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Unsteady two-temperature heat transport in mass-in-mass chains
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We investigate the unsteady heat (energy) transport in an infinite mass-in-mass chain with a given initial
temperature profile. The chain consists of two sublattices: the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain and
oscillators (of a different mass) connected to each FPUT particle. Initial conditions are such that initial kinetic
temperatures of the FPUT particles and the oscillators are equal. Using the harmonic theory, we analytically
describe evolution of these two temperatures in the ballistic regime. In particular, we derive a closed-form
fundamental solution and solution for a sinusoidal initial temperature profile in the case when the oscillators
are significantly lighter than the FPUT particles. The harmonic theory predicts that during the heat transfer
the temperatures of sublattices are significantly different, while initially and finally (at large times) they are
equal. This may look like an artifact of the harmonic approximation, but we show that it is not the case. Two
distinct temperatures are also observed in the anharmonic case, even when the heat transport regime is no
longer quasiballistic. We show that the value of the nonlinearity coefficient required to equalize the temperatures
strongly depends on the particle mass ratio. If the oscillators are much lighter than the FPUT particles, then a
fairly strong nonlinearity is required for the equalization.
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I. INTRODUCTION

Far from thermal equilibrium, the concept of tempera-
ture as a single scalar parameter, characterising local thermal
state of a system, may be insufficient. Therefore, in many
physical problems several temperatures are introduced [1–16].
For example, molecular dynamics simulations show that the
kinetic energies of thermal motion along and across the shock-
wave front are different [3–6]. Temperatures, corresponding
to the translational and rotational degrees of freedom in
gases, also may be different [7]. In systems subjected to
fast laser excitation, the temperatures of the lattice and
electronic subsystem are different [8–13]. Many other ex-
amples of several-temperature systems are given in review
Refs. [14–16]. In the present paper, we focus on yet another
example of nonequilibrium system with several distinct tem-
peratures, namely a heat conducting anharmonic chain.

In heat conducting lattices, several temperatures are ob-
served, for instance, in the nonequilibrium steady state
(NESS). This state is realized in the systems placed be-
tween two thermostats with different temperatures (see, e.g.,
Ref. [17]). In the NESS, kinetic temperatures of sublattices
may be different in both harmonic [18,19] and anharmonic
[20] crystals. For example, in Ref. [18] it is shown that kinetic
temperatures of the two sublattices of the chain with alter-
nating masses are different. In Ref. [20] the several distinct
temperatures are observed in the diatomic β-FPUT chain near
the thermostats. These studies show that in systems under
continuous external excitation the kinetic temperatures may
be different.

After external excitation, the kinetic temperatures usually
tend to a single equilibrium value. This process is investi-
gated, for example, in uniformly heated triangle [21] and

face-centered cubic [22] lattices with Lennard-Jones interac-
tions. In these lattices, initial nonequilibrium state was created
by specifying random velocities of atoms in one direction.
Then initial kinetic temperatures corresponding to different
spatial directions are distinct. It is shown that equilibration
of the temperatures during transition to thermal equilibrium
requires some time. In the case of weak anharmonicity (e.g.,
at low temperatures), this time is inversely proportional to
the initial kinetic temperature [22]. Therefore, equilibration
of kinetic temperatures may take a long time.

To the best of our knowledge, papers on unsteady heat
transport in chains with several kinetic temperatures are
scarce. Analytical description of unsteady heat transport in
harmonic approximation is presented in Ref. [23]. It is shown
that in heat conducting harmonic crystals temperatures, cor-
responding to degrees of freedom of the unit cell, may be
different even if initially they are equal. Then questions arise
of whether similar effect may be observed in anharmonic
crystals and what degree of nonlinearity is required for equal-
ization of the temperatures.

To address these important questions quantitatively, we
study unsteady heat transport in the mass-in-mass chain,
consisting of the β-FPUT chain and oscillators (of differ-
ent mass) attached to each FPUT particle. In the harmonic
case, we present an analytical solution describing evolu-
tion of the two-temperature fields, corresponding to FPUT
chain and oscillators. In the anharmonic case, there is a
“competition” between two processes, having different char-
acteristic timescales: heat transport and equalization of the
two temperatures. For weak anharmonicity, decay of thermal
perturbation, caused by heat transport, is significantly faster
than the equalization of temperatures. Then the temperatures
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FIG. 1. The mass-in-mass chain, consisting of the β-FPUT chain
and additional nonlinear oscillators.

remain different during the heat transport. The rate of equal-
ization increases with increasing nonlinearity. Therefore, the
temperatures equalize before the decay of thermal perturba-
tion provided that the nonlinearity is sufficiently strong. We
also show that the key parameter, determining the results of
this competition, is the ratio of particle masses.

