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Nonequilibrium master equation for interacting Brownian particles in a deep-well periodic potential
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Employing a creation and annihilation operator formulation, we derive an approximate many-body master
equation describing discrete hopping from the more general continuous description of Brownian motion on a
deep-well nonequilibrium periodic potential. The many-body master equation describes interactions of arbitrary
strength and range arising from a “top-hat” two-body interaction potential. We show that this master equation re-
duces to the well-known asymmetric simple exclusion process and the zero range process in certain regimes.
We also use the creation and annihilation operator formalism to derive results for the steady-state drift and the
number fluctuations in special cases, including the unexplored limit of weak interparticle interactions.

DOI: 10.1103/PhysRevE.105.054150

I. INTRODUCTION

A wide range of out-of-equilibrium many-body systems
can be described as interacting Brownian motion on a
nonequilibrium time-independent periodic potential [1]. Ex-
amples include polymerization of nucleic acid [2–4], colloidal
particles [5–8], and molecular motors [9,10]. When the
potential is characterized by multiple deep wells, the contin-
uous diffusion equation for the system can be approximated
by a simpler discrete “master equation” describing ther-
mally induced hopping between wells. Although this has
been formally demonstrated for a single Brownian particle
[11,12], there has been no systematic derivation for interact-
ing particles—where a specific choice of interaction potential
is required. In this paper we use a creation and annihila-
tion formalism for identical nonquantum Brownian particles
[13,14] to formally derive a discrete many-body master
equation assuming a “top hat” two-body interaction poten-
tial. This derivation, based on well-defined and physically
understandable approximations, provides physical insight into
a number of well-known processes on discrete lattices that
originally arose from either phenomenological [2] or math-
ematical consistency considerations [15].

A number of discrete equations have been used to describe
the nonequilibrium dynamics of interacting entities (parti-
cles or molecules) experiencing thermally induced hopping
on a discrete lattice [2,9,15–17]. These models have been
shown to give rise to interesting collective behavior, including
condensation into a collective mode [17] and “traffic jam”-
like behavior [9]. The asymmetric simple exclusion process
(ASEP) [2,15] is one of the simplest examples of a driven
interacting system. It describes a system where interactions
are strong enough to exclude two entities from occupying the
same site (see Ref. [9] for a recent review). The zero range
process (ZRP) [15] has been used to describe interactions
between entities within the same site (see Ref. [16] for a
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recent review). Generalizations of these processes have also
been considered [17]. The focus in much of this work has
been either the application of these processes to describing
particular experimental systems [3] or their mathematical sol-
ubility [17]. With a few exceptions [18,19], little attention has
been paid to the derivation of these processes from a more
general continuous Brownian motion theory or to determining
under what conditions these processes are valid approxima-
tions. This is important as it can show which processes are
physically possible and uncover deeper connections between
processes normally regarded as separate. Creation and anni-
hilation operator techniques provide a convenient method of
carrying out this derivation.

In two seminal papers [13,14], Doi showed how to for-
mulate many-body Brownian motion of identical classical
particles using creation and annihilation operators. This mod-
ified quantum field theory (QFT) formalism can be shown to
hold for classical particles in situations where neither phase
coherence nor the uncertainty principle play a significant role
[20]. This reformulation has subsequently been used in a
number of areas of physics but has had the most application in
the study of diffusion-limited chemical reactions [20], where
diffusion usually occurs in an equilibrium potential. Similar to
QFT, reformulating many-body Brownian motion in terms of
creation and annihilation operators, enables a significant sim-
plification through avoiding the need to track the coordinates
of each individual particle and by succinctly incorporating the
statistics (only bosonic in the Brownian case) of the identical
particles [21]. This enables analysis to focus on the collective
behavior of the system. It also enables many of the methods
developed in analogous many-body quantum systems [21] to
be directly available to the study of Brownian systems.

A creation and annihilation operator formalism could be
very useful for describing interacting Brownian systems on
nonequilibrium periodic potentials, however there has not yet
been a systematic application of these methods to these sys-
tems. Operator methods have been utilized in isolated cases,
including as a means of reformulating and solving the ASEP
and ZRP [22,23]. In these cases, the operator formulation has
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been arrived at through mathematical arguments rather than
through derivation from a more general continuous theory.

The main contribution of the current paper is a deriva-
tion of an approximate many-body master equation from a
general continuous description with specific confining and
interaction potentials. This derivation is based on a creation
and annihilation operator formalism and an expansion in
occupation-dependent localized states. The resulting master
equation describes interactions with arbitrary strength and
range arising from a top hat two-body interaction potential.
In the case of an equilibrium potential and restricted range
of interactions, the master equation reduces to that arrived at
in Ref. [23] (see also Ref. [20]) from a less general starting
point. In our derivation, all rates and interaction coefficients
in the master equation can be related to the original potentials
and all approximations are explicit, providing a clear physical
interpretation of the resulting master equation and its regime
of validity. We show how this master equation reduces to
a number of well-known processes in various regimes and
limits. A similar continuous system has been considered in
Refs. [18,19] showing up to five different phases of behavior.
However, Refs. [18,19] do not attempt a discrete description
or use annihilation and creation operators and consider only
hard-core interactions. As a second contribution, in this paper
we demonstrate the use of creation and annihilation meth-
ods to solve the resulting master equation and explore the
nonequilibrium steady state in a number of regimes, with a
particular focus on the unexplored weak-interaction limit. We
focus on studying how the steady-state drift and onsite number
fluctuations are affected by the interactions in these regimes.

This paper is structured as follows. In Sec. II we re-
view the general creation and annihilation operator formalism
for indistinguishable Brownian particles. In Sec. III we use
this general formalism to derive an approximate many-body
master equation for noninteracting Brownian particles in a
periodic potential. In Sec. IV we extend this to interacting par-
ticles by assuming a particular top-hat interaction potential. In
this section we also show how this master equation can de-
scribe a number of well-known processes in various regimes
and also present results for the drift and onsite number fluctu-
ations in the nonequilibrium state. In Sec. V we conclude the
paper and speculate on further applications of the creation and
annihilation formalism in nonequilibrium Brownian systems.

II. CREATION OPERATOR FORMULATION OF
MANY-BODY BROWNIAN MOTION

In this section we review the creation and annihilation
formulation of many-body Brownian motion. This provides
a background for readers unfamiliar with the approach, intro-
duces our notation, and enables us to emphasize aspects of
this formalism pertinent to later sections.

The probability density P(x, t ) of a single particle undergo-
ing over-damped Brownian motion in a potential evolves via
the Smoluchowski equation [24,25]:

∂P(x, t )

∂t
= L0(x)P(x, t ), (1)

where the single-particle evolution operator L0(x) is given by

L0(x) = 1

γ

∂

∂x

{[
∂V0(x)

∂x

]
+ kBT

∂

∂x

}
, (2)

and V0(x) is the single-particle potential. It is possible to
make an eigenspectrum expansion of L0(x) similar to the
Schrödenger equation [24,25].

Equation (1) can be written in a “bra” and “ket” form as

d|P(t )〉
dt

= L̂|P(t )〉, (3)

where |P(t )〉 is the state of the system and L̂ is the evolution
operator, which is assumed to be time independent but not
necessarily self adjoint. Note that L0(x) is only self adjoint if
V0(x) is a confining potential.

