximations:

αD(α) = α − 0.42(α − 1.21)(α − 0.60), (12a)

AD(α) = 1.81 + 2.04(α − 1)(α − 0.75), (12b)

and we note that the maximal value of αD is around 1.5.
Finally we emphasize the following:
(i) The mean degree fixes the total number of edges E =

〈k〉N
2 for undirected graphs. Then, for any Lα (s) the mean

number of edges is known.
(ii) The mean degree of a Lα (s) is fixed by α and s and is

independent of the graph’s size N .
The degree distribution has a tail because of points “com-

ing back” to previous ones. We characterized it in Sec. II C by
a return probability, that only depends on the space dimension.
We have noticed that in our range of parameters Eq. (7) the
degree is well described by a � distribution

P(k) = kβe−k/θ

�(β + 1)θβ+1
, (13)

where β(d ) depends on the dimension, and we set

θ =〈k〉/(β + 1) (14)

to ensure the proper mean value since for the � distribution
E[k] = θ (β + 1) = 〈k〉. A fixed value of β = 1.4 gives good
fits for all (α, s) values, as illustrated in Fig. 4. Together
with the mean degree formulas 〈k〉(α, s) Eqs. (11) and (12),
we then obtain an empirical parametrization of the degree
distribution for any Lα (s) (in dimension 2). It shows that for
large k the tail decays essentially exponentially.

IV. CONNECTED COMPONENTS

As is clear in Fig. 1, the LGG construction leads to a set of
connected components (clusters) which are all simple graphs.
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FIG. 4. Parametrization of the degree distribution in dimension
2, for some (α, s) values. The points with error bars show the mean
of histograms built from 100 simulations and the line, the analytical
formula Eq. (13) with β = 1.4.

Their number and sizes are random variables which we shall
now characterize.

A. Number of clusters

We first look at the number of clusters as a function of the
scale for a given Levy index. We measure it for two cases
N = 104 and N = 105 on simulations (Nsim = 100 for each
point) by counting the number of connected components. Fig-
ure 5 shows the measured cluster fractions for three α values
varying the scale. They all follow a power-law function with
similar slopes for the two N values in particular when α → 1.
As for the mean degree case (Sec. III), the exponent is close
to α but here higher by about 25%.

To understand the origin of this scaling we may resort again
to the higher-dimensional case where the return probability

FIG. 5. Measured fraction of clusters (mean and standard devi-
ation over 100 simulations at each point) for three LGGs varying
the scale, for two graphs’ sizes. Full lines show the the power-law
model for N = 104, and dashed ones for N = 105. For α = 1 both
are indistinguishable. The fitted exponents for α = (1, 1.5, 2) are,
respectively, (1.2,1.9,2.5) for N = 104 and (1.2,2.0,2.7) for N = 105.

FIG. 6. Measured fraction of clusters of a Levy graph (α = 1.4)
varying the space dimension d ∈ [2, 5] (N = 104). The dashed line
shows the asymptotic value 1/sα reached for d → ∞.

may be neglected (Sec. II C). In this case a cluster forms as
soon as there is a step larger than the s scale. From Eq. (2) this
happens when

p(> s) = 1

sα
, (15)

which shows the power dependency. We show in Fig. 6 how
the cluster fraction varies when increasing the dimension.
The cluster fraction converges indeed to the Eq. (15) naive
expectation following the pattern discussed in Sec. II C (an
important change between dimensions 2 and 3 and then some
milder ones). The logarithmic slope is unchanged, confirming
the fact that the return probability only affects the global
normalization.

This also explains why the cluster fraction is mostly in-
dependent of N . After a long jump, the probability to have a
further one that brings back the walker near a previous point
is very small. Clusters are formed in different regions of space
so that their number scales about linearly with N .

It is also worth noticing that despite the fact that the process
is built from individual steps of infinite variance, the standard
deviation on the number of clusters is small. We show in
Fig. 7 that the standard deviation on the number of clusters fol-
lows σ (Nclus) = b

√
Nclus with b = 1.4, 2.4, 3 for, respectively,

α = 1, 1.5, 2. This is only a factor of around 2 larger than
for a Poisson process. This means that for any Lα (s) graph,
the number of clusters in a run of length N is a priori known
quite precisely.