II. STATEMENT OF THE PROBLEM

A. Equations of motion and initial conditions

We consider unsteady heat transport in a diatomic chain
consisting of the β-Fermi-Pasta-Ulam-Tsingou (FPUT)1

chain and nonlinear oscillators, connected to each FPUT par-
ticle (see Fig. 1). The FPUT particles have mass m1, while
the oscillators have mass m2. For β = 0, this model is usually
referred to as the mass-in-mass chain. It is extensively studied
as the simplest model of an acoustic metamaterial [24–34]. It
may also be considered as a model for hydrocarbon chains.
To the best of our knowledge, unsteady heat transport in the
mass-in-mass chain has not been studied systematically.
Dynamics equations for the unit cell j have the form

m1ü1, j = c1(u1, j+1 − 2u1, j + u1, j−1) + c2(u2, j − u1, j )

+ β(u2, j − u1, j )
3 + β[(u1, j+1 − u1, j )

3

+ (u1, j−1 − u1, j )
3],

m2ü2, j = c2(u1, j − u2, j ) + β(u1, j − u2, j )
3, (1)

where u1, j and u2, j are displacements of the FPUT particles
and attached oscillators; c1 is the stiffness of the FPUT chain;
c2 is the stiffness of the oscillators; β � 0 is a parameter
characterizing anharmonicity. In further calculations, we take
c1 = c2 = c. Equations (1) are supplemented by the periodic
boundary conditions.

We consider evolution of the initial temperature profile in
an isolated chain. The initial temperature profile is created by
specifying random initial velocities of the particles [36]:

u1, j = u2, j = 0,

u̇1, j = ρ1, j

√
kBT 0

j /m1, u̇2, j = ρ2, j

√
kBT 0

j /m2, (2)

where kB is the Boltzmann constant; T 0
j is the initial tem-

perature of particles from the unit cell j [see definition

1Since we study heat transport only, we consider thermal expan-
sion negligible. Interactions by the β-FPUT potential [in contrast
to α-FPUT (see, e.g., Ref. [35])] exclude the latter, allowing not
to separate thermal and mechanical motions. For these reasons, we
formulate the problem.

Eq. (5)]; ρ1, j, ρ2, j are uncorrelated random values with zero
mathematical expectation and unit variance, i.e., 〈ρ1, j〉 =
〈ρ2, j〉 = 0, 〈ρ1, jρ2, j〉 = 0, 〈ρ2

1, j〉 = 〈ρ2
2, j〉 = 1. Note that ini-

tial conditions Eq. (2) are such that for each unit cell initial
temperatures of the FPUT particle and the oscillator are equal.

B. Temperatures of sublattices

To define the kinetic temperature, we consider an infinite
set of realizations of system Eq. (1) with random initial condi-
tions Eq. (2). It is shown below that during the heat transport,
kinetic temperatures of the FPUT particles and oscillators are
generally different. Therefore, we introduce the temperature
matrix T [23]:

kBTj =
(

m1〈u̇2
1, j〉

√
m1m2〈u̇1, j u̇2, j〉√

m1m2〈u̇2, j u̇1, j〉 m2〈u̇2
2, j〉

)
. (3)

The diagonal elements of T determine kinetic temperatures
of sublattices, i.e., temperatures of the FPUT particles and
oscillators, respectively,

kBT11, j = m1
〈
u̇2

1, j

〉
, kBT22, j = m2

〈
u̇2

2, j

〉
. (4)

The off-diagonal components of the temperature matrix char-
acterize correlations between particle velocities. We also
introduce a conventional (average) kinetic temperature, de-
fined as

Tj = 1
2 (T11, j + T22, j ). (5)

Therefore, initial conditions Eq. (2) imply some initial
temperature profile and equal kinetic temperatures of the sub-
lattices. Time evolution of the temperatures T11, j and T22, j is
considered below.

III. HEAT TRANSPORT IN HARMONIC CASE

In the absence of anharmonicity (β = 0), the
thermal energy is carried by noninteracting waves (or wave
packets [37]), propagating freely through the chain. This
regime of heat transport is usually referred to as the ballistic
heat transport. In this section, we present an analytical
solution, describing ballistic heat transport in the harmonic
MiM chain. We show that during the heat transport the kinetic
temperatures T11, j and T22, j , corresponding to the FPUT
particles and oscillators, are essentially different even though
initially and finally (at large times) they are equal.

A. Dispersion relation and group velocities

To analyze heat transport in the harmonic crystals, the
dispersion relation is required (see, e.g., Refs. [23,36,38,39]).
We rewrite Eqs. (1) and (2) for β = 0 in a matrix form:

Mü j = C1u j+1 + C0u j + C−1u j−1,

M =
(

m1 0
0 m2

)
, C1 = C−1 = c

(
1 0
0 0

)
,

C0 = c

(−3 1
1 −1

)
, u j = [u1, j u2, j]

�, (6)

where � stands for the transpose sign; matrices C±1 define
stiffness of springs, connecting the cell j with the neighboring
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cell, and the matrix C0 describes interaction of particles inside
the cell j.

To obtain a dispersion relation, ω(k), we seek the solution
of Eq. (6) in the form

u j = Uei(ωt+k j), i2 = −1, (7)

where k ∈ [0; 2π ] is the wave number and U is a constant vec-
tor. Substituting Eq. (7) into Eq. (6) yields the homogeneous
system of linear equations with respect to U :

(Ω − ω2I)U = 0,

Ω = −M− 1
2 C0M− 1

2 − 2M− 1
2 C1M− 1

2 cos k, (8)

where Ω is the dynamical matrix of the chain; I is the 2 ×
2 identity matrix. The matrix Ω is real and symmetric and
therefore, it is represented as

Ω = P�P�, � =
(

ω2
1 0

0 ω2
2

)
, (9)

where P(k) is an orthogonal matrix, composed of unit eigen-
vectors of Ω; ω1,2(k) are acoustic and optical branches of the
dispersion relation, respectively,

ω1,2(k) = ωe√
γ

√
R(k) ∓

√
R2(k) − 4γ sin2 k

2
,

R(k) = 1 + γ

2
+ 2γ sin2 k

2
, ωe =

√
c

m1
, γ = m2

m1
.