The right and left eigenstates of L̂ are defined by

L̂|Pn〉 = −λn|Pn〉, (4)

〈Qn|L̂ = −λn〈Qn|, (5)

where the (in general) complex eigenvalues can be chosen
such that Re{λn+1} > Re{λn}. One can show that the right and
left eigenstates form a biorthonormal set:

〈Qm|Pn〉 = δnm, (6)∑
n

|Pn〉〈Qn| = 1̂. (7)

A physical description requires that we specify how av-
erages of physical quantities are calculated. We confine our
focus to the case where λ0 = 0, such that a steady state
|Pss〉 = |P0〉 (where L̂|P0〉 = 0) of the system exists. In this
case, a self-consistent definition of the average of an operator
Ô corresponding to a physical observable is given by

〈O〉(t ) ≡ 〈Q0|Ô|P(t )〉, (8)

where 〈Q0| is the left eigenstate corresponding to λ0 = 0. The
normalization condition is given by

〈Q0|P(t )〉 = 1, (9)

which holds for all time (thus ensuring conservation of prob-
ability) d〈Q0|P(t )〉/dt = 〈Q0|L̂|P(t )〉 = 0 due to the fact that
〈Q0|L̂ = 0.

We can define a preserving transformation |P′(t )〉 =
Û |P(t )〉, with a well-defined inverse Û −1Û = 1, such that it
preserves Eq. (8):

〈Q0|Ô|P(t )〉 = 〈Q′
0|Ô′|P′(t )〉, (10)

where 〈Q′
0| = 〈Q0|Û −1 and Ô′ = Û ÔÛ −1. For example, the

time evolution operator eLt is a preserving transformation
which transfers the time dependence from the state |P(t )〉 to
the operator Ô and gives rise to “Heisenberg” equations of
motion:

dÔ(t )

dt
= [Ô(t ), L̂]. (11)

It has been known for a long time that Fock-state methods
or creation and annihilation operators can also be used for
indistinguishable nonquantum particles or molecules [13,14].

054150-2



NONEQUILIBRIUM MASTER EQUATION FOR … PHYSICAL REVIEW E 105, 054150 (2022)

Let us define creation and annihilation field operators ψ̂†(x)
and ψ̂ (x) via the following bosonic commutation relations:

[ψ̂ (x), ψ̂†(x′)] = δ(x − x′), (12)

[ψ̂ (x), ψ̂ (x′)] = [ψ̂†(x), ψ̂†(x′)] = 0. (13)

We also use these to define the vacuum states |{0}〉 and
〈{0}| by

ψ̂ (x)|{0}〉 = 0, 〈{0}|ψ̂†(x) = 0. (14)

Using these creation and annihilation operators, we can
now formulate a dynamical description of a many-body
classical system. To do this we assume that our evolution op-
erator and state are functions of the creation and annihilation
operators:

L̂ = L̂[ψ̂ (x), ψ̂†(x)], (15)

|P(t )〉 = f [ψ̂†(x), t]|{0}〉. (16)

With these definitions we can now straightforwardly apply the
above “bra” and “ket” formulation of Eqs. (3)–(11) to describe
a many-body system.

In the cases of interest here, the evolution operator
conserves particle number, i.e., [N̂tot, L̂] = 0, where N̂tot =∫

dxψ̂†(x)ψ̂ (x). This means that 〈Q0| = 〈Q0(Ntot )| has a def-
inite number of particles Ntot. In contrast, in Doi’s original
formulation [13] and many subsequent treatments [20] av-
erages are defined in terms of a projection on a left-hand
coherent state, which has Gaussian number fluctuations [28].
In this work we use the number-conserving definition given by
Eq. (8). In the case when number is not conserved, or the exact
number is not known, then to calculate averages it is a simple
matter of calculating the weighted sum of 〈Q0(Ntot )|Ô|P(t )〉
over all numbers Ntot of interest.

III. MANY-BODY MASTER EQUATION FOR
NONINTERACTING PARTICLES

Let us first consider noninteracting Brownian particles
in a periodic potential. Over-damped Brownian motion of
many noninteracting particles on a one-dimensional potential
[11,26,27] can be described via the evolution operator

L̂ =
∫ ∞

−∞
dxψ̂†(x)L0(x)ψ̂ (x), (17)

where L0(x) is the single-particle evolution operator given by
Eq. (2). This evolution operator conserves particle number as
required. We assume that V0(x) is characterized by an out of
equilibrium potential with multiple deep wells. As a concrete
example, we consider a tilted periodic form,

V0(x) = VP(x) − f x, (18)

where VP(x + L) = VP(x). In addition, we assume that within
a period L there are M potential wells with a characteristic
spacing of l = L/M. The tilt f �= 0 represents an external
force driving the system out of equilibrium.

In the limit of deep potential wells, there is a timescale
separation in the system whereby evolution within a well
occurs much more rapidly than evolution between wells. In

this limit, the description Eq. (17) can be transformed to a
discrete master equation describing the long term behavior
of thermally activated hopping between wells. A method of
carrying this out formally has been presented in Ref. [12].

The method involves defining localized states in terms of
fictional metastable potentials that match V0(x) at each min-
ima and surrounding barriers [12] (more details are provided
in Appendix A). The resulting states ωm

n (x) and ω†m
n (x), where

n denotes the well and m the mode of excitation, are localized
about the nth well and form an over complete biorthonormal
set. We can thus expand the operator of the full system as

ψ̂ (x) =
∑
n,m

âm
n ωm

n (x), (19)

ψ̂†(x) =
∑
n,m

â†m
n ω†m

n (x), (20)

where â†m
n and âm

n create and annihilate particles at the nth site
in the mth mode. In the long-time limit of interest, for deep
wells all higher modes m > 0 rapidly decay to the ground state
and we can make the approximation

ψ̂ (x) ≈
∑

n

ânωn(x), (21)

ψ̂†(x) ≈
∑

n

â†
nω

†
n(x), (22)

where we have neglected higher (m > 0) modes and dropped
the 0 superscript.

Inserting Eqs. (21) and (22) into Eq. (17) we can now write
the evolution operator as

L̂ =
∑

n

[
κ−

n â†
n−1ân + κ+

n â†
n+1ân − (κ−

n + κ+
n )â†

nân
]
, (23)

where κ±
n are the hopping rates to neighboring sites. These

rates are given by

κ±
n =

∫
dxω†

n±1(x)L0(x)ωn(x) (24)

= −
∫

dxω†
n±1(x)

∂J (x)

∂x
ωn(x), (25)

J (x) = kbT

γ
e−V0 (x)/kBT ∂

∂x
eV0(x)/kBT , (26)

where L0(x) has been written in terms of the current J (x) in
the second line. When f �= 0 there is a difference between the
forward and backward hopping rates κ+

n �= κ−
n which pushes

the system out of equilibrium.
A characteristic width of the localized state is provided

by the curvature about the minima of the wells: r0 ∼√
kbT/V ′′(xn). In the deep-well limit, r0 � l , the hopping

rates Eq. (24) reduce to the well-known Kramer’s rates [24]
(see Appendix A for more details). The Kramer’s rates de-
crease exponentially with barrier height. Curvature about the
well’s minima and maxima also has an (albeit lesser) effect
on the rates. In general, for a particular potential V0(x), it is
necessary to numerically solve for the localized states and
then use Eq. (24) to calculate the rates.

Equation (23) provides a natural generalization of the usual
master equation description of a single Brownian particle [24]
to the (noninteracting) many-body case. The first two terms
describe hopping between adjacent wells and the last term
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describes the escape process from each meta-stable well. The
particular form of Eq. (23) ensures that a zeroth eigenvalue
always exists and the system has a well-defined steady state.