B. Cluster sizes

We now investigate the cluster sizes, i.e., the number of
vertices of each connected component.

For a LGG with N vertices there are Nclus clusters of var-
ious sizes Ni=1,...,Nclus . Both Nclus and Ni’s are the realization
of random variables subject to the constraint N = ∑Nclus

i=1 Ni.
Obviously when there are “fewer” clusters they should be
“larger” in order to preserve N . In the following we weight
the sizes by the cluster fraction and name it the normalized
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FIG. 7. Standard deviation on the number of clusters as a func-
tion of their number for the three runs α = 1, 1.5, and 2. The dashed
lines show a square-root dependency.

cluster size:

ni = Nclus

N
× Ni (16)

and call n the associated random variable.
We show in Fig. 8 the measured survival probability of n

for Levy graphs for different indices and scales. The distribu-
tions are slightly milder than an exponential one and can be
modeled by

p(� n) ∝ exp(−β nγ ) (17)

with β � 2 and γ � 0.4.
To understand the origin of this shape we consider again

the case of a large dimension and show in Fig. 9 the survival
probability of n when the dimension increases. The distribu-

FIG. 8. Survival probability of the normalized cluster size for
some LGGs in dimension 2. The first 2 curves (thick solid black and
dotted-dashed red) have the same Levy index but different scales.
The black one is barely noticeable since both lines superimpose. The
following two (dashed blue and dotted orange) show the effect of
varying α within the LGG boundaries. The scale used here was 5 but
any other value would have given the same result. The thin black line
shows the e−n function.

FIG. 9. Survival probability of the (normalized) clusters size
when increasing the dimensionality d of the space for α = 1.5. They
converge to e−n shown as the think black line.

tion becomes closer and closer to an exponential type and
seems to converge to e−n. In high dimensions, neglecting the
return probability, a cluster of size Ni is formed from several
small steps and stops when a jump exceeds the scale s, which
happens with probability p = 1

sα [Eq. (2)]. Since the steps are
independent, the distribution of the number of points in the
cluster is a geometric one:

p(Ni ) = (1 − p)pNi (18)

= 1

sα

(
1 − 1

sα

)Ni

. (19)

We have seen that in this space Nclus/N = 1/sα , and by the
change of variable n = Nclus

N Ni,

p(n) =
(

1 − 1

sα

)sαn

, (20)

which, in the region we explore (sα � 1), converges indeed to
e−n.

But, the most remarkable feature of the Fig. 8 distributions
is that they do not depend on the scale. As an illustration, we
consider the graphs shown in Fig. 1. For s = 3, 5 there are,
respectively, Nclus = 9 and 4 clusters and the normalized sizes
are

n(s = 3) = 9
100 (1, 1, 3, 3, 5, 6, 14, 17, 50), (21a)

n(s = 5) = 4
100 (6, 9, 32, 53). (21b)

If we rank those numbers and plot them on the theoretical
curve for α = 1.5, we see in Fig. 10 that they are both realiza-
tions of the same distribution, up to the noise due to the small
statistics used for the illustration. Results on a larger statistics
is precisely what is shown in Fig. 8.

This statistical invariance comes from the self-similar na-
ture of the Levy flight meaning that the same complexity of
the process is contained at any scale. By building the LGG
we capture this behavior into the graph. A set of connected
components at some given scale is equivalent to any other one
built at a different scale. We have thus transferred the fractal
geometry of the Levy points to the graph.
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FIG. 10. Normalized cluster size for α = 1.5 (N = 100). The-
oretical curve obtained from simulations in black and realizations
observed on Fig. 1 for scales s = 3 in red and 5 in blue.

This allows to make a connection to more abstract graphs,
i.e., those without a metric (as social networks). From their set
of connected components, we can test immediately whether
the normalized sizes follow one of the Fig. 8 distributions or
not. If not, they are incompatible with a LGG. If yes, we can
associate a potential α value, and from the fraction of clusters
Nclus/N [Eq. (5)], attribute a scale. Further studies then need
to be performed to test the topology of the clusters in order to
check if the graph could originate from a Levy process. The
detailed clusters characterization is outside the scope of this
paper and we only illustrate it in the following on the mean
degree.