(10)

Here the minus sign corresponds to the acoustic branch of the
dispersion relation, ω1, while the plus sign corresponds to the
optical branch ω2.

One of the key parameters of the problem is the mass ratio
γ = m2/m1. The dispersion relation for different values of γ

is shown in Fig. 2(a). The parameter controls, in particular,
the bandgap δω, defined as the difference between maximum
acoustic frequency and minimum optical frequency:

δω = min ω2 − max ω1

= ωe√
2γ

(√
2(1 + γ ) −

√
1 + 5γ −

√
1 + γ (25γ − 6)

)
.

(11)

Equation (11) shows that the bandgap tends to infinity as γ

tends to zero and it tends to the cutoff frequency of harmonic
chain on a linear elastic foundation as γ tends to infinity.
Unsteady thermal processes in this system are studied, e.g., in
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FIG. 2. Acoustic (blue lines) and optical (black lines) branches
of the dispersion relation (a) and corresponding group velocities (b)
for different mass ratios: γ = 2 (solid line), γ = 1 (dashed line),
γ = 1

2 (dash-dotted line), and γ = 1
5 (dotted line). The bandgap as a

function of the mass ratio γ (c).

Refs. [41,42]. Dependence of the bandgap on the mass ratio
γ is shown in Fig. 2(c). The figure shows, in particular, that
the dependence is nonmonotonic. The bandgap has minimal
value at γ∗ ≈ 0.646.

The mass ratio also significantly influences the group ve-
locities, which determine the shape and speed of thermal
waves in the ballistic regime (see, e.g., Refs. [23,38,39]). The
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group velocities are calculated as

v
g
1,2(k)

def= a
dω1,2

dk
,

v
g
1,2 = vs

√
γ

2

(
1 ± 1−R(k)√

R2(k)−4γ sin2 k
2

)
sin k√

R(k) ∓
√

R2(k) − 4γ sin2 k
2

,

vs = ωea, (12)

where vs is the sound speed.
If the oscillators are significantly lighter than the FPUT

particles (γ 
 1), then we have the following series expan-
sions of acoustic and optical group velocities:

v
g
1 = vs

(
1 − γ

2

)
cos

k

2
+ O(γ 2),

v
g
2 = vsγ

3
2 sin k + O

(
γ

5
2
)
. (13)

Equation (13) shows that for small γ the optical group ve-
locities are significantly smaller than the acoustic ones. This
fact is clearly seen in Fig. 2(b). We show below that this
difference between group velocities strongly affects the heat
transfer. Equation (13) allows to derive approximate closed-
form solutions of heat transfer problems (see Sec. III D 4).

B. The general solution of the ballistic heat transfer problem

The general solution, describing evolution of the kinetic
temperature Eq. (5) in continuum approximation, has the form
(see Ref. [23] for derivation):

T (x, t ) = T F (x, t ) + T S (x, t ),

T F (x, t ) = T 0(x)

8π

2∑
j=1

∫ 2π

0
cos (2ω j (k)t )dk,

T S (x, t ) = 1

8π

2∑
j=1

∫ 2π

0
T 0

(
x + v

g
j (k)t

)
dk, (14)

where x is a continuous spatial coordinate. Here and below
the continuous temperature field T (x, t ) is considered. It is
assumed that the temperature Tj of the unit cell j coincides
with T (a j, t ); T 0(x) is the initial temperature profile. The
term T F corresponds to the high frequency of oscillations of
the kinetic temperatures, caused by equilibration of kinetic
and potential energies.2 This process is considered in details,
e.g., in Refs. [21,22,38,43,44]. The term T S describes slow
changes of the kinetic temperature profile caused by ballistic
heat transport. Each of the terms TF , TS is equal to a sum of
contributions of acoustic and optical branches of the disper-
sion relation.

2The initial conditions Eq. (2) are such that the total energy of the
chain is equal to its initial kinetic energy, while the potential energy
is equal to zero. Motion of the particles leads to partial conversion
of energy from kinetic to potential form (in the harmonic case the
energies become equal). This fast process is described by the term
T F in Eq. (14).

We note that the solution Eq. (14) is derived in Ref. [23] via
continualization of the exact expression for the temperature
field, which in turn is obtained using the solution of lattice
dynamics equations. During the derivation, no concrete rela-
tions between the temperature and the heat flux were used. To
the best of our knowledge, in the unsteady ballistic case these
relations are known only for some particular cases (see, e.g.,
Ref. [36]). Therefore, we further focus on the behavior of the
temperature field. Discussion of the corresponding heat fluxes
is beyond the scope of the present paper.

In the following subsection, we employ the Eq. (14) for
analysis of evolution of a point temperature perturbation.

