
PHYSICAL REVIEW E 105, 054147 (2022)

Quantum work statistics in regular and classical-chaotic dynamical billiard systems
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In the thermodynamics of nanoscopic systems the relation between classical and quantum mechanical descrip-
tion is of particular importance. To scrutinize this correspondence we have chosen two two-dimensional billiard
systems. Both systems are studied in the classical and the quantum mechanical settings. The classical conditional
probability density p(E , L|E0, L0) as well as the quantum mechanical transition probability P(n, l|n0, l0 ) are
calculated, which build the basis for the statistical analysis. We calculate the work distribution for one particle.
The results in the quantum case in particular are of special interest since a suitable definition of mechanical work
in small quantum systems is already controversial. Furthermore, we analyze the probability of both zero work
and zero angular momentum difference. Using connections to an exactly solvable system analytical formulas
are given for both systems. In the quantum case we get numerical results with some interesting relations to the
classical case.
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I. INTRODUCTION

One crucial ingredient for the thermodynamic character-
ization of small systems with typical energy turnover of
the order of the thermal energy per degree of freedom is
the statistical distribution of work [1,2]. In the classical setting
the definition of work is unambiguous; it is defined as the
integral of force along the trajectory. In the quantum case the
definition of work meets some difficulties [3–6].

There exists no analog of the classical trajectory. A possi-
ble and intuitive way to define quantum work is to measure
the energy twice, before and after the process. This definition
is called the two projective measurement method [3,4]. On the
one hand, this definition is simple and operative. On the other
hand, the measurements are likely to destroy quantum inter-
ferences that may be decisive for the nonclassical behavior
of the system. To clarify which correlations are destroyed by
the two projective measurement prescription and which are
kept, it is instructive to look in detail at the correspondence
between classical and quantum work distributions [7,8]. This
has been done for a quartic oscillator with time-dependent
stiffness constant [9,10] and for a periodically driven quartic
oscillator [11]. The latter system shows chaotic behavior in
some regions of parameter space. In this paper we extend
the analysis to billiards with moving walls that are known to
implement fully chaotic motion.

Billiards are common systems to study chaotic dynamics
and have been investigated thoroughly since the pioneering
work of Sinai [12] and Bunimovich [13]. In two dimensions
both regular and chaotic motions are possible. If in addition
to the energy a conserved quantity exists, the dynamics is
integrable. This is the case, e.g., for rectangles, circles, and
ellipses. Stadium billiards, on the other hand, are known to
be chaotic. In quantum mechanics the study of billiards with
static walls became a central pillar in the theory of quantum

chaos [14–16]. Situations with moving boundaries have been
investigated much less [17]. However, in recent years the in-
terest in the classical dynamics of time-dependent billiards has
grown. Integrable time-dependent billiards have been mainly
discussed as toy models for Fermi acceleration [18–20]. The
results are very interesting, but they all concern averages over
a large number of particles. Quite generally, investigations of
dynamical billiards that focus on the whole statistical distri-
bution of energy are scarce [7,8,21].

The aim of this paper is to compare the classical and
quantum work statistics of dynamical billiards with classically
regular and chaotic behavior. The comparison can be used
to analyze the quantum work statistic and to elucidate the
consequences of classically chaotic behavior on the quantum
case. Starting with one particle in a two-dimensional circular
billiard, we consider two systems based on two types of ex-
pansion: first, a dynamical billiard system due to an expanding
radius (System 1) and, second, a horizontal movement of
the half circles in opposed directions building a Bunimovich
stadium (System 2) [13]. This expansion step will be followed
by a contraction step back to the initial circle.

We prepare the system in equilibrium with a heat bath at
inverse temperature β = (kBT )−1. At time t = 0 the bath and
system are decoupled. During the expansion and the contrac-
tion the system is isolated from the environment. Because of
the first law of thermodynamics the work is then given by the
difference between initial energy E0 and final energy E . The
work statistics

p(W ) =
∫ ∞

0
dE

∫ ∞

0
dE0 p0(E0)p(E |E0)δ[W − (E − E0)]

(1)

involves the probability density p0(E0) to start in the ini-
tial energy E0 given by the Boltzmann distribution and the
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FIG. 1. The radially breathing circle (System 1) and the horizon-
tally breathing stadium (System 2).

transition probability density p(E |E0) to end with energy E .
δ(x) is the delta function.

The paper is organized as follows. In Sec. II we define
System 1 and System 2 and describe them classically and
quantum mechanically. Our results on the work statistics are
given in Sec. III. Therein we start with the transition probabil-
ity, Sec. III A, which leads to the work distribution, Sec. III B.
In Secs. III C and III D we focus on the probability of no
energy change (W = 0) and no angular momentum change
(�L = 0). Finally, Sec. IV contains our conclusion.