C. Clusters’ mean degree

Although the full set of connected components provides
an equivalent description of the graph at any scale, a single
cluster does not represent the entire graph. Let us call 〈k〉i the
mean degree of cluster i:

〈k〉i = 1

Ni

Ni∑
j=1

k j . (22)

The average degree of the graph can then be written

〈k〉 = 1

N

∑
i

Ni 〈k〉i = 1

Nclus

∑
i

ni 〈k〉i (23)

by introducing the normalized cluster sizes ni [Eq. (16)].
This expression captures the main dependence on the LGG

parameters since we have seen that 〈k〉 � sα and Nclus � 1/sα .
Accordingly, the sum should essentially not depend on s and
α. This is shown in Fig. 11 where the distributions of the
clusters’ mean degree vs their size are similar for different
parameters of the LGG.

To understand the global shape, one must remember that
the distribution of n is peaked towards low values [Eq. (17)],
so we expect many small size components. However, the mean
degree of a connected graph is constrained, especially for low
sizes. For a cluster of size Ni the smallest degree is achieved
with a path (Ei = Ni − 1 edges) and the largest one with

FIG. 11. Mean degree of LGG clusters according to their size.
Each point corresponds to one cluster in a N = 105 simulation. The
horizontal dashed lines show the graph’s average degree. The dotted
lines show the limits discussed in the text [Eq. (24)]. When α or s
increases, larger clusters may form for a fixed N size run.

a complete graph [Ei = 1
2 Ni(Ni − 1)]. From Ei = 〈k〉i

N
2 , the

bounds on any cluster are therefore

2
Ni − 1

Ni
� 〈k〉i � Ni − 1, (24)

corresponding to the gray areas in Fig. 11.
These bounds are very constraining for low size clusters

which are the most numerous ones in LGGs. Then, in order
to maintain the graph’s average degree verifying (23), larger
(rare) clusters must have large degrees as observed in Fig. 11.
The important point here is that the mean degree is indepen-
dent of N , so that Fig. 11 is universal. Running with a higher
N value, one would (possibly) get a few larger connected
components which would add a few points on the right part
of the plot, but the main shape would remain unchanged.

Then, each cluster plays a role in obtaining the correct
graph’s mean degree and a single one cannot be considered
as a representation of the whole.

V. RANDOM-WALK GRAPHS

The idea explored in this work is to build a geometric graph
on top of a random-walk process. We may then ask what is
specific to Levy flights, which are very particular processes
with infinite variance steps. We thus compare our results with
a geometric graph built on top of a standard random walk
(SRW), i.e., with normally distributed increments of variance
σ 2.

We first consider the average degree for which we derive
an analytical formula in dimension 2 in Appendix B:

〈k〉 = 2
N∑

k=1

(
1 − k

N

)(
1 − e− s2

2k
)
, (25)

where the scale is defined here as s ≡ R
σ

.
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FIG. 12. Mean degree for the standard random-walk geometric
graph depending on the scale cut s = R

σ
. The points with error bars

show the outcome of simulations (N = 10 000, Nsim = 100). The
full line shows the exact analytical computation Eq. (25), and the
dashed one is the quadratic approximation Eq. (26) valid for s � 1.

For s � 1 the argument of the exponential is small, so that

〈k〉 � s2
N∑

k=2

1

k
, (26)

which reveals a quadratic nature but only at low scales. Al-
though formally diverging, the mean degree depends weakly
on N in practical cases (the sum being 8.8 for N = 104 and
13.3 for the N = 106 case). We confront these calculations to
simulations in Fig. 12 showing a perfect agreement.

As for the case of LGG, for which we had 〈k〉 ∝ sαD

with αD � 1.5 [Eq. (3)], the mean degree for SRWs looks
approximately like a power law (with αD = 2). But there is
an important difference. While for LGG the formula breaks
down at low scales [Eq. (2)], for SRW it breaks down at large
ones [Eq. (12)].

Another similarity comes from the degree distribution. We
have checked that for SRWs it is still well described by the �

distribution (Sec. III). Then, using Eq. (25) we also have an
analytical description.