The population at a single site is given by n̂n = â†
nân. From

Eq. (11) we can derive an operator continuity equation of
the form

dn̂n

dt
= [n̂n, L̂] (27)

= −( ĵn − ĵn−1), (28)

where ĵn = κ+
n â†

n+1ân − κ−
n+1â†

nân+1 is the current operator.
Following previous work exploring the ASEP [9], for the

M-well periodic system considered here [introduced earlier
via Eq. (18)] we can write the full evolution operator as

L̂ =
∞∑

p=−∞
L̂p, (29)

L̂p =
M∑

n=1

[
κ−

n â†
n−1,pân,p + κ+

n â†
n+1,pân,p

−(κ−
n + κ+

n )â†
n,pân,p

]
, (30)

where the p index denotes a set of M wells and 1 � n � M,
the position within the set. The wells are adjacent such that the
operators satisfy âM+1,p = â1,p+1, â0,p = âM,p−1, â†

M+1,p =
â†

1,p+1, and â†
0,p = â†

M,p−1.
The quantity of most interest in this system is the nonequi-

librium steady-state drift per particle defined in terms of the
average position:

v ≡ L

Ntot

d〈P̂〉(t )

dt

∣∣∣∣
t→∞

, (31)

where P̂ = ∑M
n=1

∑∞
p=−∞ pn̂n,p, n̂n,p = â†

n,pân,p and the ex-
pectation value is determined by Eq. (8). From the Heisenberg
equations of motion for n̂n,p, we determine

dP̂
dt

=
M∑

n=1

∞∑
p=−∞

[
pκ+

n−1â†
n,pân−1,p − pκ+

n â†
n+1,pân,p

+pκ−
n+1â†

n,pân+1,p − pκ−
n â†

n−1,pân,p
]

(32)

=
M∑

n=1

∞∑
p=−∞

ĵn,p, (33)

where, in the first line, we have used the periodicity of the op-
erators and also shifted the summation indices by 1. Defining
the reduced operators by

ôn =
∞∑

p=−∞
ôn,p, (34)

we can write the drift as

v = L

Ntot

M∑
n=1

〈 ĵn〉ss. (35)

We note that the reduced operators are periodic ôn+M = ôn

and their commutation relations are the same as for a single

period. Suppose [ôn,p, ô′
m,p] = 	̂n,m,p, then

[ôn, ô′
m] =

∞∑
p1,p2=−∞

[ôn,p1 , ô′
m,p2

]δp1,p2 (36)

=
∞∑

p1=−∞
	̂n,m,p1 (37)

= 	̂n,m. (38)

As L̂ in Eq. (29) can be written in terms of reduced operators,
the Heisenberg equations for the reduced operators are the
same as those for a single period. This means that the time
evolution of a reduced operator can be determined by the
equivalent operator on a single period by solving the evolu-
tion on that period. In other words, we can replace 〈ôn〉(t )
by 〈ôn〉(t ), where 〈ôn〉(t ) is found by solving the evolution
determined by

L̂R =
M∑

n=1

[
κ−

n â†
n−1ân + κ+

n â†
n+1ân − (κ−

n + κ+
n )â†

nân
]
, (39)

with the boundary conditions âM+1 = â1, â0 = âM , â†
M+1 =

â†
1, and â†

0 = â†
M . A similar argument has been made for cal-

culating the drift on a periodic potential in the single-particle
case [10].

The reduced evolution operator L̂R commutes with the
number operator, N̂ = ∑M

n=1 n̂n, so the number of particles
(denoted N) across the M sites is constant. For simplicity we
take this to be an integer. As Eq. (39) is quadratic in annihi-
lation and creation operators it can easily be diagonalized. In
the special case of constant coupling constants κ±

n = κ±, the
evolution operator Eq. (39) can be diagonalized as

L̂R = −
∑

k

λk ĉ†
k ĉk, (40)

where we have introduced the new boson k-modes:

ĉk = 1√
M

M∑
n=1

âne−i2πkn/M , (41)

ĉ†
k = 1√

M

M∑
n=1

â†
nei2πkn/M . (42)

The eigenvalues are given by [11]

λk = κ+(1 − e−i2πk/M ) + κ−(1 − ei2πk/M ). (43)

This describes the eigenspectrum (in units of inverse time) of
the m = 0 mode, or band, for k = −(M − 1)/2 to k = M/2.
The real part of λk gives the decay rate of the kth state. The
master equation description is valid in the limit when the
barrier heights for all sites are much greater than kBT , and
the gap to the m = 1 mode/band is large [12]. If κ+ �= κ−,
then the eigenspectrum gains an imaginary part representing
overdamped oscillations and gives rise to a finite nonequilib-
rium steady-state drift. From Eq. (43) we see that λ0 = 0 and
thus the nonequilibrium steady state is given by the “conden-
sation” of all N bosons into the zeroth mode ĉ0: |Pss〉 = |P0〉 =

1√
N!

ĉ†N
0 |{0}〉. This also tells us that the 〈Q0| = 1√

N!
〈{0}|ĉN

0 .
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Note that there is some freedom in the normalization of these
states as long as 〈Q0|P0〉 = 1.

Following the above discussion, the steady-state drift per
particle is given by

v = L

N

M∑
n=1

〈 ĵn〉ss, (44)

where we have normalized by N rather than Ntot . Writing ĵn
in terms of the k modes we find

ĵn =
∑

k

ĉ†
k ĉk

(
κ+ei2πk/M − κ−e−i2πk/M

)
. (45)

Taking the expectation value in Eq. (44) gives

v = L

N
〈ĉ†

0ĉ0〉ss(κ+ − κ−) (46)

= v0, (47)

where v0 = L(κ+ − κ−) is the single-particle drift and we
have used the fact that in the steady state all particles have
condensed into the zeroth mode. Note that the many-body
drift per particle is just the single-particle drift, as expected
for a noninteracting system.

In a similar manner, we can also calculate the steady-state
onsite number fluctuations:

�n ≡ 〈
n̂2

n

〉
ss − 〈n̂n〉2

ss (48)

= 〈â†
nâ†

nânân〉ss + 〈n̂n〉 − 〈n̂n〉2
ss. (49)

Inserting the k modes given by Eqs. (41) and (42) we find

�n = 1

M2

∑
k1,k2,k3,k4

〈ĉ†
k1

ĉ†
k2

ĉk3 ĉk4〉sse
−i2π (k1+k2−k3−k4 )/M

+ 1

M

∑
k1,k2

〈ĉ†
k1

ĉk2〉sse
−i2π (k1−k2 )/M

− 1

M2

∑
k1,k2,k3,k4

〈ĉ†
k1

ĉk2〉ss〈ĉ†
k3

ĉk4〉sse
−i2π (k1−k2+k3−k4 )/M

(50)

= 1

M2
〈ĉ†

0ĉ†
0ĉ0ĉ0〉ss + 1

M
〈ĉ†

0ĉ0〉ss − 1

M2
〈ĉ†

0ĉ0〉2
ss (51)

= N

M

(
1 − 1

M

)
, (52)

where in the second and third lines we have again used the fact
that in the steady-state limit, all the particles have condensed
into the zeroth mode. For M  1, �n ≈ ρ, where ρ = N/M,
showing onsite number fluctuations similar to a coherent
state [28].

