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Heat flux in chains of nonlocally coupled harmonic oscillators: Mean-field limit
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We consider one-dimensional systems of all-to-all harmonically coupled particles with arbitrary masses, sub-
ject to two Langevin thermal baths. The couplings correspond to the mean-field limit of long-range interactions.
Additionally, the particles can be subject to a harmonic on-site potential to break momentum conservation.
Using the nonequilibrium Green’s operator formalism, we calculate the transmittance, the heat flow, and local
temperatures for arbitrary configurations of masses. For identical masses, we show analytically that the heat
flux decays with the system size N as 1/N regardless of the conservation or not of the momentum and of the
introduction or not of a Kac factor. These results describe, in good agreement, the thermal behavior of systems
with small heterogeneity in the masses.
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I. INTRODUCTION

Simplified microscopic models, such as classical particle
chains in contact with heat baths, have proven useful to gain
insights about the physics of thermal transport [1–4]. Espe-
cially, the role of conserved quantities in the violation of
Fourier’s law has been extensively studied [5–11]. Actually,
the interest in one-dimensional models goes beyond the higher
accessibility from a theoretical approach, as they can also be
useful for understanding the heat conduction anomalies ob-
served in real systems, such as carbon nanotubes [12], silicon
nanowires [13], molecular chains [14,15], and others [16]. In
particular, these experiments and theories can lead to new de-
velopments based on phonon transport, such as thermal diodes
[17–20]. In this latter context, the range of interactions may
be relevant to increase rectification [21,22]. More generally,
sufficiently long range interactions are worth investigating as
they can bring new physical features to a system [23–26].
Among them, let us cite negative specific heat [26], ensemble
inequivalence [27], phase transitions even in one-dimensional
systems [28–31], slow relaxation, and long-lived quasistation-
ary states [32–36].

Despite the distinct role that the range of the interac-
tions might play in heat transport, most studies rely on
nearest-neighbor couplings. Recent works tackling long-range
systems are based mainly on molecular dynamics simulations
[37–45]. Variants of Fermi-Pasta-Ulam-Tsingou [39–42,45]
and XY [37,40,43] chains, with interactions that decay al-
gebraically with the interparticle distance, have been studied.
But few analytical results exist for long-range systems in this
context. Among them, let us note the contribution by Tamaki
and Saito [46], who considered chains of long-range coupled
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harmonic oscillators with momentum exchange and studied
the thermal properties through the Green-Kubo formula that
relates the equilibrium energy current correlation function to
the thermal conductivity. However, for sufficiently long range
systems, the divergence of the current correlation hampers that
calculation.

The infinite-range limit is an analytically tractable case
that may allow us to gain insights about long-range systems.
This limit for a network of harmonic oscillators, when springs
are random, was previously tackled through a random matrix
approach [47]. In the present work, we consider another vari-
ant of the globally coupled harmonic system, with identical
couplings, and use the nonequilibrium Green’s function for-
malism to calculate analytically the heat current J , via the
transmittance, as a function of the system size N . In contrast to
the well-known case of harmonic first-neighbor interactions,
for which the heat current becomes constant for large N , we
find that for the opposite extreme of infinite-range interac-
tions, the current decays as 1/N . This result also contrasts with
that found when spring disorder is introduced [47].

In Sec. II, we describe the model system. Following the
nonequilibrium Green’s function approach, in Sec. III, we
calculate the transmittance, heat flow, and local temperature,
showing the behavior with system size, for different mass
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FIG. 1. Pictorial representation of the system.
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distributions, and analytical results are shown for identical
masses. Section IV contains final remarks about the scope of
the results.

II. MODEL

We consider a system of N globally coupled harmonic
oscillators described by the Hamiltonian

H =
N∑

n=1

p2
n

2mn
+ k0

2

N∑
n=1

q2
n + k

2Ñ

N∑
n=1

N∑
j=1
j �=n

1

2
(qn − q j )

2, (1)

where pn and qn are, respectively, the one-dimensional mo-
mentum and displacement of the nth oscillator with mass mn,
while k0 and k are the stiffness constants of the pinning and
the internal interactions, respectively, and Ñ is a factor that,
when Ñ = N − 1, represents the Kac factor [48], warranting
extensivity in the thermodynamic limit, but Ñ = 1 will also be
considered for comparison with previous studies. This system
is very similar to that studied by Schmidt et al. [47], but in
that case spring constants are random, masses are equal, and
a Kac factor is not used. The impact of these differences will
be noted throughout this paper.