II. TWO DYNAMICAL BILLIARD SYSTEMS

We. start with a billiard system containing a two-
dimensional circular edge with radius R0. At time t = 0 the
system starts to expand with constant velocity u > 0 up to
time T/2 (expansion phase) followed by a contraction phase
with constant velocity −u for T/2 < t � T symmetric to the
previous expansion. We consider two examples for the expan-
sion and contraction phases:

(i) With a radius varying linearly with time

R(t ) =
{

R0 + ut t � T/2
R0 + u(T − t ) T/2 < t � T

(2)

in the following called System 1 and
(ii) With a linear horizontal movement of the half circles

in opposite directions forming a Bunimovich stadium billiard
with an edge length

K (t ) =
{

2ut t � T/2
2u(T − t ) T/2 < t � T

(3)

in the following called System 2.
Both systems are illustrated in Fig. 1. System 1 is a classi-

cally integrable system, whereas System 2 is chaotic. At t = T
both billiards end in the initial circular billiard with radius R0.

The quantity uT
2R0

is a dimensionless parameter in this
system defining the strength of the process. We choose this
parameter so that the characteristic length is double:

uT

2R0
= 1. (4)

Note that all of the following calculation steps can be easily
adapted to different parameters. However, for too small driv-
ing, uT

2R0
� 1, no nontrivial work distribution will occur. In

FIG. 2. Typical trajectories of classical particles at x0 = 0.3R0,
y0 = 0, v = 20u (bold plus sign) and a shooting angle of 45◦ (red)
and 46◦ (blue) in (a) System 1 and (b) System 2.

the next subsections we first analyze the dynamics of classical
particles in both systems and then the time evolution of wave
functions.

A. Classical description

For both systems we consider a classical particle starting
at t = 0 at position r0 = (x0

y0

)
with velocity v0 = (a0

b0

)
. The tra-

jectory is a combination of rectilinear motions up to collisions
with the walls. At each collision the particle velocity changes
in modulus and in direction. For both systems the collision
times, positions, and velocities are calculated analytically. In
Appendix A explicit formulas are given for System 1, and a
short discussion is given for System 2.

Two typical classical trajectories for both systems are
shown in Fig. 2. The initial conditions are x0 = 0.3R0, y0 = 0,
and v = 20u; only the shooting angles differ: 45◦ and 46◦. In
System 1 both trajectories stay nearby as typical for regular
systems, whereas in System 2 the trajectories differ strongly
after a few collisions, which is characteristic for chaotic sys-
tems.

Using the same initial conditions as in Fig. 2 but with
equidistant shooting angles in the full circle interval [0, 2π )
the end points at t = T of all trajectories are plotted in Fig. 3.
For System 1 adjacent shooting angles result in nearby end
points, whereas in System 2 this behavior is not occurring
even with a more accurate sampling. Also shown are the end
energies E f of these particles related by the initial energy
E0 = m

2 v2
0 . We find that the energy spectrum of System 2 is

broader than that of System 1.

B. Quantum mechanical description

To describe the quantum dynamics we analyze the evo-
lution of wave functions. As an initial wave function we
start in an eigenstate of the static circular billiard. The time-
independent Schrödinger equation is given by

E ψ =
[

− h̄2

2m

(
∂2
ρ + 1

ρ
∂ρ + ∂2

φ

ρ2

)
+ V (ρ)

]
ψ, (5)

where V (ρ) vanishes inside the circle ρ � R0 and is infinite
otherwise. The eigenstates are related to the Bessel functions
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FIG. 3. Trajectory end points of classical particles with initial
conditions x0 = 0.3R0, y0 = 0 and v = 20u (bold plus sign) at dif-
ferent shooting angles between 0 and 2π for System 1 (a, b) and (c,
d). In (a) and (c) 360, and in (b) and (d) 3600 equidistant varying
shooting angles are used. The color code shows the final energies.

of the first kind (see [21,22]):

ψn,l (ρ; R0) = N
R0

eilφ Jl

(
ρ

R0
jn,l

)
. (6)

Here jn,l denotes the nth zero of the lth Bessel function Jl .
The main quantum number n = 1, 2, 3, . . . and the angular
momentum quantum number l = 0, 1, 2, . . . specify the quan-
tum state and are related to the angular momentum by

L = h̄l (7)

and to the energy by

En,l = h̄2

2mR2
0

j2
n,l . (8)

For System 1 we have to solve the time-dependent
Schrödinger equation

ih̄∂t
 =
[

− h̄2

2m

(
∂2
ρ + 1

ρ
∂ρ + ∂2

φ

ρ2

)
+ V (ρ, t )

]

, (9)

where V (ρ, t ) vanishes inside the circle ρ � R(t ) and is in-
finite otherwise. R(t ) is given by Eq. (2). This Schrödinger
equation can be solved analytically [21], and the solution
reads in the case of expansion, 0 � t � T

2 ,


n,l (ρ, t ) = exp

[
− i

h̄2 j2
n,l t − m2uρ2R0

2h̄mR0R(t )

]
× ψn,l (ρ; R(t )), (10)

and in the case of contraction, T
2 < t � T ,


n,l (ρ, t ) = exp

[
− i

h̄2 j2
n,l

(
t − T

2

) + m2uρ2RT/2

2h̄mRT/2R(t )

]
× ψn,l (ρ; R(t )), (11)

where RT/2 = R(T/2).