C. Fundamental solution

Since the ballistic heat transport problem is linear, the
evolution of any initial temperature field is completely deter-
mined by the fundamental solution. To obtain the fundamental
solution we consider

T 0(x) = Aδ(x), (15)

where δ(x) is a Dirac δ function; A is a constant of K · m
dimension. Substituting Eq. (15) into Eq. (14) and neglecting
T F , we obtain

T ≈ T S = Tac + Top,

Tac = A
8π

∫ 2π

0
δ
(
x + v

g
1(k)t

)
dk,

Top = A
8π

∫ 2π

0
δ
(
x + v

g
2(k)t

)
dk, (16)

where Tac and Top determine contributions of acoustic and
optical branches of the dispersion relation, respectively.

Calculation of integrals in Eq. (16) is carried out using the
following equation [45]:∫

D
δ( f (ξ ))dξ =

∑
j

| f ′(ξ j )|−1, f (ξ j ) = 0, (17)

where ξ j are zeros of function f , lying inside the domain D.
The calculation yields the following expressions for contribu-
tions Tac and Top:

Tac = A
8πt

∑
j

∣∣∣∣dv
g
1

dk
|k=k j

∣∣∣∣
−1

, v
g
1(k j ) = |x|

t
,

Top = A
8πt

∑
j

∣∣∣∣dv
g
2

dk
|k=k j

∣∣∣∣
−1

, v
g
2(k j ) = |x|

t
. (18)

Here summation is carried out with respect to roots of equa-
tions v

g
j (k) = |x|/t . From Eqs. (12) and (18) it is seen that

functions Tac and Top are even with respect to zero. The fun-
damental solution multiplied by t depends on the self-similar
variable x/t .

For γ 
 1 the fundamental solution Eq. (18) is represented
in the closed form. Substituting the approximate expres-
sions Eq. (13) for the group velocities into Eq. (18), we
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obtain

Tac ≈ AH (w1t − |x|)
4π

√
w2

1t2 − x2
, w1 = max v

g
1,

Top ≈ AH (w2t − |x|)
4π

√
w2

2t2 − x2
, w2 = max v

g
2, (19)

where H (x) is the Heaviside function and w1, w2 are max-
imum group velocities. Equation (19) shows that for small
γ contributions of acoustic and optical branches have the
same form as the fundamental solution for the Hooke chain,
obtained in Ref. [36]. Our calculations show that the Eq. (19)
has reasonable accuracy approximately for γ � 0.05.

Contributions of acoustic and optical branches of disper-
sion relation to the fundamental solution for different mass
ratios γ are shown in Fig. 3.

We note that areas under the curves, corresponding to
contributions of acoustic and optical branches, are equal.
Therefore, the total amount of energy carried by acoustic and
optical waves is the same. It is seen from Fig. 3 that for γ 
 1,
optical front propagates significantly slower than the acoustic
front, because v

g
2 
 vs. For γ = 2, optical and acoustic fronts

propagate synchronously, since the corresponding maximum
group velocities are equal.

We also note that, for γ = 1/2, 1, 2, the acoustic part of the
fundamental solution has a local maximum at x = 0. This fact
may be explained in terms of the kinetic theory. In the frame-
work of this theory the heat is carried by quasiparticles (wave
packets) moving with the group velocities. Physical meaning
of these quasiparticles is discussed, e.g., in Ref. [37]. For
large values of γ , the number of the acoustic quasiparticles
with small group velocities is relatively large [see Fig. 2(b)].
Therefore, these slow quasiparticles form the local maximum
at x = 0. The relative number of the slow quasiparticles de-
creases with increasing γ . Therefore, for γ < 0.1027 the local
maximum vanishes.

Thus the fundamental solution strongly depends on the
mass ratio γ . For small γ , it is represented in the closed form
Eq. (19). Further, we show that γ also influences the behavior
of temperatures of sublattices T11, T22 in both harmonic and
anharmonic cases. We mostly focus on the two cases γ = 2
(heavy oscillators) and γ = 1/10 (light oscillators), corre-
sponding to significantly different fundamental solutions (see
Fig. 3).

D. Sinusoidal initial temperature profile. Two temperatures

In this subsection, we study the decay of the sinusoidal
temperature profiles at different mass ratios γ . The main
goal is to describe analytically the behavior of temperatures
T11, T22, defined by Eq. (4). In particular, we show that during
heat transfer the temperatures are significantly different while
initially and finally (at t → ∞) they are equal.

1. Analytical solution

We consider the following initial temperature profile:

T 0(x) = Tb + 
T sin
2πx

L
, (20)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

(b)

FIG. 3. Contributions of acoustic (a) and optical (b) branches of
dispersion relation to the fundamental solution [Eq. (18)] for γ =
2 (solid line), 1 (dashed line), 1/2 (dash dotted line), and 1/10 (dotted
line). Vertical asymptotes at x = t max v

g
j (red dashed lines) are also

shown.

where Tb is the background temperature; 
T is the amplitude
of sine; L is the length of the periodic cell. The initial tem-
peratures of sublattices are equal, i.e., T11 = T22 = T 0. This
profile is chosen because it can be realized in real experiments
based on the transient thermal grating technique (see, e.g.,
Refs. [46,47]).