IV. MANY-BODY MASTER EQUATION FOR
INTERACTING PARTICLES

A many-body description becomes much more interesting
once we consider interactions. When the presence of other
particles alters the potential we can write

V̂ (x) = V0(x)1̂ +
∫

dx′ψ̂†(x′)VI (x, x′)ψ̂ (x′). (53)

This additional contribution to the potential describes two-
particle interactions and the evolution operator becomes

L̂ =
∫

dxψ̂†(x)L0(x)ψ̂ (x)

+ 1

γ

∫
dxdx′ψ̂†(x)ψ̂†(x′)

∂

∂x

[
∂VI (x, x′)

∂x

]
ψ̂ (x)ψ̂ (x′).

(54)

Let us again assume a periodic potential V0(x) with a
characteristic width between wells of l . Let us also assume
that the particles have a certain interaction range, such that
the interaction potential can be approximated by a “top-hat”
potential of width w ∼ l about the particle position,

VI (x, x′) = χ

w
[�(x − x′ + w/2) − �(x − x′ − w/2)], (55)

where χ is the interaction parameter with units of energy and
χ > 0 (χ < 0) corresponds to repulsive (attractive) interac-
tions, and �(x) = 0 when x < 0 and �(x) = 1 when x > 0.
This potential describes particles with some finite extent that
acts as a potential barrier to neighboring particles. For sim-
plicity we assume that this range includes only neighboring
sites, such that w < 2l . This restriction will be relaxed below.

Let us further assume, similar to the noninteracting case of
Sec. III, that we are considering evolution in a tilted periodic
potential where only the lowest band is occupied such that

ψ̂ (x) =
∑
n,m

âm
n ω̃m

n (x), (56)

≈
∑

n

ânω̃n(x), (57)

ψ̂†(x) =
∑
n,m

â†m
n ω̃†m

n (x), (58)

≈
∑

n

â†
nω̃

†
n(x), (59)

where in the second line we have neglected states with m >

0 and dropped the 0 superscript. As we will see below, the
localized states ω̃n(x) and ω̃†

n(x) are different from those in
the noninteracting case.

Inserting this expansion into the interaction potential gives

V̂ (x) = V0(x)1̂ + χ

w

∑
n

n̂n

∫ x+w/2

x−w/2
dx′ω̃†

n(x′)ω̃n(x′). (60)

Using the same arguments as in the noninteracting case we
can derive an approximate evolution operator of the form

L̂ =
∑

n

[
â†

n−1κ̂
−
n ân + â†

n+1κ̂
+
n ân − â†

n(κ̂−
n + κ̂+

n )ân
]
, (61)

where

κ̂±
n = −

∫
dxω̃†

n±1(x)
∂ Ĵ (x)

∂x
ω̃n(x), (62)

Ĵ (x) = kbT

γ
e−V̂ (x)/kBT ∂

∂x
eV̂ (x)/kBT , (63)

and V̂ (x) is given by Eq. (60).
From Eqs. (60) and (62) and the localized nature of the

states ω̃n(x) and ω̃†
n(x), it is clear that the rates only depend
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on the number operators at sites in a finite region about site n
and n ± 1. Since we have restricted the range to w < 2l , the
rates are only a function of the number operator at neighboring
sites: κ̂±

n = κ̂±
n (n̂n, n̂n±1). We therefore need to evaluate the

matrix elements

κ±
n (Nn, Nn±1) = 〈Nn, Nn±1|κ̂±

n |Nn, Nn±1〉, (64)

where |{Nn}〉 are the number states. These matrix elements can
be calculated via Eq. (62) using the current operator

κ±
n (Nn, Nn±1) = −

∫
dxω̃†

n±1(x)
∂J{Nn}(x)

∂x
ω̃n(x), (65)

J{Nn}(x) = kbT

γ
e−V{Nn}(x)/kBT ∂

∂x
eV{Nn}(x)/kBT , (66)

where

V{Nn}(x) = V0(x)

+ χ

w

∑
m=n,n±1

Nm

∫ x+w/2

x−w/2
dx′ω̃†

m(x′)ω̃m(x′). (67)

Similar to the previous section, we define metastable po-
tentials in terms of the effective many-body potential

Ṽn(x) =
{

V{Nn}(x) An < x < Bn,

−∞ x = Bn and x = An,
(68)

where V{Nn}(x) is given by Eq. (67). We use this to define
localized states in terms of the eigenfunctions of this local
metastable potential as follows:

ω̃n(x) =
{
ψ̃0

n (x) An � x � Bn,

0 x > Bn and x < An,
(69)

ω̃†
n(x) =

{
ψ̃†0

n (x) An � x � Bn,

0 x > Bn and x < An,
(70)

where the eigenfunctions ψ̃m
n (x) and adjoints ψ̃†m

n (x) of the
nth metastable potential are given by

L̃nψ̃
m
n (x) = −λ̃m

n ψ̃m
n (x), (71)

L̃†
nψ̃

†m
n (x) = −λ̃m

n ψ̃†m
n (x), (72)

where L̃n and L̃†
n are, respectively, the evolution operator and

its adjoint for the self-consistent metastable potential Ṽn(x) on
the nth well.

As the definition of the effective potential V{Nn}(x) contains
the eigenfunctions ω̃n(x), the system of equations Eqs. (67)–
(72) needs to be solved self-consistently. We start with the
noninteracting states and iterate until the eigenvalues reach a
convergence tolerance.

A. Self-consistent localized states

The self-consistent approach can be illustrated by consid-
ering the change in the potential and states with occupation
number. As an example system, we consider the noninteract-
ing potential

V0(x) = −A

2
cos(2πx/l ), (73)

with well minima at x/l = −1, 0, 1, which we label as site
n = 1, 2, and 3, respectively.

-5

0

5

(a)

0

0.5

1
(b)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1 (c)

FIG. 1. Panel (a) shows the effective many-body potential
V{Nn}(x) (solid line) for occupation numbers {Nn} = {10, 5, 0}. The
noninteracting potential, V0 [Eq. (73)] (dotted line), and interaction
potential, VI (dashed), are shown for comparison. Panel (b) shows
the corresponding interacting localized states, ω̃n(x) (solid), and
noninteracting states (dotted). Panel (c) shows the adjoint interact-
ing, ω̃†

n (x) (solid), and noninteracting (dotted) states. Parameters are
χ = 2kBT and A = 10kBT and w = 0.55l .

Consider the case where the wells have the occupation
numbers {Nn} = {10, 5, 0}. Let us first consider the case
where w = 0.55l corresponding to an interaction that is
largely contained within each well. The localized states and
the many-body potential found using the self-consistent ap-
proach described above are shown in Fig. 1. Figure 1(a) shows
how the occupation of the sites alters the potential to make
the well on the left and middle shallower. This leads to a cor-
responding change in the localized states shown in Figs. 1(b)
and 1(c).

We next consider the case where w = 1.25l , such that the
interaction extends beyond a single potential well. Solving
this system self-consistently, we find the effective potential
and states shown in Fig. 2. In contrast to the w = 0.55l case,
the barriers have increased due to the overlap of the interacting
potential. In this case, the localized states have not changed
significantly from the noninteracting case.

The occupation of the states also has an important impact
on the hopping rates. The rate of hopping κ±

n (Nn, Nn±1) be-
tween the sites can be calculated from the interacting states
ω̃n(x) and ω̃†

n(x) via Eq. (65). In general this is a complicated
function of the occupation numbers. In the deep-well limit this
simplifies somewhat.