Notice that the last term of the Hamiltonian can be seen
as the infinite-range limit of a chain of harmonic oscillators
that interact with a strength that decays with distance between
particles. In this limit, however, the spatial order of the chain
is lost. A schematic representation of the system is given in
Fig. 1.

Langevin thermostats are put in contact with two of the
oscillators. Let us choose the first and N th ones. The resulting
equations of motion are

m1 q̈1 = F1 − γ q̇1 + ηL, (2)

mn q̈n = Fn, n �= 1, N, (3)

mN q̈N = FN − γ q̇N + ηR, (4)

where γ is the friction coefficient; ηL/R are indepen-
dent fluctuating zero-mean Gaussian forces, such that
〈ηL/R(t ) ηL/R(t ′)〉 = 2γ TL/R δ(t − t ′) and 〈ηL(t )ηR(t ′)〉 = 0;
and the force over particle n is

Fn = −k0 qn + k

Ñ

∑
j=1
j �=n

(q j − qn). (5)

After Fourier transforming the equations of motion
(2)–(4), through the definition x̂(ω) = ∫ ∞

−∞ x(t )e−iωt dt , in
matrix form, they become

Ẑ (ω)q̂(ω) = η̂(ω), (6)

where q̂(ω) = (q̂1(ω), . . . , q̂N (ω))T is the Fourier-
transformed column vector of displacements, η̂(ω) =
(ηL(ω), 0, . . . , 0, ηR(ω))T is the noise column vector, and the

N × N matrix Ẑ (ω) has the symmetric form

Ẑ (ω) =

⎛
⎜⎜⎜⎜⎝

a1 + c b · · · b b
b a2 b · · · b
...

. . .
...

b · · · b aN−1 b
b b · · · b aN + c

⎞
⎟⎟⎟⎟⎠, (7)

where

an = N − 1

Ñ
k + k0 − mn ω2, (8)

b = − k

Ñ
, (9)

c = iωγ . (10)

The inverse matrix Ĝ = Ẑ−1 is the Green’s operator that pro-
vides the solution of the system of equations (2)–(4).

Actually, this is the particular solution for the initial condi-
tion qn = pn = 0 for all n. For long enough times, we expect
the system to lose track of its initial configuration. This hap-
pens when masses are all different. In cases where this is
not true, such as for equal masses, a full description of the
motion of the particles should consider the role of the initial
conditions. However, since this model is harmonic, the motion
can always be seen as a superposition of the solutions caused
by the interaction with the baths, which is stochastic, and the
initial conditions, which are deterministic. Since our goal is
to study the stochastic properties of the system, such as the
heat flux, we will consider, even for equal masses, only the
particular solution. We will see that our analytical results for
equal masses remain valid for small mass heterogeneity.

III. RESULTS

The elements of the matrix Ĝ = Ẑ−1 can be obtained as

Ĝi j = Ẑ−1
i j = (−1)i+ jM̂i j

det(Ẑ )
, (11)

where det(Ẑ ) is the determinant of the matrix Ẑ and M̂i j is the
(i, j) minor (i.e., the determinant of the submatrix that results
from the elimination of the ith row and jth column of Ẑ).
Derivations are essentially done through Laplace expansion
of a determinant by minors.

For the modulus of the (i, j) minor, we straightforwardly
obtain

|M̂i j | =
∣∣∣∣∣ b

AiA j

N∏
n=1

An

∣∣∣∣∣ (12)

for i �= j, where we have defined

Ai = ai − b + c(δi1 + δiN ).

For i = j, the minor corresponds to the determinant of the
matrix Ẑ of reduced order.