FIG. 4. Initial wave function for n = 6 and l = 3 (a) and its final
state in System 1 (b) or in System 2 (c). The calculations were
performed with parameters according to Eqs. (4) and (16).

The full quantum mechanical problem is solved by three
expansions of the wave function: first, at t = 0 in eigenstates
of the time-dependent Schrödinger equation, Eq. (10); second,
by expanding these wave functions at t = T/2 in eigenstates
of the contracting case at t = T/2, Eq. (11); and, third, by
expanding these eigenstates at t = T in eigenstates of the
stationary Schrödinger equation, Eq. (6).

Unlike System 1 the potential in System 2 is not radi-
ally symmetric. The time-dependent Schrödinger equation is
given by

ih̄∂t
 =
[

− h̄2

2m

(
∂2

x + ∂2
y

) + V (x, y, t )

]
︸ ︷︷ ︸

Ĥ (t )


, (12)

where V (x, y, t ) vanishes inside the stadium and is infinite
elsewhere.

We solve this Schrödinger equation with the spectral
method [23]. Considering the formal solution


(t ) = Û (t, 0)
(0), (13)

for short time steps �t we use the time-evolution operator
Û (t + �t, t ) ≈ e−iĤ (t )�t/h̄ to calculate iteratively the wave
function in the next time step


(t + �t ) = e−iĤ (t )�t/h̄
(t ). (14)

At each time step we split the time evolution operator into
three parts,

e−iĤ�t/h̄ ≈ ei h̄
2m

�t
2 (∂2

x +∂2
y )e−iV̂ �t/h̄ei h̄

2m
�t
2 (∂2

x +∂2
y ), (15)

where the derivatives are calculated in Fourier space.
The different evolutions of a quantum mechanical wave

function in an eigenstate of the initial circular billiard (n = 6,
l = 3) are illustrated in Fig. 4 in which the squared moduli of
the wave functions are plotted. Note that in the following all
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quantum mechanical calculations are performed for

h̄

mR0u
= 1 ⇒ jn,l = v0

u
, (16)

so the zeros of the Bessel functions are comparable to the
classical velocity v0. All of our calculations are also possible
for any choice of h̄

mR0u . Note that smaller values of this param-
eter lead to higher quantum states at the beginning (assuming
the starting energy remains the same) and we approach the
classical limit.

Because of angular momentum conservation in System 1,
the radial symmetry of the initial wave function is conserved.
This is different from the final wave function after evolution in
System 2. There the angular momentum is not conserved, and
therefore the final wave function is not radially symmetric, it
just shows the point symmetry of the system.

III. RESULTS

A. Transition probabilities

Both dynamical billiard systems start and end in a circular
billiard with radius R0.

In classical mechanics the initial position r0 and the veloc-
ity v0 of a particle determine its final position r f and velocity
v f . Nevertheless, the knowledge of the starting energy E0 and
the angular momentum L0 is not enough to determine the
final energy E and angular momentum L. For the statistics we
express transitions via the joint conditional probability density
p(E , L|E0, L0), which gives the joint probability density of the
final energy E and angular momentum L under the condition
to start with the energy E0 and angular momentum L0. This
probability density is calculated by numerical simulation of
105 classical particles as discussed in Appendix A.

In the quantum case we represent the wave function at the
end as a superposition of eigenstates of the circular billiard
with radius R0. Therefore, the probability for transitions from
state (n0, l0) to (n, l ) is given by

P(n, l|n0, l0) = |〈ψn,l |Û (T, 0)|ψn0,l0〉|2. (17)

For a comparison of classical and quantum mechanical
results we introduce the cumulative conditional probability of
the final energy F (E |E0), which is classically defined by

F cl(E |E0) =
∫ ∞

0
dE ′

∫ ∞

−∞
dL

∫ ∞

−∞
dL0 θ (E − E ′)

× p(E ′, L|E0, L0) p(L0|E0). (18)

In the quantum case it is defined by

F qm(E |En0,l0 ) =
∑
n,l

θ (E − En,l )P(n, l|n0, l0), (19)

with the Heaviside function θ (x) = {0 x < 0
1 x � 0.

For the initial conditions n0 = 5 and l0 = 2 (E0 ≈ 160mu2)
the results are shown in Fig. 5. This is equivalent to a classical
velocity v0 ≈ 18u. In the case of a fixed classical angular

FIG. 5. Cumulative conditional probability for (a) System 1 and
(b) System 2. Classical calculations were performed for 105 parti-
cles with an initial kinetic energy of E5,2 regardless of the angular
momentum (blue) and with explicit consideration of L = h̄l0 (solid
black). In the quantum case (red) we start with a wave function in the
eigenstate n0 = 5 and l0 = 2. The calculations were performed with
parameters according to Eqs. (4) and (16).

