PHYSICAL REVIEW E 105, 054143 (2022)

Universality in the two-dimensional dilute Baxter-Wu model
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We study the question of universality in the two-dimensional spin-1 Baxter-Wu model in the presence of a
crystal field A. We employ extensive numerical simulations of two types, providing us with complementary
results: Wang-Landau sampling at fixed values of A and a parallelized variant of the multicanonical approach
performed at constant temperature 7. A detailed finite-size scaling analysis in the regime of second-order phase
transitions in the (A, T') phase diagram indicates that the transition belongs to the universality class of the
four-state Potts model. Previous controversies with respect to the nature of the transition are discussed and
attributed to the presence of strong finite-size effects, especially as one approaches the pentacritical point of the

model.
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I. INTRODUCTION

The Baxter-Wu (BW) model was first introduced by Wood
and Griffiths [1] as a system which does not exhibit invari-
ance under a global inversion of all spins. It is defined on a
triangular lattice by the Hamiltonian

Hew = —JZUXU},OZ, (D)

(xyz)

where the exchange interaction J is positive, the sum extends
over all elementary triangles of a lattice with N sites, and
o, = %1 are Ising spin-1/2 variables. The triangular lattice
can be divided into three sublattices, A, B, and C, as shown
in Fig. 1, so that any triangular face contains one site of
type A, one of type B, and one of type C. The ground state
of the model is fourfold degenerate: one ferromagnetic state
has all spins up, and three ferrimagnetic states have down
spins in two sublattices and up spins in the third sublattice.
Also, the model of Eq. (1) is self-dual [1,2], having the same
critical temperature as the spin-1/2 Ising model on the square
lattice, i.e., kgTz/J = 2/1n (\/5 + 1) =2.269185.. ., where
kg denotes the Boltzmann constant.

The exact solution of Baxter and Wu dates back to 1973
and provided the critical exponents « =2/3, v =2/3, y =
7/6, and n = 1/4 [3,4]. Much later, it was shown that the
critical behavior of the model corresponds to a conformal
field theory with central charge ¢ =1 [5,6]. As was first
pointed out by Domany and Riedel, the ¢ = 4 Potts model
should belong to the same universality class as the Baxter-Wu
model, as both have the same symmetry and degree of degen-
eracy in the ground state [7]. However, although the leading
critical exponents are the same, one should note that these
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two models have different corrections to scaling: while the
four-state Potts model presents logarithmic corrections with
the system size, as expected for the marginal case before the
transition becomes first order for ¢ > 4 [8], the Baxter-Wu
model has power-law corrections with a correction-to-scaling
exponent w = 2 [5,6]. This rather large value of w allows for
a safe determination of the asymptotic scaling behavior even
when dealing with systems of moderate size (see, for instance,
Ref. [9]). Recently, further aspects of the spin-1/2 model have
also been considered, including short-time dynamics [10],
critical amplitude ratios [11], and the effect of longitudinal
[12] and transverse [13] magnetic fields.

An interesting extension of the Baxter-Wu model (1) arises
when one considers spin values o, = {—1, 0, 1} and includes
an additional crystal field (or single-ion anisotropy) A, so that
the resulting Hamiltonian reads

H=-J) 00,0, +AY ol =E +AEx. (2

(xyz) x

In the following we will use reduced units where J = 1 and
kg = 1. Unfortunately, for this model no exact solution exists,
and therefore, approximation methods need to be employed.
Note, however, that when A — —o0, only configurations with
o, = =1 are allowed, and the pure Baxter-Wu model is recov-
ered.

As is apparent, the model in Eq. (2) resembles the well-
known Blume-Capel model [14], which exhibits a phase
diagram with ordered ferromagnetic and disordered para-
magnetic phases separated by a transition line with first-
and second-order segments (the latter in the Ising univer-
sality class) connected by a tricritical point. More details
about the phase diagram and universality aspects of the gen-
eral Blume-Capel model can be found in Refs. [15-22]. In
analogy to these findings, one might expect for the model
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FIG. 1. Representation of the Baxter-Wu triangular lattice as a
superposition of the three sublattices, A, B, and C. Each sublattice
corresponds to spins of a different color. The spins are shown in the
ferromagnetic ground state.