The modulus of the determinant of the N × N matrix Ẑ is

|det(Ẑ )| =
∣∣∣∣∣
(

1 +
N∑

j=1

b

Aj

)
N∏

n=1

An

∣∣∣∣∣. (13)
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Then, for i �= j,

|Ĝi j | = |M̂i j |
|det(Ẑ )| =

∣∣∣∣∣AiAj

b

(
1 +

N∑
n=1

b

An

)∣∣∣∣∣
−1

. (14)

In the next sections, we will use the Green’s operator Ĝ to
find the heat flux and local temperature. Their mathematical
expressions in terms of the elements of Ĝ are formally the
same as previously derived in the literature for first-neighbor
interactions (see, for instance, [49,50]), which are actually
valid for any interaction network. In our case, the interactions
are given by Eq. (7), where all off-diagonal elements are
non-null due to the all-to-all interactions, in contrast to the
tridiagonal first-neighbor case.

A. Transmittance and heat flux

In a long-range system, with all-to-all interactions, the bulk
particle can receive heat through many channels, but we can
calculate, without ambiguity, the fluxes that enter and leave
the system [40], respectively, from the left bath to the first
particle or from the rightmost particle to the right bath, which
must coincide under stationary conditions, i.e.,

J = 〈(ηL − γ q̇1)q̇1〉 = −〈(ηR − γ q̇N )q̇N 〉, (15)

which has the form

J = TL − TR

4π

∫ ∞

−∞
T (ω)dω, (16)

where T (ω) is the transmission coefficient,

T (ω) = 4γ 2ω2|Ĝ1N (ω)|2, (17)

which depends on the bath properties (given only by γ in the
case of our choice of baths) and on the system, via the element
Ĝ1N , which can be obtained from Eq. (14).

Let us consider the particular case of identical masses,
mn = m, for all n. As we will discuss soon, this case yields
normal modes uncoupled from the baths; however, the analyt-
ical results still apply in the limit of small heterogeneity in the
masses, enough to recover the coupling with the baths.

From Eq. (14), we obtain

|Ĝ1N | = |b(a − b)|
|a − b + c| |(a − b + Nb)(a − b + c) − 2cb| . (18)

Before continuing the mathematical derivation, it is insightful
to analyze the eigenvectors of Ẑ in Eq. (7) when masses
are equal. Direct inspection of the matrix Ẑ , when ai = a
for all i, allows us to identify that q̂ = (1, 0, . . . , 0,−1),
corresponding to the relative motion of the end particles,
is an eigenvector with eigenvalue a − b + c. Moreover, the
vectors of the form (0, θ2, . . . , θN−1, 0), subject to the con-
straint

∑N−1
j=2 θ j = 0, are eigenvectors with eigenvalue a − b.

They span a subspace of dimension N − 3, corresponding to
the relative motion of bulk particles and hence uncoupled
to the baths. The two remaining eigenvectors have the form
q̂ = (1, θ, . . . , θ, . . . , θ, 1), where θ can be obtained from
Ẑ q̂ = λq̂, which allows us to identify the eigenvalues

λ± = a + b + c + θ±b(N − 2), (19)

where

θ± = b(N − 4) − c ±
√

[b(N − 4) − c]2 + 8b2(N − 2)

2b(N − 2)
.

These modes are associated with rigid movements of the bulk.
Finally, let us note that, if we multiply the eigenvalues to
obtain the determinant and use Eq. (14), the eigenvalues of
the modes uncoupled to the baths cancel out, and we recover
Eq. (18). Substituting Eq. (18) into Eq. (17) and using the
definitions of a, b, and c given by Eqs. (8), (9), and (10), we
have

T (ω) = 4γ 2w2|Ĝ1N |2 = 4γ 2w2Ĝ1N (ω)Ĝ1N (−ω)

= 4γ 2ω2k2
(

Nk
Ñ

+ k0 − mω2
)2

f (ω)	(ω)Ñ2
, (20)

where

f (ω) =
(

Nk

Ñ
+ k0 − mω2

)2

+ γ 2ω2, (21)

	(ω) = γ 2ω2

(
2k

Ñ
+ k0 − mω2

)2

+ (k0 − mω2)2

(
Nk

Ñ
+ k0 − mω2

)2

. (22)

Let us remark that Eqs. (20)–(22) are valid for any Ñ . We
will analyze separately the momentum conserving (k0 = 0)
and nonconserving (k0 > 0) systems. In the first case, math-
ematical expressions are common to both values of Ñ ; in the
second, some expressions will be split for each value of Ñ .