momentum L0 = 2h̄ we find in System 1 a steplike func-
tion. For all collisions composing the jump the number ne of
energy losing collisions in the expanding phase is equal for
all trajectories as well as the number nk of energy gaining
collisions in the contracting phase. In the first visible jump
at E ≈ 0.6E0 these numbers are ne = 5 and nk = 3, in the
second at E ≈ 0.8E0 they are ne = 5 and nk = 4, and in the
last jump at E ≈ 1.5E0 they are ne = 4 and nk = 6. Other
combinations are not observed. Because of the small angular
momentum the particle velocity loss or gain per collision is
almost always the same. Note that only in the special case
L0 = 0 is the particle velocity change exactly 2u per collision,
which is the well-known result by particle collisions on mov-
ing walls [24]. With increasing values of L0 the energy loss
or gain per collision fluctuates more. This leads to sigmoidal
steps in the results at arbitrary (unfixed) angular momenta,
which is a superposition of all possible angular momenta.
Nevertheless, the dominant jump at lower L0 remains visible.
The classical results in System 2 show a more continuous
distribution for fixed angular momentum as well as for un-
fixed angular momenta, which is a consequence of the chaotic
behavior. Indeed, each collision can be predicted analytically
for given initial conditions, but small changes in these initial
conditions will change dramatically the trajectory and the final
conditions.

In System 1 the quantum mechanical result for the cumu-
lative conditional probability shows a step function, which is
the consequence of countably many transitions. Because of
angular momentum conservation only transitions with l = l0
are allowed. In contrast to this the quantum mechanical cal-
culations in System 2 show a quasicontinuous distribution,
which is a consequence of the larger number of possible tran-
sitions. Independent of the considered system we conclude
that classically forbidden energy transitions are unlikely in the
quantum case.

B. Work distribution

Both systems are considered initially in thermal equilib-
rium with a bath at inverse temperature β and are decoupled
from it at t = 0.
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We first consider the classical case. Based on the first law
of thermodynamics the work is related to the energy difference
W = E − E0 and the cumulative work distribution F (W ) is
given by

F cl(W ) = 1

Zcl

∫ ∞

0
dE

∫ ∞

0
dE0 e−βE0

× θ (E0 − E + W )p(E |E0), (20)

with the normalization Zcl = ∫ ∞
0 dE0e−βE0 = β−1.

In calculation of the work in quantum systems we
use the two projective measurements method which fulfills
the Jarzynski equation 〈e−βW 〉 = 1 [5,25]: First, we measure
the energy at the beginning t = 0. Hence we start in an
eigenstate of the static circular billiard. After the second mea-
surement at t = T we end in an eigenstate of the same static
circular billiard with probability P(n, l|n0, l0). The cumulative
work distribution F (W ) is given by

F qm(W ) = 1

Zqm

∑
n,l,n0,l0

e−βEn0 ,l0

× θ (En0,l0 − En,l + W )P(n, l|n0, l0), (21)

with the partition function Zqm = ∑
n0,l0

e−βEn0 ,l0 .
For the following results we have verified the Jarzinsky

equation 〈e−βW 〉 = 1, in the classical as well as in the quantum
mechanical case. This is a consistency check for our numeri-
cal calculations.

The results for the cumulative work distribution for differ-
ent temperatures represented by the dimensionless quantity

β̄ = mu2

4
β (22)

are shown in Fig. 6. β̄ represents the quadratic ratio of the
velocity u of the moving walls and the thermal velocity of
the classical particles. In all figures the classical calculations
were performed for 105 particles. For System 1 we recog-
nize the sigmoidal steps from Fig. 5(a) and for System 2
the continuous distribution from Fig. 5(b). As expected in
both systems, at higher temperatures (smaller values of β̄)
the width of the distribution gets broadened and the jump at
W = 0 decreases. These effects are also visible in the quantum
mechanical results.

Contrary to what might be expected from the very different
cumulative probability distributions in Fig. 5, the classical
results for the work distribution for integrable System 1 look
quantitatively similar to those for chaotic System 2. Since
low-energy particles are primarily considered at low temper-
atures, there are only a few collisions. Therefore, a dominant
step in F is seen at W = 0, and due to the geometry (starting
and ending with the same circle in both systems) the steps in
both systems are of about the same height. At higher tempera-
tures, differences of a mainly quantitative nature around W =
0 become visible. Moreover, in contrast to the chaotic System
2, the work distribution in System 1 exhibits a frequently
changing curvature. This is a consequence of the sigmoidal

FIG. 6. Classical (blue) and quantum mechanical (red) cumula-
tive work distribution at different temperatures 1/β̄ for (a–c) System
1 and (d–f) System 2. The calculations were performed with param-
eters according to Eqs. (4) and (16).

structure of F (E |E0) shown in Fig. 5(a). These differences
affect the quantum mechanical calculations.

Although the classical and quantum mechanical results for
high temperatures converge in both systems, they are more
pronounced in System 2. But note that this convergence is
limited by the allowed transitions, which is explained in the
following. Because of angular momentum conservation in
System 1 the minimal positive value of work in the quantum
case is limited by E2,0 − E1,0; cf. Eq. (8). This is different in
System 2 in which transitions with angular momentum change
are allowed too. These transitions might give smaller work
values than E2,0 − E1,0. For example, when taking into ac-
count the 1000 lowest states we find 2823 possible transitions
inside the work interval (0, E2,0 − E1,0) in System 2, whereas
we find no transitions in System 1. So in System 1 many work
values are forbidden, which is not the case in System 2. As a
consequence we see a marked difference between the steps at
W = 0 in Figs. 6(c) and 6(f).