The evolution of the temperature matrix T , defined by
Eq. (3), is described as

T (x, t ) = T F (x, t ) + T S (x, t ),

T F (x, t ) = 1

2

(
Tb + 
T sin

2πx

L

)
F(t ),

T S (x, t ) = 1

2

[
TbI + 
T S(t ) sin

2πx

L

]
, (21)
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where

F(t ) = 1

2π

∫ 2π

0
PF̃P�dk, S(t ) = 1

2π

∫ 2π

0
PS̃P�dk,

F̃i j = δi j cos (2ω jt ), S̃i j = δi j cos
2πv

g
jt

L
, (22)

and δi j is the Kronecker delta. Detailed derivation of Eq. (21)
for different lattices is given in Ref. [23]. Here F(t ) describes
changes of temperatures due to equilibration of kinetic and po-
tential energies [for details see the explanation after Eq. (14)],
while S(t ) describes the changes due to ballistic heat trans-
port. These two physical processes have significantly different
timescales. At short times, of order of 100 periods of atomic
vibrations, F(t ) oscillates in time and tends to zero. At
larger times, changes in amplitude caused by ballistic heat
transfer are described by S(t ). The characteristic timescale
of this process is of order of |L/v

g
j |. In further analysis

we consider large time behavior of the temperature and there-
fore F(t ) is neglected. Then the temperatures of sublattices
are equal to

T11(x, t ) = 1

2

[
Tb + 
T S11(t ) sin

2πx

L

]
,

T22(x, t ) = 1

2

[
Tb + 
T S22(t ) sin

2πx

L

]
, (23)

where S j j are diagonal elements of the matrix S.
According to Eq. (23), the temperature profiles remain si-

nusoidal for any moment in time. At t → ∞, the functions S j j

tend to zero. Therefore, finally the temperatures T11 and T22

become equal even though the system is harmonic. Spatially
averaged values of the temperatures are also equal to each
other. Further, we focus on evolution of the amplitudes of
temperature profiles defined as

Aj j (t ) = 2

L

∫ L

0
Tj j (x, t ) sin

2πx

L
dx. (24)

We show below that during the heat transfer the amplitudes
are generally different.

Analytical expressions for the amplitudes are obtained by
substituting Eq. (23) into Eq. (24):

Aj j = 
T Sj j/2. (25)

Comparison of the analytical solution Eq. (25) with results
of numerical simulations is presented below. We also inves-
tigate contributions of acoustic and optical vibrations to the
amplitudes Aj j . According to the definition Eq. (22) of S, the
contributions have the following form:

Aj j = Aac
j j + Aop

j j , Aac
j j = 
T

4π

∫ 2π

0
P2

j1 cos
2πv

g
1t

L
dk,

Aop
j j = 
T

4π

∫ 2π

0
P2

j2 cos
2πv

g
2t

L
dk. (26)

Closed-form expressions for A11 and A22 in terms of Bessel
functions for small γ (light oscillators) are derived below [see
Eq. (31)].

2. Simulation details

In numerical simulations, we integrate equations of motion
Eq. (1) by the fourth-order symplectic method [50,51], with
initial conditions3 Eqs. (2) and (20) and periodic boundary
conditions. The amplitudes of temperatures of sublattices A11

and A22 are calculated by Eq. (24). Integrals in these formulas
are replaced by sums over all particles in the periodic cell.
Temperatures are calculated by the definition Eq. (4), where
the mathematical expectation is replaced by averaging over
Nr realizations. The following values of parameters are used:

N = 103, Nr = 104, 
T = 0.1Tb,


t = 2 × 10−3τe, τe = 2π/ωe, β = 0, (27)

where N is the number of particles, 
t is the time step, and
ωe is defined by Eq. (10).

3. Heavy oscillators (γ = 2)

In this subsection, we compare the analytical Eq. (26) for
amplitudes A11, A22 of temperatures T11, T22 with results of nu-
merical simulations. We also analyze contributions of acoustic
and optical vibrations to behavior of the temperatures. The
mass ratio γ = 2 is considered. In this case, the maximum
acoustic and optical group velocities are of the same order.

The behavior of amplitudes of the temperatures is shown
in Fig. 4. It is seen that numerical and analytical solutions
practically coincide with each other. The figure shows that
during the heat transfer the temperatures T11 and T22 are dif-
ferent. Both amplitudes perform decaying oscillations. Such
behavior is typical for systems with ballistic heat transport
(see, e.g., Refs. [23,36,38,52]). It is also seen that periods of
temperature oscillations are of the same order. This is due to
the fact that acoustic and optical group velocities are close.

At large times, the main contribution to A11 (temperature
of FPUT particles) is given by acoustic vibrations, while the
main contribution to A22 (temperature of oscillators) is given
by optical vibrations. Our calculations show that for other
values of γ = O(1) similar behavior is observed.

4. Light oscillators (γ � 1): Ballistic spectra inversion

In this subsection, we derive an approximate closed-form
solutions for the amplitudes A11, A22 of temperatures for the
case when oscillators are significantly lighter than the FPUT
particles (γ 
 1). We also show that low-frequency (acous-
tic) oscillations of atoms cause high-frequency oscillations
of temperature and vice versa. This new phenomenon, in-
troduced in the present paper, is further referred to as the
“ballistic spectra inversion.”