(i) When k0 = 0, Eq. (20) reduces to

T (ω) = 4γ 2k2
(

Nk
Ñ

− mω2
)2 1

Ñ2

f (ω)
[
m2ω2 f (ω) − 4γ 2k

(
mω2

Ñ
− k

Ñ2

)] , (23)

where now f (ω) = ( Nk
Ñ

− mω2)2 + γ 2ω2. T (ω) has an ab-
solute maximum at ω = 0. For N2/Ñ � 4γ 2/(mk), only the
maximum at ω = 0 dominates (additional maxima with T <

1 can emerge for small N). Therefore, for large enough N and
ω2 � Nk/(Ñm), Eq. (23) approaches

T (ω) 	 1

1 + N2
(

m
2γ

)2
ω2

, (24)

which is a Lorentzian with a width that scales as 1/N . This
Lorentzian peak is associated with the complex conjugate pair
of poles that get closer to the real axis when the dissipation
parameter γ /m decreases. Equation (24) holds both with or
without the Kac factor, and it is compared to exact results in
Fig. 2.

Moreover, for large ω2 � Nk/(Ñm), the transmittance de-
cays as T ∼ 1/(w6Ñ2). This is depicted in the insets of Fig. 2
for the respective values of Ñ . Hence, the integral in Eq. (16)
is dominated by the Lorentzian peak described by Eq. (24),
leading to

J/	T 	 γ /(2m)

N
. (25)

Furthermore, let us comment that, when the Kac factor is
introduced, the behavior T (ω) ∼ 1/N2 is evident for any ω
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FIG. 2. Transmittance T (ω) in the momentum conserving case
(only the positive abscissa is displayed, keeping in mind that T is an
even function) for the different values of N indicated in the legend
(increasing N from lighter to darker) using Eq. (23). In all cases we
used m = k = γ = 1 and k0 = 0. In (a) and (b), Ñ = N − 1, and
in (c) and (d) Ñ = 1. In (a)–(c), the insets highlight the scaling of
the transmittance for large ω; the short-dashed lines correspond to
the indicated power law, plotted as a reference. In (b) and (d), we
focus on the main peak, and the black dashed lines correspond to
the Lorentzian approximation given by Eq. (24), using the respective
values of Ñ .

except in the global maxima where T = 1 and in the zeros
where T = 0. If the Kac factor is eliminated, the same law
does not hold for any frequency but still holds in the dominant
region.

(ii) In the case k0 > 0 (nonconserving), Eq. (23) takes the
maximal value of 1 at frequencies ±ωc, given by

ωc =
{

ω0 + ω0
N

kγ 2/m
k2+ω2

0γ
2 + O(N−2) if Ñ = N − 1,

ω0 + O(N−2) if Ñ = 1,
(26)

with ω0 = √
k0/m. These resonance frequencies can be ob-

tained by solving T (ωc) = 1, up to the first order of 1/N .
Other peaks are avoided for large enough N , verifying

N � 4kγ 2

m

k2 − ω2
0γ

2(
k2 + ω2

0γ
2
)2 if Ñ = N − 1,

N2 � 4γ 2

mk
− 2ω2

0γ
2

k2
if Ñ = 1.

(27)

In such a case, the transmittance tends to the superposition
of two Lorentzian peaks that narrow with increasing N (see
Fig. 3) as

T (ω) 	
∑


=±ωc

1

1 + N2A2(ω − 
)2
, (28)

where

A =
{

m
γ

(
1 + ω2

0γ
2

k2

)
if Ñ = N − 1,

m
γ

if Ñ = 1.
(29)

FIG. 3. Transmittance T (ω) in the momentum nonconserving
case with k0 = 1. The remaining parameters are the same as in Fig. 2.
For the Lorentzian approximation, Eqs. (28) and (29) were used, and
ωc is given by Eq. (26).

The frequencies that significantly contribute to the transmis-
sion are those around ±ωc, with bandwidths decreasing as
1/N , which signals a localization [51,52]. Hence, also in this
case

J/	T 	 1

2AN
. (30)

This expression recovers Eq. (25) when k0 = 0 and shows
why when Ñ = 1 the result does not depend on k0, as observed
in Fig. 4.