Note that using the thermal velocity instead of u in
Eq. (16), a parameter for the quantumness of the system
can be introduced, h̄

√
β

R0
√

m
. All of our calculation steps can be

easily adapted to different values for the quantumness, and an
extended analysis is possible.
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C. Probability of no energy change

In both systems there is a nonzero probability that the
processes occur without performing mechanical work at all.
This happens in the quantum as well as in the classical one;
see Fig. 6.

In the classical case of System 1 any collisions
yield an energy change. Only selected combinations
of collisions lead to exactly the same initial energies. Such
combinations are improbable and will not be considered
further. The probability of zero collisions is derived in
Appendix B as

Pcl
1 (W = 0) = 1 − e−β̄ [I0(β̄ ) + I1(β̄ )], (23)

where I0 and I1 are modified Bessel’s functions of the first
kind, and β̄ is defined in Eq. (22).

In contrast to this in System 2 there exists a nonzero prob-
ability to perform collisions with the horizontal walls of the
stadium only which conserve the energy. So the condition
of zero collisions is sufficient but not necessary for W = 0.
Hence, we expect Pcl

1 (W = 0) � Pcl
2 (W = 0) as a lower limit.

Also an upper limit can be derived:

Pcl
2 (W = 0)

� Pcl
1 (W = 0) +

∞∑
k=1

2β̄

π

∫ 2k

2k−2
dx xe− β̄

2 x2

×
∫ 1+x

2k−1
dy f (x, y) arcsin

√
16k2−(y2 − 1 − 4k2)2

16k2y2
,

(24)

f (x, y) = y − 2y

π
arctan

[ −1 + y2 + x2√
−y4 − (1 − x)2 + 2y2(1 + x2)

]
.

(25)

For details see Appendix B.
Because the eigenvalues in the quantum case are not degen-

erated, a vanishing work is a consequence of self-transitions.
So the probability P(W = 0) is related to the trace of the
transition probabilities

Pqm(W = 0) = 1

Zqm

∑
n0,l0

e−βEn0 ,l0 P(n0, l0|n0, l0). (26)

As a consequence angular momentum conservation is a nec-
essary condition for W = 0.

For System 1 the analytical formula Eq. (23) matches ac-
curately the numerical simulations of 105 classical particles
per point; see Fig. 7(a). We find similarly good results for
Eqs. (23) and (24), which limit the probability P(W = 0)
for classical particles in System 2; see Fig. 7(b). As already
mentioned in Sec. III B the probability P(W = 0) decreases
with higher temperatures (small β̄) in the classical as well
as in the quantum case. But different from the classical case
where Pcl

2 (W = 0) � Pcl
1 (W = 0), at higher temperatures we

find Pqm
2 (W = 0) < Pqm

1 (W = 0); cf. Fig. 6. This is related to
the forbidden transitions in System 1 as discussed at the end

FIG. 7. Classical (blue) and quantum mechanical (red) probabil-
ity of no energy change depending on temperature 1/β̄ for (a) System
1 and (b) System 2. The blue solid lines are given by Eq. (23), and
the dashed line is given by Eq. (24). The calculations were performed
with parameters according to Eqs. (4) and (16).

of Sec. III B. In addition it seems that in System 1 the value
of Pqm

1 (W = 0) converges at high temperatures to a nonzero
plateau.

D. Probability of no angular momentum change

The results for the work statistics presented in Sec. III B
and III C arise from by marginalization of the transition
probabilities introduced in Sec. III A with respect to the
angular momenta. In this section we consider these tran-
sition probabilities again. But now we marginalize with
respect to the energies and calculate the probability of no
angular-momentum change. This leads on the one hand to
fundamental differences between the classical and quantum
case and on the other hand to a connection between both
systems.

System 1 is radially symmetric at all times and the Hamil-
tonian is not explicitly angular-dependent, so the angular
momentum is a conserved quantity and

P1(�L = 0) = 1 (27)

is trivial in both classical and quantum mechanics.
This is different in System 2, which is only radially sym-

metric at the beginning and at the end. Except special initial
conditions, in the classical case all collisions (also those that
the particle performs with the resting horizontal edges and
conserve the energy) change the angular momentum. Except
for the occasional one further collisions cannot compensate
this change exactly. It follows

Pcl
2 (�L = 0) = 1 − e−β̄[I0(β̄ ) + I1(β̄ )], (28)

with β̄ defined in Eq. (22). The r.h.s. is identical with that in
Eq. (23) since it represents the probability of no collisions.
For details see Appendix B. So Pcl

2 (�L = 0) � Pcl
2 (W = 0)

is trivial; see Eq. (24).
In contrast to this is the quantum mechanical case. Indeed,

quantum mechanical transitions which change the parity of
angular quantum numbers are forbidden, but other transi-
tions �L = 0, 2, 4, . . . are allowed. Note that all transitions
(also those changing the main quantum number) which con-
serve the angular momentum quantum number contribute to
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FIG. 8. Classical (blue) and quantum mechanical (red) proba-
bility of no angular momentum change depending on temperature
1/β̄ for System 2. The blue solid line is given by Eq. (28). The
calculations were performed with parameters according to Eqs. (4)
and (16).