Let us consider the second term in the effective interaction
potential Eq. (67) in the cases considered above (see Figs. 1
and 2). If w < l , then the effective interaction potential only
has an onsite effect—decreasing the depth of the well with
increasing occupation. This leads to an increase in hopping
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FIG. 2. Effective many-body potential (a), states (b), and adjoint
states (c). Parameters are the same as in Fig. 1 but with w = 1.25l .

out of the well. In the deep-well limit r0 � w, changes in
curvature have a lesser effect [see Eqs. (A7) and (A9)]. If
2l > w > l , then the interaction potential overlaps with the
neighboring well—effectively increasing the barrier height
between the wells as occupation increases (again with neg-
ligible change in curvature in the deep-well limit). This has a
blocking effect on the hopping between wells. Finally, w ≈ l
represents the intermediate case, where the well depth and the
barrier height are both increased by a similar amount with
occupation, and both blocking and increased hopping occur.

With these considerations, it is reasonable to assume the
approximate functional form for the rates in the deep-well
limit

κ±
n (Nn, Nn±1) ≈ κ±

n (0, 0)e−βnNn±1+αnNn . (74)

A systematic numerical analysis of the rates confirms that
Eq. (74) captures the key behavior. For example, in Fig. 3 we
show the calculated hoping rates from the center site (site 2)
to the left-most site (site 1), κ−

2 (N2, N1), in the case w = 0.55l
for our three-site system varying the occupation at sites 1
and 2. For comparison, we have also plotted the functional
form Eq. (74) with α2 ≈ χ l/2πwkbT and β2 ≈ 0. This shows
excellent agreement to the numerical simulations. As another
example, the hopping rate in the w = 1.25l case is shown in
Fig. 4. For comparison we have also plotted the functional
form Eq. (74) with α2 ≈ 0 and β2 ≈ χ l/2πwkbT . Finally,
we consider the case where w = l . The hopping rates are
shown in Fig. 5. The functional form Eq. (74) with α2 ≈ β2 ≈
χ l/4πwkbT is also provided for comparison.

B. Approximate master equation for interacting particles

Based on the functional from Eq. (74) found in the previous
section, we conclude that one possible description of discrete

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

FIG. 3. Numerically calculated hopping rate κ−
2 (N2, N1) as a

function of N2 for N1 = 0 (+ symbols) and N1 = 10 (× symbols) for
w = 0.55l . The lines are fits for N1 = 0 (solid) and N1 = 10 (dotted)
based on Eq. (74) with β2 = 0.008 and α2 = 0.573. Other parameters
are A = 14kbT and χ = 2kbT .

hopping in a periodic potential with interactions is via the
evolution operator Eq. (61) with the hopping rates

κ̂±
n ≈ κ±

n e−βnn̂n±1+αnn̂n , (75)

where αn, βn > 0 are independent parameters reflecting the
nature of the interaction. Equation (75) holds in the deep-well
limit when the change in curvature of the wells and peaks is
minimal and r0 � w < 2l .

Confining ourselves to the limit where r0 � w, it is
straightforward to generalize the above to a top-hat potential
with long range (w  l ) or attractive (χ < 0) interactions.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 4. Numerically calculated hopping rate κ−
2 (N2, N1) as a

function of N1 for N2 = 0 (+ symbols) and N2 = 5 (× symbols) for
w = 1.25l . The lines are fits for N2 = 0 (solid) and N2 = 5 (dotted)
based on Eq. (74) with β2 = 0.237 and α2 = 0.018. Other parameters
are A = 14kbT and χ = 2kbT .
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FIG. 5. Numerically calculated hopping rate κ−
2 (N2, N1) as a

function of N1 and N2 (× symbols) for w = 1.0l . The surface is a fit
based on Eq. (74) with β2 = 0.165 and α2 = 0.149. Other parameters
are A = 14kbT and χ = 2kbT .

Following the pattern of behavior seen in the previous
section for the top hat potential, a hopping transition to a
neighboring well will be affected by population in the other
wells in two distinct ways. Either population in sites an inter-
action width in the forward direction will increase the barrier
height or, population an interaction width in the reverse direc-
tion will have raised the well minimum height (resulting in a
decrease in the forward barrier height). These two possibilities
are illustrated in Fig. 6. Thus, for interactions of arbitrary
width, w, the coupling rate can be written

κ̂±
n ≈ κ±

n e−βnn̂n±d +αnn̂n∓(d−1) , (76)

where d � 1, such that the forward (backward) hopping rate
to the neighboring site depends on the population d sites away
in the forward (backward) direction and d − 1 in the back-
ward (forward) direction. In the uniform-spaced-well case
d = �w/2l�. In addition, for the attractive case when χ < 0,
the effect of the interaction on the potential is reversed, such
that Eq. (76) can also encompass the attractive case with
αn, βn < 0 [1]. The general effective many-body evolution
operator for a top-hat potential is therefore given by

L̂ =
∑

n

[
κ+

n â†
n+1e−βnn̂n+d +αnn̂n−(d−1) ân

+ κ−
n â†

n−1e−βnn̂n−d +αnn̂n+(d−1) ân

− κ+
n â†

ne−βnn̂n+d +αnn̂n−(d−1) ân

−κ−
n â†

ne−βnn̂n−d +αnn̂n+(d−1) ân
]
. (77)

The first two terms describe hopping between adjacent sites
with a hopping rate that is modified by the occupation in
sites d and d − 1 sites away. The last two terms account for
the decay of each meta-stable well and also depends on the
occupation in the same sites. As in the noninteracting case, the
particular form ensures that a zeroth eigenvalue always exists
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FIG. 6. The effective many-body potential V{Nn}(x), (solid line)
experienced by a particle (centre grey dot) due to the presence of
another particle (black dot) at d = 2 sites away. The noninteracting
potential, V0 [Eq. (73)] (dotted line), and interaction potential, VI

(dashed), are shown for comparison. In (a) {Nn} = {0, 0, 0, 0, 1}, and
the interaction width is w = 3.25l . In (b) {Nn} = {0, 1, 0, 0, 0}, and
the interaction width is w = 2.55l . A forward hop from the center
well (gray dot) in case (a) will experience a higher barrier and in case
(b) a lower barrier due to the interaction. Parameters are A = 10kbT
and χ = 20kbT .

and the system has a well-defined steady state. The continuity
equation in this case becomes

dn̂n

dt
= − ( ĵn − ĵn−1), (78)

ĵn = κ+
n â†

n+1e−βnn̂n+d +αnn̂n−(d−1) ân

− κ−
n+1â†

ne−βn+1n̂n−d+1+αn+1n̂n+d ân+1, (79)

where ĵn is the current operator.
The master equation defined by the evolution operator

Eq. (77) describes discrete hopping between next-neighbor
wells and interactions of arbitrary strength and range due
to a top hat potential. This is the main result of this paper.
Note that we have only considered the simplest case of a
top-hat potential, more general potentials will lead to more
complex types of number dependence in the hopping rates.
For simplicity, in the remainder of this paper we consider only
the cases where d = 1 and αn, βn > 0.

A master equation of the form Eq. (77) has been pre-
sented previously in Ref. [23], however their treatment did not
provide a derivation from a specific confining or interaction
potential.

For an M-periodic system, as discussed in the noninter-
acting case, we can again show that expectation values of
reduced operators can be determined by solving a reduced
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system evolution operator

L̂R =
M∑

n=1

[
κ+

n â†
n+1e−βnn̂n+1+αnn̂n ân

+ κ−
n â†

n−1e−βnn̂n−1+αnn̂n ân

−â†
n(κ−

n e−βn−1n̂n−1+αnn̂n + κ+
n e−βnn̂n+1+αn̂n )ân

]
. (80)

In particular, the drift is given by Eq. (44) for the reduced
system defined by Eq. (80). A systematic exploration of this
system is left for future work. Instead, here we consider three
particular limiting regimes.