For example, we consider the case γ = 1/10. Time evo-
lution of the amplitudes A11 and A22 obtained analytically
and numerically is shown in Fig. 5. As in the previous case
(γ = 2), the amplitudes perform decaying oscillations. How-
ever, in contrast to the previous case, the oscillations have
two significantly different main frequencies. It is also seen
that the main contribution to the temperature of the FPUT
particles (A11) is given by acoustic vibrations, while the main

3We take uniform distribution of the random numbers ρ1, j and ρ2, j .
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FIG. 4. Decay of the amplitudes A11 (a) and A22 (b) of the kinetic
temperatures for γ = 2. Analytical (red solid line) and numerical
(red circles) solutions are shown. Contributions of acoustic (black
solid line) and optical (blue line) branches of dispersion relation are
shown.

contribution to the temperature of the oscillators (A22) is given
by the optical vibrations. To explain these facts, we derive an
approximate closed-form solution for Aj j .

The solution is derived, assuming γ 
 1. In this case, the
group velocities are approximated by Eq. (13) as

v
g
1 ≈ w1 cos

k

2
, v

g
2 ≈ w2 sin k, (28)

where w1, w2 are maximum group velocities, defined by
Eq. (19). Substitution of Eq. (28) into Eqs. (26) for Aac

j j and
Aop

j j then yields

Aac
j j ≈ 
T

4π

∫ 2π

0
P2

j1 cos

(
2πw1t

L
cos

k

2

)
dk,

Aop
j j ≈ 
T

4π

∫ 2π

0
P2

j2 cos

(
2πw2t

L
sin k

)
dk. (29)
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FIG. 5. Decay of the amplitudes A11 (a) and A22 (b) of the kinetic
temperatures for γ = 1/10. Analytical (red solid line) and numerical
(red circles) solutions are shown. Contributions of acoustic (black
solid line) and optical (blue line) branches of dispersion relation are
shown.

It follows from analysis of Eq. (29) that for small γ the
elements P2

i j slowly change with k. Therefore, we take the
average values of P2

i j out the integral. The remaining integrals
are represented in terms of the Bessel function of the first kind,
J0, as

A11 ≈ 
T

2

[
(1 − ε)J0

(
2π

L
w1t

)
+ εJ0

(
2π

L
w2t

)]
,

A22 ≈ 
T

2

[
εJ0

(
2π

L
w1t

)
+ (1 − ε)J0

(
2π

L
w2t

)]
,

ε = 1 − 1

2π

∫ 2π

0
P2

11dk ≈ γ + 3γ 2. (30)

Equation (30) yields the closed form solution of the heat trans-
fer problem with sinusoidal temperature profile. Comparison
of the complete analytical solution Eq. (26) with approximate

054145-7



SERGEI D. LIAZHKOV AND VITALY A. KUZKIN PHYSICAL REVIEW E 105, 054145 (2022)

0 10 20 30 40

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a)

0 50 100 150
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b)

FIG. 6. The complete solution [Eq. (26), red solid line] and ap-
proximate solution [Eq. (30), black dashed line] for the amplitudes
A11 (a) and A22 (b) at γ = 1/10.

Eq. (30) for γ = 1/10 is presented in Fig. 6. It is seen from
Fig. 6 that approximate and complete solutions are in a good
quantitative agreement.

We continue analysis of Eq. (30). It clearly shows that the
solution has two characteristic frequencies, proportional to
maximum acoustic and optical group velocities (w1,w2). For
small γ these frequencies are significantly different, because
w1 � w2. Moreover, in this case ε 
 1 and therefore Eq. (30)
reduces to

A11 ≈ 
T

2
J0

(
2π

L
w1t

)
, A22 ≈ 
T

2
J0

(
2π

L
w2t

)
. (31)

Equation (31) shows that the main contribution to high-
frequency oscillations of A11 is given by the low-frequency
acoustic vibrations of the chain, while low-frequency oscil-
lations of A22 are due to high-frequency optical oscillations
of the chain. We refer to this phenomenon as the “ballistic
spectra inversion.”

In the next section, we investigate how anharmonicity af-
fects on evolution and equalization of the temperatures of
FPUT particles (A11) and oscillators (A22).

IV. TWO TEMPERATURES IN THE ANHARMONIC CHAIN

In this section, we study influence of anharmonic inter-
actions on the solution of the heat transport problem with
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0.4

0.5
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0.3

0.4

0.5

(b)

FIG. 7. The amplitudes A11 (a) and A22 (b) of sinusoidal tempera-
ture profiles in the weakly anharmonic case for γ = 2. The analytical
solution [Eq. (26), solid line] and numerical simulation results for
β̃ = 0.05 (blue circles), β̃ = 0.1 (red asterisks) are shown.

sinusoidal initial temperature profile Eq. (20). The problem is
solved numerically for different values of the dimensionless
parameter β̃, characterizing anharmonicity:

β̃ = kBTbβ/c2, kBTb = m1v
2
s . (32)

All other parameters are the same as in Eq. (27).
The main goal is to investigate how fast the temperatures

T11, T22 of sublattices (FPUT particles and oscillators) become
equal and how the maximum difference of the temperatures
depends on the anharmonic parameter β̃ and the mass ratio γ .