P(�L = 0),

Pqm
2 (�L = 0) = 1

Zqm

∑
n,n0,l0

e−βEn0 ,l0 P(n, l0|n0, l0), (29)

and especially it follows that Pqm
2 (�L = 0) � Pqm

2 (W = 0);
see Eq. (26).

These effects are illustrated in Fig. 8. Similarly to the
previous section formula, Eq. (28) matches accurately the
numerical simulations of 105 classical particles per point.
Comparing with Fig. 7(b) in which the numerical results lie
above the full line, we see our numerical results confirm
the expectation Pcl

2 (�L = 0) � Pcl
2 (W = 0). Of course, the

quantum mechanical numerical results confirm Pqm
2 (�L =

0) � Pqm
2 (W = 0). This is trivial since Eqs. (26) and (29) are

used for these calculations, respectively. As in Fig. 7(b) the
quantum values for Pqm

2 (�L = 0) decrease for higher temper-
atures.

IV. CONCLUSION

The aim of this paper is to contribute to the field of
quantum work statistics. We have chose two two-dimensional
billiard systems, one of which is a classically integrable
breathing circle (System 1) and the other one forms a
classical-chaotic stadium (System 2).

Both systems are characterized by three dimensionless pa-
rameters. The first one uT

2R0
gives the process strength. If it is

reduced, the variation of the systems gets smaller compared
to the whole system. We expect that the variation of the work
decreases and the distribution becomes sharper. The second
parameter β̄ connects the velocity u of the moving walls with
the thermal velocity of the heat bath. In particular the depen-
dence on this parameter has been analyzed in more detail.
The third parameter h̄

√
β

R0
√

m
gives the quantumness of the initial

state. If this one decreases, the systems approach the classical
limit.

Classical calculations of trajectories have been per-
formed iteratively. For the quantum mechanical calculations
we have solves the time-dependent Schrödinger equation.
Whereas there is an analytical solution for System 1,
the evolution of wave functions in System 2 has been
solved by the spectral method. Using these ingredients
the classical conditional probability density p(E , L|E0, L0)
as well as the quantum mechanical transition probability
P(n, l|n0, l0) follow, which build the basis for the statistical
analysis.

So it has been possible to calculate the work distribution
for a particle in such systems. The results in the quantum case
especially are of particular interest since a suitable definition
of mechanical work in small quantum systems is already con-
troversial. We find that for higher temperatures the classical
and quantum mechanical work distributions converge to each
other. Nevertheless, on the one hand this convergence in Sys-
tem 1 is limited. There are temperature-independent barriers
because of angular momentum conservation; e.g., values of
work between 0 and E2,0 − E1,0 are forbidden. For System 2
there cannot exist such barriers. On the other hand, a rapidly
increasing number of eigenstates has to be calculated. At this
point semiclassical methods become of relevance which may
build a connection between very fast classical simulations
and very cumbersome quantum mechanical calculations. The
semiclassical analysis of these systems is part of further re-
search.

Furthermore, we present the results for the probability of
no energy or no angular momentum change. Using connec-
tions to an exactly solvable system, analytical formulas are
given for these classical probabilities in both systems. These
formulas may be applied to other classical billiard systems.
For System 2 it is trivial to see that in the classical case all
collisions (except for the occasional one) yield an angular
momentum change. Collisions with the horizontal walls did
not change the energy. So the probability of no angular mo-
mentum change is lower than the probability of no energy
change, Pcl

2 (�L = 0) � Pcl
2 (W = 0). This is in contrast to the

quantum case, Pqm
2 (�L = 0) � Pqm

2 (W = 0). Also here semi-
classical methods may clarify this fundamental difference.
For example, in the classical case �L = 0 is a very specific
situation. All situations �L ≈ 0 will be included in the quan-
tized angular momentum change �L = 0 by semiclassical
methods. This could be the reason for the fundamental change
of the inequality.

In this paper we assumed a linear t dependence of the
varying radius and edge length. But other t dependencies can
be treated in the same way. For special time dependencies
the time-dependent Schrödinger equation for System 1 can be
solved analytically; see [21]. But the numerical calculation for
System 2 can be used for System 1 too.
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APPENDIX A: CLASSICAL DESCRIPTIONS
OF SYSTEM 1 AND 2

a. Radial breathing circle (System 1)

If the particle velocity is larger than the expansion velocity
of the circle |v| > u, the first collision occurs at

t1 = uR0 − r0v0

v2
0 − u2

+ �(u, R0, r0, v0), (A1)