C. Zero range process

If βn = 0 for all sites, then there are only onsite interac-
tions. In this case the master equation reduces to

L̂ =
∑

n

[
κ+

n â†
n+1eαnn̂n ân + κ−

n â†
n−1eαnn̂n ân

−â†
n(κ−

n eαnn̂n + κ+
n eαn̂n )ân

]
. (81)

We can recognize Eq. (81) as the operator form of the ZRP
[22,23]. From the above derivation, the ZRP can be interpreted
as the case where the range of the interactions is less than
the width of each cell. More precisely, the ZRP holds in the
regime where r0 � w < l . In other words the ZRP holds in
the regime where the curvature of the wells are not altered
by the interaction (see discussion at end of Sec. IV A). In this
sense it is not really “zero range.” The cases where r0 ∼ w or
r0  w are left for future work.

Confining ourselves to the homogeneous case (κ± = κ±
n ),

we can write the reduced evolution operator as

L̂R =
M∑

n=1

[
κ+(â†

n+1 − â†
n)Ân + κ−(â†

n−1 − â†
n)Ân

]
, (82)

where we have defined the operator Ân = eαn̂n ân. We can
also define the adjoint operator by Â†

n = e−α(n̂n−1)â†
n such that

they satisfy the boson commutation relations [Ân, Â†
m] = δn,m.

Introducing the k-mode operators

Ĉk = 1√
M

M∑
n=1

Âne−i2πkn/M , (83)

Ĉ†
k = 1√

M

M∑
n=1

Â†
nei2πkn/M , (84)

which also satisfy boson commutation relations, we can write
the evolution operator Eq. (82) as

L̂R = −
∑

k

λk ĉ†
kĈk, (85)

where λk is given by Eq. (43) and ĉ†
k by Eq. (42).

This form of the evolution operator suggests that 〈Q0| ∝
〈{0}|cN

0 as in the noninteracting case. The bosonic nature of
Ĉk tells us that in the steady state all particles have condensed
into a single boson mode: |Pss〉 ∝ Ĉ†N

0 |{0}〉. This boson mode
Ĉ0 is very different from the noninteracting case when α �= 0.
Due to the nontrivial commutation relations between ĉk and
Ĉ†

k , it is not straight forward to derive analytical expressions

for the drift and number fluctuations for this case so we leave
their calculation for later work.

D. ASEP limit

In the case where l < w < 2l , the range of interaction
is such that βn  αn and the effect of αn can be neglected.
Let us also assume strong interparticle interactions such that
that βn  1. We can understand this limit by considering the
effect of the hopping term â†

n+1e−βnn̂n+1 ân on a simple two site
system:

â†
2e−β1n̂2 â1|1, 0〉 = |0, 1〉, (86)

â†
2e−β1n̂2 â1|2, 0〉 =

√
2|1, 1〉, (87)

â†
2e−β1n̂2 â1|1, 1〉 =

√
2e−β1 |0, 2〉, (88)

â†
2e−β1n̂2 â1|2, 1〉 = 2e−β1 |1, 2〉. (89)

From this, it is clear that if β1  1 then the transition |2, 0〉 →
|1, 1〉 will be much more likely than the inverse. This means
that interactions will cause more rapid diffusion to a uniform
distribution across the sites and onsite number fluctuations
will be small. It also means that a particle is unlikely to jump
to a site that is already occupied. In the case when there are on
average less than one particle per site, we can then make the
approximation

ân ≈ σ̂n, (90)

â†
n ≈ σ̂ †

n , (91)

â†
m′e−βmn̂m′ âm ≈ σ̂

†
m′ σ̂m, (92)

â†
me−βmn̂m′ âm ≈ σ̂ †

mσ̂
†
m′ σ̂m′ σ̂m, (93)

for m′ �= m, where σ̂m and σ̂ †
m are the Pauli matrices, satisfy-

ing [σ̂ z
n , σ̂m] = −2σ̂nδnm, [σ̂ z

n , σ̂ †
m] = 2σ̂ †

n δnm and [σ̂ †
n , σ̂m] =

σ̂ z
nδnm. As σ̂ †2

m = σ̂ 2
m = 0 two particles cannot occupy a

single site.
In this limit, we can write the effective evolution and cur-

rent as

L̂ =
∑

n

[
κ−

n σ̂+
n−1σ̂n + κ+

n σ̂
†
n+1σ̂n

−(κ−
n σ̂

†
n−1σ̂n−1 + κ+

n σ̂
†
n+1σ̂n+1)σ̂ †

n σ̂n
]
, (94)

ĵn =κ+
n σ̂

†
n+1σ̂n − κ−

n+1σ̂
+
n σ̂n+1. (95)

Equation (94) is the operator form of the ASEP [9,29].
The ASEP can therefore be interpreted as the case where
strong repulsive interactions exclude multiple occupation of
each site.

To calculate the steady, state drift we follow the same
argument as before and consider only the reduced system

L̂R =
M∑

n=1

[
κ−

n σ̂+
n−1σ̂n + κ+

n σ̂
†
n+1σ̂n

−(κ−
n σ̂

†
n−1σ̂n−1 + κ+

n σ̂
†
n+1σ̂n+1)σ̂ †

n σ̂n
]
. (96)
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The drift requires calculation of 〈σ̂ †
n+1σ̂n〉ss = 〈σ̂ †

n σ̂n+1〉ss.
These can be calculated in various ways. An oper-
ator approach (see Appendix B) gives 〈σ̂ †

n+1σ̂n〉ss =
N (M − N )/M(M − 1), such that

v = v0
1 − ρ

1 − 1/M
. (97)

The steady-state onsite number fluctuations (see
Appendix B) are

�n = 〈(σ̂ †
n σ̂n)2〉ss − 〈σ̂ †

n σ̂n〉2
ss (98)

= 〈σ̂ †
n σ̂n〉ss(1 − 〈σ̂ †

n σ̂n〉ss) (99)

= ρ(1 − ρ). (100)

Equations (97) and (100) show the characteristic blocking of
the hopping in the ASEP as ρ → 1.

More generally, Eq. (96) can be mapped to a quantum
Hamiltonian of a spin-1/2 ferromagnet [30,31]. This is an
integrable model and can be solved by the Bethe ansatz. Thus,
writing the ASEP process in this operator form allows the
application of well-developed mathematical techniques from
quantum mechanics.

We conclude from this section that the evolution operator
Eq. (77), provides a description of many-body hopping from
the noninteracting (αn = βn = 0) to the strong-interacting
ASEP limit.