A. Heavy oscillators (γ = 2)

We start with the weakly anharmonic case. The ampli-
tudes of the kinetic temperatures, corresponding to γ = 2 and
small anharmonic parameter β̃, are presented in Fig. 7. The
figure shows that the heat transport preserves qualitative
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FIG. 8. The amplitudes A11 (blue line) and A22 (black line) of
sinusoidal temperature profiles and their difference (red line) in case
of strong anharmonicity (β̃ = 2) for γ = 2.

features of the ballistic regime: oscillatory decay and sig-
nificant difference between the temperatures of sublattices.
The main effect of nonlinearity is that both amplitudes decay
faster than in the harmonic case. However, the influence of
nonlinearity on the temperature of the FPUT particles (A11)
is more significant than on the temperature of the oscillators
(A22). The behavior of A22 is described by the harmonic ap-
proximation [Eq. (26)] for times at least up to vst/L ∼ 10 with
reasonable accuracy. In contrast, the behavior of A11 coincides
with the prediction of harmonic theory at much shorter times
vst/L ∼ 1. In the Sec. III D 3, it is shown that, in the har-
monic case, acoustic vibrations give the main contribution to
evolution of A11 (see Fig. 4), while optical vibrations mostly
influence A22. Then the influence of weak anharmonicity on
acoustic vibrations is more significant than on the optical
vibrations.

As expected, increasing the value of the anharmonic coef-
ficient β̃ leads to transition from quasiballistic to diffusive4

regime of heat transfer (see Fig. 8). In the former case, the
temperature performs decaying oscillations such that the am-
plitude changes sign [see Fig. 7(A)], while in the latter case
the decay is monotonic. Our numerical simulations show that
the value of β̃ of about 2 is sufficient to suppress the ballistic
features of heat transfer for the considered chain length.5 For
this value of β̃, the decay of amplitudes is almost monotonic.
The difference between temperatures A22 − A11 is smaller
than A11 and A22.

Thus in the case of heavy oscillators, the temperatures
of sublattices are generally different. The difference between

4We suspect that the diffusion is anomalous and described by
the fractional differential equation [53]. However, this question is
beyond the scope of the present paper.

5In Ref. [52], it is shown that the value of nonlinearity coefficient
β required for transition from ballistic to diffusive regime of heat
transfer significantly depends on the wavelength of sine (number of
particles). It decreases with increasing number of particles approxi-
mately as 1/

√
N .
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FIG. 9. The amplitudes A11 (a) and A22 (b) of sinusoidal tem-
perature profiles in the weakly anharmonic case for γ = 1/10. The
analytical solution [Eq. (26), solid line] and numerical simulation
results for β̃ = 0.05 (blue circles), β̃ = 0.1 (red asterisks) are shown.

temperatures decreases with increasing nonlinearity coeffi-
cient (for further discussion see Sec. IV C).

B. Light oscillators (γ = 1/10)

As in the previous subsection, we start with the weakly
anharmonic case. The amplitudes of the kinetic temperatures,
corresponding to γ = 1/10 and small β̃, are presented in
Fig. 9. It is seen from Fig. 9 that the influence of small non-
linearity is qualitatively similar to the previous case γ = 2.
The decay of amplitudes remains oscillatory and its rate in-
creases with increasing the nonlinearity coefficient. However,
the influence of nonlinearity on the amplitudes A11 and A22 is
exactly opposite: the influence on temperatures of the FPUT
particles (A11) is weak, while the influence on temperatures
of the oscillators (A22) is strong. Since the main contributions
to A11 and A22 are given by acoustic and optical vibrations
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FIG. 10. The amplitudes A11 (blue line) and A22 (black line)
of sinusoidal temperature profiles and their difference (red line)
in the case of strong anharmonicity [β̃ = 2 (a), β̃ = 100 (b)] for
γ = 1/10.

respectively [see Eq. (31)], then the influence of nonlinearity
on optical vibrations is stronger (in contrast to the previous
case).

As in the previous case (γ = 2), increase of the nonlin-
earity coefficient leads to transition from quasiballistic to
diffusive regime of heat transfer. However, though for β̃ = 2
the oscillations of temperatures are rather small and the decay
is almost monotonic, this value is not sufficient for equaliza-
tion and the temperatures remain significantly different during
the heat transport [see Fig. 10(a)]. Our simulations show
that equalization of temperatures requires significantly larger
values of the anharmonic parameter β̃. Even for utterly strong
anharmonicity (β̃ = 100) there is still some finite difference
of temperatures (amplitudes) [see Fig. 10(b)].

C. The maximum difference of temperatures

Simulation results, presented in Figs. 7–10, show that for
both values of the mass ratio and all considered values of the
nonlinearity coefficient there is some finite difference between
the temperatures during the heat transfer. At the same time, the
difference decreases with increasing nonlinearity coefficient.
To demonstrate this decay, we plot the maximum difference
between the temperatures A22–A11 for different values of β̃

and γ = 2 (see Fig. 11).
The figure shows that though the maximum difference is

always finite, it practically may be neglected starting from

-1 0 1 2
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0.1

0.2

0.3

0.4

0.5

0.6

FIG. 11. Dependence of the maximum difference of tempera-
tures on the nonlinearity coefficient for γ = 2 (blue circles) and γ =
0.1 (black squares). Dashed horizontal lines correspond to maximum
difference in the harmonic case β̃ = 0.

some “threshold” value of the nonlinearity coefficient. The
specific choice of this threshold value is arbitrary and depends
on the problem. It can be determined, for example, by the
accuracy of temperature measurement or by what temperature
difference in this particular problem should be considered as
significant.