�(u, R0, r0, v0) =
√(

uR0 − r0v0

v2
0 − u2

)2

+ R2
0 − r2

0

v2
0 − u2

, (A2)

at position

R1 = r0 + v0t1, (A3)

if t1 < T/2. If t1 � T/2 or |v| � u, there is no collision in
the expanding phase, and the particle position and velocity at
t = T/2 are

r̄0 = r0 + v0
T

2
, (A4)

v̄0 = v0. (A5)

At each collision during the expanding phase the radial part
of the particle velocity is decreased by 2u, whereas the angu-
lar part stays constant; in the jth collision the velocity v j−1

changes by

v j = v j−1 − 2
uRj − R jv j−1

R2
j

R j . (A6)

If v2
j > u2 the next collision time is determined by

t j+1 = 2
uRj − R jv j

v2
j − u2

j � 1. (A7)

The collision position is

R j+1 = R j + v jt j+1. (A8)

The smallest j = J for which either v2
J � u2 or

∑J+1
n=1 tn >

T/2 is the number of collisions in the expanding phase; so
for the particle position and velocity at t = T/2 follow

r̄0 = RJ + vJ

(
T

2
−

J∑
n=1

tn

)
, (A9)

v̄0 = vJ . (A10)

In the contracting phase (u → ū = −u, R̄0 = R0 + u T
2 ) the

first collision occurs at

t̄1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ūR̄0−r̄0 v̄0

v̄2
0−ū2 + �(ū, R̄0, r̄0, v̄0) v̄2

0 > ū2

ūR̄0−r̄0 v̄0

v̄2
0−ū2 − �(ū, R̄0, r̄0, v̄0) v̄2

0 < ū2

R̄2
0−r̄2

0

2(r̄0 v̄0−R̄0 ū) v̄2
0 = ū2,

(A11)

on position

R̄1 = r̄0 + v̄0t̄1, (A12)

if t̄1 � T
2 . In the case t̄1 > T

2 there is no collision in the
contracting phase, and the final particle positionand velocity

are

r f = r̄0 + v̄0
T

2
, (A13)

v f = v̄0. (A14)

At each collision during the contraction phase the radial part
of the particle velocity is increased by 2u, whereas the angu-
lar part stays constant; in the kth collision the velocity v̄k−1

changes by

v̄k = v̄k−1 − 2
ūR̄k − R̄k v̄k−1

R̄2
k

R̄k . (A15)

The next collision time is determined by

t̄k+1 = 2
ūR̄k − R̄k v̄k

v̄2
k − ū2

k � 1, (A16)

at position

R̄k+1 = R̄k + v̄kt̄k+1. (A17)

The lowest k = K for which
∑K+1

n=1 t̄n > T/2 is the number
of collisions in the contracting phase; so the final particle
position and velocity are

r f = R̄K + v̄K

(
T

2
−

K∑
n=1

t̄n

)
, (A18)

v f = v̄K . (A19)

b. Horizontal breathing stadium (System 2)

In the following we give the explicit formulas for the first
collision time and position in the cases x0 � 0 and y0 � 0
assuming the first collision takes place in the expanding phase.
For all other cases as well as for further collisions and col-
lisions in the contraction phase the explicit formulas can be
derived in a similar way.

The initial velocity is v0 = (a0
b0

). If b0 = 0 and |a0| < u, no
collision will happen in the expansion phase. For b0 = 0 and
a0 < −|u| the first collision occurs at the left half circle, and
for a0 > |u| (independent of b0) the first collision occurs at
the right half circle. In all other cases the location of the first
collision (left or right half circle or static top or bottom line)
depends on three characteristic times:

1. The escape time from the right half circle t (I) = x0
|u|−a0

,
only relevant if a0 < |u|

2. The collision time at the top (b0 > 0) or bottom (b0 <

0) line t (II) = sgn(b0 )R0−y0

b0
and

3. The entry time to the left half circle t (III) = −x0
|u|+a0

> t (I),
relevant only if a0 < −|u|.

If t (II) < t (I) or a0 > u, the first collision will occur at the
right half circle at time t1 at position R1 and the velocity
changes to v1:

t1 = −(a0 − u)x0 − b0y0

(a0 − u)2 + b2
0

+
√[−(a0 − u)x0 − b0y0

(a0 − u)2 + b2
0

]2

+ R2 − x2
0 − y2

0

(a0 − u)2 + b2
0

, (A20)
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R1 =
(

X1

Y1

)
= r0 + v0t1, (A21)

v1 = 1

R2
0

(
uR2

0 + (a0 − u)[Y 2
1 −(X1−ut1)2]−2b0(X1−ut1)Y1

b0[(X1 − ut1)2 −Y 2
1 ] − 2(a0 − u)(X1−ut1)Y1

)
.