In conclusion, the flux decays as 1/N . This result does not
depend on the existence of pinning (k0 �= 0) or on the intro-

FIG. 4. Heat flux vs system size. The symbols correspond to the
numerical integration of Eq. (17), while the solid lines correspond
to the theoretical approximations valid for large N : Eq. (25) for
k0 = 0 and/or Ñ = 1 and Eq. (30) otherwise. In all cases γ = 1,
and k = 0.1, with k0 = 0 (small dark purple symbols) or k0 = 0.02
(large light orange symbols). In the main plot, we use Ñ = N − 1,
while in the inset Ñ = 1 for the same values of the parameters.
Besides identical masses m = 1, we also considered slightly graded
and random distributions, with amplitude δ = 0.1.
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FIG. 5. Local temperature for the different configurations of
masses indicated in the legend. In all cases, the average mass is
m = 1. For random and graded masses, the amplitude is δ = 0.1.
We used k = γ = 1, TL = 1.5, TR = 0.5, and N = 20, with k0 = 0
(large light orange symbols) or k0 = 1 (small dark purple symbols).
Symbols were obtained by performing the integration in Eq. (31)
numerically. Lines are a guide to the eye. The results were obtained
for Ñ = N − 1 but are essentially the same for Ñ = 1.

duction of a Kac factor. Such a scaling picture still holds when
introducing a certain degree of heterogeneity in the masses.
These effects are all illustrated in Fig. 4, where besides the
case of identical masses developed analytically, we include
numerical results by integrating Eq. (17) for other configu-
rations of masses, with variations of small amplitude δ � 1
around the average mass, namely, (i) graded masses, varying
linearly between m − δ and m + δ, that is, following the rule
mn = m − δ + 2δ(n − 1)/(N − 1), and (ii) random masses,
uniformly distributed in [m − δ, m + δ]. It is important to note
that when all masses are distinct, symmetry breaking causes
all modes to couple to baths, in contrast to the eigenmodes dis-
cussed above for equal masses, which is easy to see no longer
applies. However, for small deviations from the average mass,
the analytical expressions for the heat current, obtained for
identical masses, still hold.

B. Local temperatures

The local temperature Tn, associated with the equilibrium
position of particle n, is defined as two times its mean kinetic
energy. According to the Green’s function formalism, we have

Tn = mn〈(q̇n)2〉

= 2γ mn

∫ ∞

−∞

dω

2π
ω2[TL|Ĝn1(ω)|2 + TR|ĜnN (ω)|2]. (31)

The minors and determinant required to obtain the elements
Ĝn1 and ĜnN of the Green’s operator were already defined in
Eqs. (12) and (13), respectively.

In Fig. 5, we show the local temperatures as a function of
the particle index, corresponding to the cases in Fig. 4, calcu-
lated by performing the integration in Eq. (31) numerically.
By solving the stochastic equations of motion numerically,

starting from particles at rest in their equilibrium positions,
and averaging over many trials, we obtained results (not
shown) consistent with those in Fig. 5.

The local temperature of the bulk is always nearly con-
stant, but for the case of identical masses, the bulk does not
thermalize. This is a consequence of the fact that only three
eigenmodes are coupled to the baths: the one related to the
relative motion of the end particles and two related to the rigid
motion of the bulk. Meanwhile, due to the symmetry of the
bulk particles, N − 3 normal modes are not coupled to the
heat baths [47]. If this symmetry is suitably broken, even in
a minimal way, all modes become coupled to the baths, hence
enabling thermalization. This is what happens in the cases
with graded or random masses shown in Fig. 5. In contrast, for
instance, alternating masses (not shown) will not be enough.

In a very recent work, which also deals with the thermal
problem in a very similar harmonic mean-field system, ther-
malization is achieved by introducing long-range couplings
[53]. This means that off-diagonal terms in Eq. (7) become
heterogeneous, while in our case heterogeneity is introduced
in the diagonal of the inverse Green’s operator.

Concerning the role of initial conditions, let us remark
that the modes which are uncoupled to the bath will have
sustained oscillations and therefore will not lose track of the
initial conditions, while the modes coupled to the baths will
be damped, hence forgetting the initial preparation. Therefore,
although a system with homogeneous masses is anomalous in
this respect, if all masses are different, the initial conditions
will be irrelevant.