E. Weakly interacting system

In this section we consider the limit of a weakly interacting
system. In this limit, the coupling constant Eq. (75) can be
expanded to first order in βn and αn as

κ̂±
n ≈ κ±

n (1 − βnn̂n±1 + αnn̂n). (101)

Considering a M-periodic system as before and dropping
the n dependence on the hopping rates and interaction coeffi-
cients the evolution operator Eq. (80) and current become

L̂R =
M∑

n=1

[
κ−(â†

n−1 − â†
n)(1 − βn̂n−1 + αn̂n)ân

+ κ+(â†
n − â†

n)(1 − βn̂n+1 + αn̂n)ân
]
, (102)

ĵn = κ+â†
n+1(1 − βn̂n+1 + αn̂n)ân

− κ−â†
n(1 − βn̂n + αn̂n+1)ân+1. (103)

In the analogous quantum system—the Bose-Hubbard
model—the weakly interacting limit is treated using the
Bogoliubov method [32]. We can use a similar approach for
the current system. In this method we assume a macroscopic
number of particles across the M  1 sites and also that the
interactions are weak such that most of the N particles in the
system are condensed into the ground state mode ĉ0. In this
limit, we can replace the ground state operators by complex
numbers: ĉ0 = ĉ†

0 → √
N . Transforming to the noninteracting

k mode Eqs. (41) and (42) and neglecting terms smaller than
N in Eq. (102) we arrive at the approximate evolution operator

L̂R ≈
∑

k

[
−�k ĉ†

k ĉk + 1

2
μk ĉ†

k ĉ†
−k

]
, (104)

where

�k = 2ρ[αλk − β(κ+ − κ−)i sin(2πk/M )] + λk, (105)

μk = −2ρ(κ+ + κ−)(α + β )[1 − cos(2πk/M )]. (106)

In the usual Bogoliubov treatment this evolution operator is
diagonalized via a linear transformation [32]. This is also
possible here. Defining new boson modes by

b̂k = ĉk − ĉ†
−k

μk

�k + �−k
, (107)

b̂†
k = ĉ†

k , (108)

and the inverse

ĉk = b̂k + b̂†
−k

μk

�k + �−k
, (109)

ĉ†
k = b̂†

k, (110)

we can write the evolution operator in the diagonal form

L̂R = −
∑

k

�kb̂†
kb̂k . (111)

Note that although the mode operators b̂k and b̂†
k satisfy

boson commutation relations, they are not related by an ad-
joint operation.

The spectrum, �k , of the boson excitations is modified by
the interactions. The decay of the excited modes, given by the
real part of �k , becomes

Re{�k} = (1 + 2ρα)Re{λk} (112)

= 2(1 + 2ρα)(κ+ + κ−)[1 − cos(2πk/M )].

(113)

Showing that the decay of the excitations is independent of β.
The imaginary part of the spectrum is given by

Im{�k} = [1 + 2ρ(α − β )]Im{λk} (114)

= 2[1 + 2ρ(α − β )](κ+ − κ−) sin(2πk/M ).

(115)

Showing that, in the Bogoliubov limit, the noninteracting os-
cillations are only modified if α �= β. The excitation spectrum
is shown in Fig. 7.

Since �0 = 0, as in the noninteracting case, the nonequi-
librium steady state is characterized by all the particles
condensing into the zeroth mode ĉ0 = b̂0, ĉ†

0 = b̂†
0 such that

〈Q0|b̂†
k = √

Nδk,0〈Q0| and b̂k|P(0)〉 = |P(0)〉√Nδk,0. To cal-
culate the drift we require the expectation value of the current
operator [see Eq. (44)]. Writing the current operator Eq. (103)
in terms of the k modes we find

ĵn =
∑

k1

ĉ†
k1

ĉk1�Kk1

+ 1

M

∑
k1,k2,k3

ĉ†
k1

ĉ†
k2

ĉk3 ĉk3−k1−k2�Gk1,k2−k3 , (116)

where �Kk = (κ+e−i2πk/M − κ−ei2πk/M ) and

�Gk,k′ = κ+e−i2πk/M (α − βe−i2πk′/M )

− κ−ei2πk/M (α − βei2πk′/M ). (117)

054150-10



NONEQUILIBRIUM MASTER EQUATION FOR … PHYSICAL REVIEW E 105, 054150 (2022)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

FIG. 7. Real (a) and imaginary (b) parts of the Bogoliubov exci-
tation spectrum. The solid line corresponds to ρα = 0.05, ρβ = 0.1,
the dashed line to ρα = 0.1, β = 0, the doted line α = 0, β = 0 and
the dash-dotted to α = 0, ρβ = 0.1. In all cases κ−/κ+ = 0.9.

To calculate the drift thus requires calculation of the ex-
pectation values 〈ĉ†

k1
ĉk2〉ss and 〈ĉ†

k1
ĉ†

k2
ĉk3 ĉk4〉ss. Writing these

expectation values in terms of the b̂k modes we find

〈ĉ†
k1

ĉk2〉ss = 〈Q0|b̂†
k1

b̂k2 |P(0)〉
− μk2

�k2 + �−k2

〈Q0|b̂†
k1

b̂†
k2
|P(0)〉 (118)

= Nδk1,0δk2,0, (119)

as μ0 = 0. We also find

〈ĉ†
k1

ĉ†
k2

ĉk3 ĉk4〉ss

= 〈Q0|b̂†
k1

b̂†
k2

b̂k3 b̂k4 |P(0)〉
+ 〈Q0|b̂†

k1
b̂†

k2
b̂k3 b̂†

−k4
|P(0)〉 μk4

�k4 + �−k4

+ 〈Q0|b̂†
k1

b̂†
k2

b̂†
−k3

b̂k4 |P(0)〉 μk3

�k3 + �−k3

+ 〈Q0|b̂†
k1

b̂†
k2

b̂†
−k3

b̂†
−k4

|P(0)〉 μk3μk4

(�k3 + �−k3 )(�k4 + �−k4 )
(120)

= 〈Q0|b̂†
k1

b̂†
k2

b̂k3 b̂k4 |P(0)〉
+ δk3,−k4〈Q0|b̂†

k1
b̂†

k2
|P(0)〉 μk4

�k4 + �−k4

= N2δk1,0δk2,0δk3,0δk4,0 − N
ρ(α + β )

1 + 2ρα
δk3,−k4δk1,0δk2,0, (121)

where in the last line we have used Eqs. (105) and (106)
to give

μk

�k + �−k
=

{− ρ(α+β )
1+2ρα

, k �= 0,

0, k = 0.
(122)

We arrive at the following result for the drift:

v = v0 + v0(α − β )

[
ρ − ρ(α + β )

1 + 2ρα

]
(123)

≈ v0 + v0ρ(α − β ). (124)

As we have only expanded the evolution operator to first order
in αn̂n and βn̂n, we drop the higher-order terms in Eq. (123)
for consistency. Thus, the drift depends on α − β and the
interactions can increase or decrease the drift depending on
the relative magnitudes of α and β. Similar behavior has been
identified in Ref. [18,19].

The number fluctuations can also be determined by insert-
ing Eqs. (119) and (121) into Eq. (50):

�n = ρ

[
1 − ρ(α + β )

1 + 2ρα

]
(125)

≈ ρ[1 − ρ(α + β )]. (126)

Thus, both α > 0 and β > 0 lead to a decrease in onsite
number fluctuations.

V. CONCLUSION

In conclusion, using a creation and annihilation operator
formalism for indistinguishable classical particles we have
derived a master equation for interacting Brownian parti-
cles in an out-of-equilibrium periodic potential. This master
equation is able to describe regimes spanning the noninteract-
ing to strongly interacting limit.

The discrete master equation is determined from a continu-
ous description of Brownian particles in a deep-well periodic
potential by expanding in a set of basis states localized about
the minima of each well. In the noninteracting case this re-
duces to a method developed previously for a single particle
[12]. In the interacting case, a self-consistent approach that
takes into account the population in each well is required. A
particular top-hat interaction potential between particles was
assumed. Depending on the width of this potential relative to
the width of the wells in the periodic potential, this gives rise
to either increased probability of exiting a well or blocking of
hopping to neighboring wells.