The main difference comes from the clusters. We measure
in Fig. 13 the fraction of clusters when increasing the scale,
or equivalently the mean degree, and added for reference the
RGG case. The SRW graph converges to a single cluster (the
giant component) for a connectivity about 10 times larger
(�50) than for the RGG. This corresponds to a scale around
sc = 2 (see Fig. 12) which is the moment when the mean
degree starts to deviate from a pure power law.

For LGG, the power-law behavior stays exact and no giant
component ever appears when increasing the scale.1 This is
not only due to the fact that the process is inhomogeneous
(which can increase the threshold as in [22] but not suppress
the transition), but to the fact that the point density goes to

1Although technically one could imagine setting the scale to a huge
number above the radius of the graph, it cannot be defined a priori
since the maximal extent of a Levy graph is unpredictable.

FIG. 13. (a) Fractional number of clusters (for N = 104) as
a function of the mean degree for random geometric graphs
(RGG), standard random-walk ones (SRW), and Levy graphs (LGG,
α = 1.5). The dashed line indicates the Nclus = 1 case, i.e., when
there is a single giant component.

zero when increasing the geometric cutoff R since ρ(R) =
N̄ (<R)
πR2 ∝ 1/R2−αD with αD � 1.5 (Sec. III). The set of points

is asymptotically empty: a randomly placed small volume
contains typically no points, which prevents the appearance
of the giant component when increasing the radius.

In statistical physics language, the system never undergoes
a geometrical phase transition, as in percolation. This type
of transition describes the emergence of an ordered phase
characterized by giant components: highly connected clusters
with sizes of the same order of magnitude as N , i.e., macro-
scopic structures. At the critical point (or region), though,
clusters with various sizes coexist producing large fluctua-
tions in cluster statistics as can be noticed for RGG and
SRW in Fig. 13 slightly below the critical connectivity. Tradi-
tional random graphs represented here by SRW and RGG can
only portray critical behavior in a limited range. In the case
of SRW, the typical power-law behavior holds up to scales
sc � 2, indicating that beyond that point a different theory
and approximations must be employed to describe the system.
In contrast, for LGG the scale invariance remains intact and
the same theory can be used, regardless of the scale used to
investigate the problem.

VI. CONCLUSION

We have investigated the properties of geometric graphs
built on top of random-walk processes and in particular on
Levy flights and found the following:

(i) the mean degree is mostly independent of the graph’s
size;

(ii) it scales as a power law of the geometric cut 〈k〉 ∝ Rα ,
where α is the Levy index (and is equal to 2 for a standard
random-walk graph but only for scales below ∼2σ );

(iii) the degree follows a � distribution and has thus an
exponential tail.

These are generic features of all (isotropic) random-walk
graphs since from the generalized central limit theorem, any
process will either have a finite variance and converge to a
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standard (Gaussian) walk, either converge to a stable distribu-
tion with Levy-type tails.

We have thus found a simple way to construct a random
geometric graph with an exponential tail, i.e., broader than
the standard Poisson (Gaussian) one. When considering the
connected components (clusters), differences appear between
standard random-walk graphs (i.e., with finite variance steps)
and Levy-flight graphs (with infinite variance steps). The for-
mer show a critical connectivity much larger than for random
geometric graphs. But, the latter show no critical transition
at all. For the Levy graph, a giant component never forms,
whatever the scale is.

For Levy graphs the number of clusters scales as an inverse
power of the scale. By multiplying it by their size, one obtains
a normalized cluster size that is scale invariant, i.e., that does
not depend on the geometric cutoff used to build the graph.
Thus, the set of clusters at any scale is equivalent, which may
be viewed as a generalization of the self-similar nature of the
Levy flight from points to graphs.

This invariance can allow to make the connection to non-
metric graphs by considering only the size of their clusters. If
the survival probability falls typically as e−βnγ

with β ∈ [2, 3]
and γ ∈ [0.3, 1], one may associate a potential Levy index,
and from the fraction of clusters, a scale. To check further
whether a graph could originate from a Levy process or not,
one needs to study the structure of its clusters. We have
focused on degree distributions but several other topological
descriptors exist [7]. We have found, for instance, that the
clustering coefficients (that are related to the density of trian-
gles) are large (around 0.7); the average path lengths (shortest
number of steps between two vertices) scales as N1/d and is
therefore not compatible with a “small-world” network [4].
These two aspects come from the the local nature of the geo-
metric cutoff that favors triangles and forbids the appearance
of long shortcuts.