(A22)

Otherwise if t (I) < t (II) < t (III), the first collision will occur at
the static top or bottom line at time

t1 = t (II) (A23)

at position

R1 = r0 + v0t1, (A24)

and the velocity changes to

v1 =
(

a0

−b0

)
. (A25)

Else the first collision will occur at the left half circle at time
t1 at position R1 and the velocity changes to v1:

t1 = t (III) − (y0 + b0t (III) )b0

(a0 + u)2 + b2
0

+
√[

(y0 + b0t (III) )b0

(a0 + u)2 + b2
0

]2

+ R2 − (y0 + b0t (III) )2

(a0 + u)2 + b2
0

,

(A26)

R1 =
(

X1

Y1

)
= r0 + v0t1, (A27)

v1= 1

R2
0

(−uR2
0 + (a0+u)

[
Y 2

1 −(X1+ut1)2
]−2b0(X1+ut1)Y1

b0
[
(X1 + ut1)2 − Y 2

1

] − 2(a0 + u)(X1 + ut1)Y1

)
.

(A28)

After each collision the new position and the new veloc-
ity determine at which wall (left or right half circle or top
or bottom line) the next collision will happen. The velocity
change depends on that wall; see Eqs. (A22), (A25), and
(A28), respectively. A simple closed form of t1, R1, and v1

does not exist.
Nevertheless, similar considerations as for the first colli-

sion may be done for further collisions up to t = T/2 as well
as for collisions in the contracting phase.

APPENDIX B: CLASSICAL PROBABILITY OF NO
ENERGY CHANGE AND NO ANGULAR

MOMENTUM CHANGE

We consider a static circular billiard with radius R0 in
thermal equilibrium with a heat bath at inverse temperature
β. At t = 0 system and bath are decoupled, and we remove
the walls. This system is referred to as System 0. The detailed
relations with Systems 1 and 2 are explained below.

In System 0, all particle perform a rectilinear motion. The
distance to the center of the initial circle is given at time T by

rT (r0, ϕ; vT ) =
√

(r0 + vT cos ϕ)2 + (vT )2 sin2 ϕ (B1)

depending on the initial distance r0 (linearly distributed), the
launching angle ϕ (uniformly distributed), and the length of
path vT . Hence, rT is a stochastic variable with distribution

p(0)(rT ; vT ) = 〈δ[rT (r0, ϕ; vT ) − rT ]〉r0,ϕ, (B2)

〈(·)〉r0,ϕ
=

∫ R0

0
dr0

∫ 2π

0
dϕ (·)p(r0)p(ϕ). (B3)

This double integral can be performed analytically:

p(0)(rT ; vT ) =

⎧⎪⎪⎨
⎪⎪⎩

2rT

R2
0

0 � rT � max{0; R0 − vT }
rT

R2
0
− 2rT

πR2
0

arctan
{ −R2

0+r2
T +(vT )2√

−r4
T −(R0−vT )2R2

0+2r2
T [R2

0+(vT )2]

}
max{0; R0 − vT } � rT < R0 + vT

0 otherwise.

(B4)

In a canonical ensemble at the beginning the velocity of a
particle v(E ) is Maxwell distributed. The probability that this
particle is at t = T and still be found inside the initial circle
(with radius R0) is given by

P0(rT � R0) =
∫ ∞

0
dE βe−βE

∫ R0

0
drT p(0)(rT ; v(E )T )

= 1 − e−β̄ [I0(β̄ ) + I1(β̄ )],

β̄ = mR2
0

T 2
β, (B5)

where I0 and I1 are modified Bessel’s functions of the first
kind.

The probability P0(rT � R0) is equal to the probability in
System 1 and 2 that no collisions were performed, so

P0(rT � R0) = Pcl
1 (W = 0), (B6)

P0(rT � R0) = Pcl
2 (�L = 0) � Pcl

2 (W = 0). (B7)

Especially for System 1 any collision or combinations of col-
lisions change the energy of the classical velocity except for
the occasional one. Only fine-tuned combinations of starting
positions and launching angles are able to compensate energy
loss and energy gain exactly.

To find an upper limit for Pcl
2 (W = 0) the treatment of the

reflections in System 2 with the horizontal resting walls is
of particular interest. For this, we consider the probability
density of System 0 again, Eq. (B4). Imagine a chain of
equal-sized adjacent circles along the y axis and the initial
circle is one of them in the center. With a canonical velocity
distribution the probability of presence in the kth circle above
or below the initial circle can be simplified to

P00 = P0(rT � R0), (B8)
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P0k = β̄

∫ 2k

2k−2
dx xe− β̄

2 x2

×
∫ (1+x)R0

(2k−1)R0

drT p(0)(rT ; xR0)k (rT ), (B9)

where k (rT ) is the weight that states which particle fraction
is inside the kth circle above or below:

k (rT ) = 2

π
arcsin

[√
16k2R4

0 − (
r2

T − R2
0 − 4k2R2

0

)2

4krT R0

]
.

A reflection in System 2 with the horizontal resting walls
can be projected as a mirrored trajectory which entered a

stadium above or below. Therefore, we consider a particle
in System 2 which collides only on the horizontal walls. In
System 0 the same particle has to be located in the initial circle
or in one of the imagined circles (above or below). Note that
the inversion does not apply. So its probability of presence in
one of these circles is an upper limit for Pcl

2 (W = 0) in System
2 and

Pcl
2 (W = 0) �

∞∑
k=0

P0k . (B10)

Substituting y = rT /R0, Eqs. (B8)–(B10) combine to the
upper limit Eq. (24).
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