In all these cases, the temperature “profile” is nearly flat.
When masses are equal, the level is of order 1/N and com-
pletely flat for the homogeneous initial conditions since all
particles are equivalent. For subtly unequal masses, since the
system thermalizes, the profile is around a level which cor-
responds to the average temperature. In the case of random
masses there are small fluctuations. For a graded system, the
temperature profile adopts a tilted shape, which can become
very noticeable as the value of δ increases. However, this is
artificial in the infinite-range case, where the spatial order
of the bulk is lost and the transport between baths does not
depend on the choice of which two particles are immersed in
the baths.

IV. FINAL COMMENTS

We obtained exact expressions for the heat current and
local temperature for systems of particles with arbitrary
masses, coupled through a mean-field network of harmonic
interactions.

For homogeneous masses, we obtained closed expressions.
Although anomalous, in the sense that only a few modes are
coupled to the baths and hence there is dependence on the
initial conditions, the case of equal masses provides analytical
results which represent an important reference for systems
that do thermalize. As such, it is useful not only for the limit
of incrementally unequal masses, as illustrated in Fig. 4, but
also for sufficiently long range interactions, e.g., algebraically
decaying with distance or with a fixed fraction of neighbors.

We can conclude that in the thermodynamic limit, the
mean-field flux behaves as J ∼ 1/N . This law is robust against
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the existence of pinning or the introduction of a Kac factor. We
verified (not shown) that the same scaling holds for a fixed
boundary condition, i.e., setting c = iωγ + k′ in Eq. (10),
which means that the end particles are harmonically linked
(with stiffness k′) to fixed ones. The observed scaling can
be associated with the fact that the transmittance is domi-
nated by one (conserving case) or two (nonconserving case)
Lorentzian peaks with a width that decays as 1/N . Let us note
that nonoverlapping Lorentzian peaks were also observed in
disordered harmonic chains with nearest-neighbor interac-
tions in the weak and strong coupling limits [51].

We have seen that, for small deviations from the average
mass, the analytical expressions for identical masses still hold.
Differently, the 1/N law can be altered by disorder in the
couplings if the Kac factor is not used, in which case the
current becomes constant for large N [47]. This is observed
when the Kac factor is not used, i.e., when Ñ = 1. In fact,
in such a case, a band whose integral does not depend on N
appears in the transmittance and hence dominates over the
contribution of the peak that we observe in the absence of
stiffness disorder, even for a low amplitude of the fluctuations.
We also noticed that when the Kac factor is introduced, the
contribution of this band decreases as 1/N ; hence, the heat
current does too.

Regarding the local temperatures, similar to the nearest-
neighbor case, the bulk temperature is nearly uniform, but the
level corresponding to the average of the baths is attained only
for some scattering component even if it is perturbative.

For comparison, let us recall that, for nearest neighbors,
mass-gradient harmonic chains [54,55], as well as identical
masses, produce a constant current. In (stiffness) disordered
chains with nearest-neighbor interactions, it has been reported
that, when disorder has a heavy-tailed distribution, the current

scales as 1/N [51]. In the mean-field case, although the current
scales as 1/N , the concept of conductivity and hence Fourier
law does not apply properly. Despite this limitation, the mean-
field model for equal masses is still a useful tool as it allows
clear analytical results which remain valid even for different
masses where the bulk particles thermalize. Notice, however,
that for graded and random masses, despite thermalization, the
flat temperature profile indicates the breakdown of Fourier’s
law.

Let us also remark that since the system is harmonic, it
can be decomposed into N normal modes; then the energy is
always extensive, but for all-to-all interactions without a Kac
factor, the entropy is not extensive, and frequency grows with√

N . If we eliminate the Kac factor by setting Ñ = 1 in Eq. (1)
and hence in Eq. (9), we note that Eq. (24) remains valid, as
does Eq. (28), implying that the results for the scaling of the
heat current are not altered by the use or lack of the Kac factor
in the mean-field model.

As a natural extension of this work, it would be interesting
to obtain analytical results for a finite range of the interactions,
decaying algebraically with the interparticle distance. In this
case the chain order would be recovered, and the transition
between the first-neighbor and mean-field limits would be
accessed.
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