Levy graphs may find application in several areas. On
the theoretical side, they reveal an intriguing feature: al-
though they exhibit several power-law dependencies that are
characteristic of critical regions [4,23], they actually never
experience a transition. Could it be that they are always in
a critical state? They could then serve as a prototype for
studying systems close to a critical point.

Our second finding is that systems without an intrinsic
scale but analyzed at a given scale show a very characteristic
distribution of their cluster sizes. This may find applications
in community detection. Many methods exist to identify com-
munities in a graph but the scale at which to search for them
is unclear [24]. Then by running a single algorithm, one can
check the cluster characteristics and possibly attribute a Levy
index.

Are there some data to which we can confront our model
to? To this aim we need to turn to scale-free systems that are
common in biology [25], as in the flock of birds [26]. More
generally, the analysis and modeling of collective behaviors
may be an interesting target, as in the self-organization of
pedestrian crowds that show some Levy-walk strategies [27].
But, the most direct application could be to the modeling of
face-to-face interactions. Some high-quality data that record
the time individuals meet in various environments are avail-
able [28] and are best analyzed with aggregated graphs [29].

Several important aspects, as the distribution of contact du-
ration, are well described by graphs built on random walks
[30]. Biased random walks can also capture the appearance
of recurrent communities [31]. It is then natural to explore
whether Levy walks may be beneficial to this field since the
appearance of communities (clusters) lies at the very heart of
Levy graphs.
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APPENDIX A: CONDITIONAL PROBABILITY
DISTRIBUTION OF A 2D LEVY PROCESS

We detail in this Appendix the computation of the con-
ditional distribution for a Levy process in the plane. We
follow closely [33] by adapting it to dimension 2 (since it was
performed in dimension 3) enriching the demonstration and
quantifying approximations being made.

We start from a point of the process. From (2) the proba-
bility distribution of the next displacement in the plane is

f1(r) =
{ α

2π

rα
0

rα+2
for r � r0,

0 otherwise.
(A1)

The process being isotropic, its generating function (Fourier
transform) only depends on the mode modulus k. Integrating
over the angles

ψ1(k) =
∫

f1(r)eik·rd2r (A2)

= αrα
0

∫ ∞

r0

J0(kr)

rα+1
dr, (A3)

where we used [34] [Eq. (7) of Sec. 8.411-7]∫ 2π

0
e±iz cos φdφ = 2πJ0(z), (A4)

J0 being a Bessel function of first type.
Integrating by parts

ψ1(k) = J0(kr0) − krα
0

∫ ∞

r0

J1(kr)

rα
dr (A5)

using [34] [Eq. (7) of Sec. 6.511-7] [J0(kr)]′ = −kJ1(kr).
We are interested in the r � r0 case so that kr0 � 1 and

J0(kr0) � 1 − (kr0)2

4
. (A6)

For 0 < α < 2 the integral gets most of its contribution
from the r > r0 tail so that we can use [34] [Eq. (7) of
Sec. 6.561-14]∫ ∞

0
xμJm(ax)dx = 2μ �(1/2 + m/2 + μ/2)

�(1/2 + m/2 − μ/2)
a−μ−1

for − m − 1 < μ < 1/2 (A7)

to obtain

ψ1(k) � 1 − Iα (kr0)α,

with Iα = �(1 − α/2)

2α�(1 + α/2)
. (A8)
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FIG. 14. Test of the approximations made in deriving the condi-
tional probability function of a 2D Levy process. The full lines show
the exact numerical computation of the single-step characteristic
function (A5). Dotted lines show the power-law approximation (A8)
used in the α < 2 case. The black dashed line shows the quadratic
approximation (A14) used for all α � 2 indices. We use r0 = 1 and
consider the kr0 � 1 region.

One recognizes the asymptotic characteristic function of sta-
ble distributions [exp(−σαkα )] corresponding to the heavy
tail of the Pareto-Levy distribution [19].