V. CONCLUSIONS

Features of unsteady heat transport in mass-in-mass chains
were investigated. The main focus was on evolution of the two
temperatures of sublattices (FPUT particles and oscillators) at
different mass ratios and magnitudes of the nonlinearity.

In harmonic approximation, an analytical solution in form
of integrals describing the evolution of an initial temperature
profile was obtained. The solution allows to investigate and
compare contributions of acoustic and optical vibrations to the
heat transfer. It also shows that the temperatures of sublattices
are equal initially and finally (at large times), while during
the heat transfer they are significantly different. For small
mass ratios, the closed-form solution for sinusoidal initial
temperature profile was obtained. The solution shows that
the temperatures of sublattices perform decaying oscillations
with two significantly different main frequencies. The higher
frequency of temperature oscillations is due to contribution
of (low-frequency) acoustic vibrations of the chain, while the
lower frequency is due to (high-frequency) optical vibrations
of the chain. This new phenomenon is refereed to as the
ballistic spectra inversion.

In weakly anharmonic case, the characteristic features
of ballistic heat transfer are also present. In particular, the
temperatures remain significantly different. The anharmonic
effects leads to faster decay of the temperature oscillations.
This result is in a qualitative agreement with results for
α-FPUT [40], β-FPUT [48,52], and φ4[49] chains. It was
also shown that for mass ratios of order of unity (γ ∼ 1), the
nonlinearity mostly influences the temperature of the FPUT

054145-10



UNSTEADY TWO-TEMPERATURE HEAT TRANSPORT IN … PHYSICAL REVIEW E 105, 054145 (2022)

particles, while the temperature of the attached oscillators
remain almost unaffected. If the mass ratio is small (γ 
 1),
then the situation is exactly opposite.

Increase of the nonlinearity coefficient β̃ leads to the
transition from the quasiballistic to diffusive regime of heat
transfer (decay of sinusoidal temperature profile becomes
almost monotonic). The maximum difference between the
temperatures also decreases. However, even in the diffusive
regime the temperature difference remains finite. Practically,
the difference can be neglected starting from some threshold
value of the nonlinearity coefficient. This threshold value in-
creases with decreasing mass ratio γ .

We assume that the influence of nonlinearity on equal-
ization of the temperatures can be interpreted in terms of
timescales of different processes occurring in the heat con-
ducting chain. The timescale of ballistic heat transport is pro-
portional to the chain length divided by the average group ve-
locity. The timescale of equalization of temperatures depends
on the nonlinearity parameter β̃. For small β̃, this anharmonic
timescale is much larger than the ballistic timescale and there-
fore the temperatures are different during the heat transfer.
The anharmonic timescale decreases with increasing β̃ and the
process of temperature equalization becomes faster. There-
fore, starting from some threshold value of β̃ the temperatures
equalize faster than they change due to heat transport. Deriva-
tion of estimates for the anharmonic timescale, determining
the equalization, would be an important extension of the
present work. We believe that these estimates can be obtained
using the kinetic theory (see, e.g., Refs. [53–56]). In partic-
ular, the kinetic description of heat transfer in the β-FPUT
chain is presented, e.g., in Ref. [53]. For the MiM chain this
analysis could be extended by taking into account the optical
quasiparticles. An important step in this direction has been
taken in a recent paper [57], where a system of two coupled
kinetic equations for acoustic and optical quasiparticles in the
diatomic α-FPUT chain was derived. However, the behavior
of the temperatures of two sublattices was not analyzed. We
believe that further development of kinetic description of di-
atomic anharmonic chains will improve our understanding of
equalization of the temperatures.

Presented results suggest that several distinct temperatures
may be observed in heat conducting lattices consisting of

atoms of significantly different mass, e.g., in hydrocarbons
(γ = 1/12). However, this theoretical prediction is awaiting
for confirmation by molecular dynamics simulation of more
realistic systems or by real experiments.

Our results may serve for the development of multicom-
ponent continuum models with several temperatures, which
are used, for example, for simulation of heat transfer in sys-
tems subjected to laser excitation (see, e.g., Refs. [10–13]).
In these models, the behavior of the temperatures is gov-
erned by a coupled system of heat transfer equations, where
the coupling is caused by energy exchange among the com-
ponents. Results of our simulations may be used, e.g., for
calibration and validation of the expressions, describing the
coupling.

Finally, we note that presented results are closely related to
the fundamental problem of defining the temperature (or tem-
peratures) for systems far form equilibrium. In the literature,
many definitions, including kinetic temperature, potential
temperature, configurational temperature, etc., are introduced
[14–16,58,59]. These definitions usually lead to identical re-
sults at equilibrium and differ in nonequilibrium cases. In the
present paper, we used the kinetic temperature, because it has
simple physical meaning and it can, in principle, be measured
in real experiments. We also mention theoretical arguments
in favor of the kinetic temperature, based on the possibility
of constructing the ideal gas thermometer [59]. However, we
note that the choice of proper definition for nonequilibrium
temperature is an open problem and requires a separate study.
We refer to review Refs. [14–16] for detailed discussion of
this important problem.
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