The master equation resulting from this approach repre-
sents a generalization of the well-known ASEP and ZRP. We
have shown that it reduces to the ASEP regime in the limit of
strong interactions and less than one particle per site, and the
ZRP, when the range of the interaction is less then the width of
the wells. We have also explored the weak-interaction regime
via a Bogoliubov-type approach [21]. In this paper we have
focused on calculating the steady-state drift per particle and
the number fluctuations. A more comprehensive exploration
of this system, including considering more general interaction
potentials, is left for future work.

The derivation of the master equation and calculation of
observable quantities was greatly facilitated by the use of a
creation and annihilation operator description of Brownian
particles [13,14]. The operator formalism for Brownian par-
ticles, has three key differences to quantum systems:

(1) The evolution operator L [where |P(t )〉 is the state of
the system and d|P(t )〉/dt = L|P(t )〉] is nonself adjoint so
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left-hand and right-hand basis states are necessary for a full
description.

(2) The expectation value of an operator is calculated via
〈Ô〉 = 〈Q0|Ô|P(t )〉, where 〈Q0|L = 0 [see Eq. (8)] rather than
〈Ô〉 = 〈P(t )|Ô|P(t )〉 as is usual in quantum mechanics.

(3) Particles satisfy only bosonic statistics.
Despite these differences, many of the well-known prop-

erties of the operator formalism still hold and can be used
to formulate equations of motion and calculate system aver-
ages. More generally, we expect the operator formalism to
also be useful for treating interacting Brownian particles in
more complicated nonequilibrium systems. For example, the
method could be generalized to consider motion in two and
three dimensions [33,34], asymmetric interaction potentials
[35,36] and even multispecies systems [37].

APPENDIX A: LOCALIZED SINGLE-PARTICLE STATES

Localized single-particle states of a deep-well periodic po-
tential are defined as follows [12]. For the nth potential well
of V0(x) let us denote the minimum as x = xn and nearest
surrounding maxima as x = bn and x = an. For each of these
wells we can define a metastable potential by

V̄n(x) =
{

V0(x) An < x < Bn,

−∞ x = Bn and x = An,
(A1)

where the boundaries Bn and An of the potential are chosen so
that Bn > bn and An < an. Neighboring metastable potential
wells V̄n±1(x) overlap in the region around the common maxi-
mum an = bn−1 and bn = an+1. We can define localized states
of the full system in terms of the eigenfunctions of the local
metastable potentials as follows:

ωm
n (x) =

{
ψm

n (x) An � x � Bn,

0 x > Bn and x < An, (A2)

ω†m
n (x) =

{
ψ†m

n (x) An � x � Bn,

0 x > Bn and x < An,
(A3)

where the eigenfunctions ψm
n (x) and adjoints ψ†m

n (x) of the
nth metastable potential are given by

L̄nψ
m
n (x) = −λm

n ψm
n (x), (A4)

L̄†
nψ

†m
n (x) = −λm

n ψ†m
n (x), (A5)

where L̄n and L̄†
n are, respectively, the evolution operator and

its adjoint for the metastable potential V̄n(x) on the nth well.
In the deep-well limit, the hopping rates Eq. (24) reduce to

the well-known Krammer’s rates as follows:

κ+
n ≈ J (x)ωn(x)|x=Bn (A6)

≈ [|V ′′(bn)|V ′′(xn)]
1
2

2πγ
e−[V0(bn )−V0(xn )]/kbT , (A7)

κ−
n ≈ J (x)ωn(x)|x=An (A8)

≈ [|V ′′(an)|V ′′(xn)]
1
2

2πγ
e−[V0(an )−V0(xn )]/kbT , (A9)

where V ′′(y) represents the value of the second derivative at
position y.

APPENDIX B: ASEP DRIFT AND NUMBER
FLUCTUATIONS

In the ASEP only one particle can occupy each site. Each
state of the system is therefore a configuration of the N parti-
cles across the M sites. The number of possible states is then
given by the number of ways of distributing N particles across
M sites:

N = M!

N!(M − N )!
. (B1)

It is convenient to use a binary number decomposition to label
each configuration k as

k =
M∑

m=1

Bk
m2M−m, (B2)

where m labels the sites and Bk
m equals 1 (mth site occupied) or

0 (mth site unoccupied).
∑M

m=1 Bk
m = N ensures conservation

of particle number.
In the operator formalism, the configuration k is given by

|k〉 =
M∏

m=1

σ̂ †Bk
m

m |{0}〉. (B3)

The steady-state probability is given by the sum over
all configurations |P〉ss = 1

N
∑N

k |k〉. We thus also have

〈Q0| = ∑N
k 〈k|.

Two key commutator relations allow us to calculate the
averages in the steady state:

[
σ̂n,

M∏
m=1

σ̂ †Bk
m

m

]
=

⎧⎪⎨
⎪⎩

Bk
n

M∏
m=1
m �=n

σ̂
†Bk

m
m if n � M,

0 if n > M,

(B4)

[
M∏

m′=1

σ̂
Bk′

m′
m′ , σ̂ †

n

]
=

⎧⎪⎨
⎪⎩

Bk′
n

M∏
m′=1
m′ �=n

σ̂
Bk′

m′
m′ if n � M,

0 if n > M.

(B5)

We illustrate this by calculating the 〈σ̂ †
n+1σ̂n〉ss:

〈σ̂ †
n+1σ̂n〉ss (B6)

= 1

N

N∑
k,k′=1

〈
{0}

∣∣∣∣∣
M∏

m′=1

σ̂
Bk′

m′
m′ σ̂

†
n+1σ̂n

M∏
m=1

σ̂ †Bk
m

m

∣∣∣∣∣{0}
〉

(B7)

= 1

N

N∑
k,k′=1

Bk′
n+1Bk

n

〈
{0}

∣∣∣∣∣
M∏

m′=1
m′ �=n+1

σ̂
Bk′

m′
m′

M∏
m=1
m �=n

σ̂ †Bk
m

m

∣∣∣∣∣{0}
〉
, (B8)

where in the second line we have used the commutation rela-
tions Eq. (B4) and (B5). For the sum on the right-hand side to
be nonzero, we require that Bk′

n+1 = 1, Bk
n = 1 and

Bk
m = Bk′

m (m �= n, m �= n + 1), (B9)

Bk
n+1 = 0, Bk′

n = 0. (B10)

Using Eq. (B2) and these restrictions on the binary coeffi-
cients, we can write k′ in terms of k in the second sum.
Specifically, we require that the configuration k′ has the site
n unoccupied and site n + 1 occupied and the rest of the
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configuration is identical to k. With this restriction we can
now write

〈σ̂ †
n+1σ̂n〉ss = 1

N

N∑
k=1

(
Bk

n − Bk
nBk

n+1

)
. (B11)

The first term represents all the configurations which have site
n occupied and the second the number of configurations where
both n and n + 1 are occupied. The number of configurations
with two sites occupied is the number of ways of arranging
N − 2 particles in M − 2 sites. This gives the solution in terms
of binomial coefficients

〈σ̂ †
n+1σ̂n〉 =

(
M

N

)−1[(
M − 1

N − 1

)
−

(
M − 2

N − 2

)]
(B12)

=
(

M

N

)−1(M − 2

N − 1

)
(B13)

= N (M − N )

M(M − 1)
. (B14)

A similar calculation gives

〈σ̂ †
n σ̂n〉ss = 1

N

N∑
k=1

Bk
n (B15)

= 1

N

(
M − 1

N − 1

)
(B16)

= N

M
, (B17)

where in the second line we have used the fact that
∑N

k=1 Bk
n is

the number of configurations with site n occupied, i.e., there
are N − 1 particles left to arrange in M − 1 sites.
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