The generating function for the nth displacement is the
product of the individual functions

ψn(k) = ψn
1 (k), (A9)

and the probability distribution its inverse Fourier transform

fn(r) = 1

(2π )2

∫
ψn(k)e−ik·rdk. (A10)

Considering any number of steps

f (r) =
∑

n

fn = 1
(2π )2

∫ ∑
n

ψn
1 (k)e−ik·rd2k

= 1

(2π )2

∫
[1 − ψ1(k)]−1e−ik·rd2k

= I−1
α r−α

0

(2π )2

∫
k−αe−ik·rd2k

= I−1
α r−α

0

2π

∫ ∞

0
k1−αJ0(kr)dk, (A11)

where we use again (A4) when integrating over the angles.
From (A7)∫ ∞

0
k1−αJ0(kr)dk = Kαrα−2 with Kα = �(1 − α/2)

2α−1�(α/2)
,

(A12)

and we finally find that for α < 2 and r � r0

f (r) = C

r2−α
, C = �(1 + α/2)

π�(α/2)
r−α

0 . (A13)

For α � 2, the integral (A7) diverges in the r0 → 0 limit.
In fact it now gets most of its contribution from low r values,

i.e., around r0 where J1(kr) � kr/2. With this crude approxi-
mation

ψ1(k) � 1 − 3
4 (kr0)2. (A14)

This is the leading order of a small Gaussian displacement.
Its inverse-Fourier transform is then also a Gaussian and one
recovers (roughly) a standard random walk.

We can (and should) question the rather strong simplifica-
tions that were made to the (A5) integral in both the α < 2
and α � 2 regimes. With r0 = 1, we compare in Fig. 14 the
exact value of ψ1(k) from (A5) computing numerically the
integral, to the derived approximations which are Eq. (A8) for
α < 2 and (A14) for α � 2. The approximation is excellent
for α = 1 but gets worse when approaching 2. For α = 2
the quadratic approximation is not yet reached and becomes
satisfactory only around α = 3.

APPENDIX B: MEAN DEGREE OF STANDARD
RANDOM-WALK GRAPHS

In a standard (Gaussian) random-walk process, the co-
ordinates of the increments follow a normal distribution of
variance σ 2, that we note in dimension 2, xk, yk ∼ N (0, σ 2).
The coordinates of the ith point in the walk, as the sum of
independent normal variables, then follow Xi,Yi ∼ N (0, iσ 2).
Let us focus on a point at index t and compute the distance of
any other point at index i to it:

rti =
√

(Xt − Xi )2 + (Yt − Yi )2. (B1)

Since Xt − Xi = ∑t
k=1 xk − ∑i

k=1 xk = ∑t
k=i+1 xk assuming

i < t , without loss of generality

Xt − Xi ∼ N (0, |t − i|σ 2). (B2)

The same holds independently for Yt − Yi, so that (B1)
represents the distance between two normally distributed in-
dependent variables, each of variance |t − i|σ 2. It then follows
a Rayleigh distribution of cumulative function

Pt,i(< R) = 1 − e
− R2

2|t−i|σ 2 . (B3)

Let us now consider N̄t the mean number of points within
some distance R of point t . Each point has a probability
Pt,i(< R) to be in the vicinity of t , so that

N̄t =
N∑

i=1

Pt,i(< R), (B4)

where, for i = t , we set Pi,i = 0 so as to only count neighbors.
The mean degree of the geometric graph with an R distance
cutoff is obtained by averaging Nt over all the t points:

〈k〉 = 1

N

N∑
t=1

N̄t

= 1

N

N∑
t=1

N∑
i=1

(
1 − e

− s2

2|t−i| ), (B5)

where we introduce the relevant scale s ≡ R
σ

.
We may simplify the formula by noticing that Pt,i(< R) is

a circulant matrix symmetric around the Pt,t = 0 diagonal and
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that the double sum represents the sum of all its elements.
Then, by counting the elements along the diagonals

N〈k〉 = 2(N − 1)(1 − e− s2

2 ) + 2(N − 2)(1 − e− s2

4 ) + · · ·
(B6)

and finally

〈k〉 = 2
N∑

k=1

(
1 − k

N

)(
1 − e− s2

2k
)
. (B7)
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