defined in Eq. (2) a similar phase diagram but a different
universality class. Nienhuis et al. [23] first discussed the
analogy between the Baxter-Wu and diluted Potts models
and pointed out that the general phase diagram will exhibit
a line of continuous transitions that connects to a regime
of first-order transitions through a multicritical point. Kinzel
et al. [24], instead, using a finite-size scaling method, con-
jectured that a continuous transition occurs only for A —
—o0 (the pure Baxter-Wu model). More recent work has fa-
vored the existence of a multicritical point at finite values of
A [25]. In Ref. [26] the location of the pentacritical point
was estimated as (App, Tpp) =~ (0.8902, 1.4), whereas Jorge
et al. [27] suggested the rather different value (App, Tpp) ~
(1.68288(62), 0.98030(10)) (see Fig. 2 and also Fig. 5 of
Ref. [27] for a reproduction of the phase diagram of the
model). This pentacritical point refers to the coexistence of
three ferrimagnetic configurations and a ferromagnetic config-
uration, along with that of zero spins. The results of Ref. [26]
for the critical exponents v & 0.63 and n ~ 0.23 point to
the universality class of the pure spin-1/2 Baxter-Wu model
where v =2/3 and n = 1/4.

Surprisingly, however, there are still open questions with
respect to universality in the spin-1 Baxter-Wu model. The
results of Ref. [25] via the renormalization group, conven-
tional finite-size scaling, and conformal invariance techniques
indicated that the critical exponents vary continuously with
A along the second-order transition line, different from the
expected behavior of the four-state Potts model. A similar
conclusion was drawn in Ref. [28], where using impor-
tance sampling Monte Carlo simulations for the special case
with A = 0 the values v = 0.617(3), & = 0.692(6), and y =
1.13(1) were obtained. The complementary Monte Carlo re-
sults of Ref. [29] for A = —1 and 1 further corroborated
this hypothesis [30]. Conversely, the renormalization-group
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FIG. 2. Phase diagram of the two-dimensional spin-1 Baxter-
Wu model. Several transition points are given, including those
obtained in the current work. The black rhombus and black tri-
angle mark the pentacritical point as estimated by Dias er al.
[26], (App, Tpp) ~ (0.8902, 1.4), and Jorge et al. [27], (App, Tpp) ~
(1.68288(62), 0.98030(10)), respectively. The black dashed and
solid lines correspond to first- and second-order phase transitions.
The intermediate regime between the two pentacritical point estima-
tions is not crossed by a line as it calls for further investigation.
Blue vertical and red horizontal dashed arrows indicate the two
numerical approaches used, namely, the Wang-Landau and multi-
canonical methods, at fixed values of A ={—10, —1} and T =
{2.2578, 1.8503}, respectively.

work of Dias et al. [26] suggested that along the critical line,
the conformal anomaly ¢ and the exponents v and n are the
same as those of the pure spin-1/2 Baxter-Wu model (or the
four-state Potts model). A recent work by Jorge et al. [31]
used Wang-Landau sampling to probe the system’s behavior
at A = 0. According to these authors, it exhibits an indeter-
minacy regarding the order of phase transition; that is, the
analysis of numerical data was conclusive for both types of
transitions, continuous and first order. For the former case they
estimated the values v = 0.6438(10) and y = 1.1521(13).
Finally, recent numerical evidence at the first-order transition
regime of the phase boundary suggested that the specific heat
exhibits a double-peak structure [27].

In the present work we provide a resolution of these con-
troversies. Using extensive numerical simulations, as outlined
in Sec. II, we scrutinize the critical properties of the model,
covering the whole extent of the continuous transition line.
In particular, in an attempt to identify the presence and role
of finite-size effects, we perform Wang-Landau simulations
at two fixed values of the crystal field, A = —10, deep in
the second-order regime, and A = —1, in the vicinity of the
pentacritical point. We complement these with multicanonical
simulations at temperature 7 = 1.8503 crossing the phase
boundary at A &~ —1, as indicated in Fig. 2. The remainder
of the paper is organized as follows: In Sec. II we outline the
Wang-Landau and parallel multicanonical simulation meth-
ods that we use to study the problem, and we introduce the
observables studied. Our numerical results and the relevant
finite-size scaling analysis are presented in Sec. III. Finally, in
Sec. IV we summarize our findings and provide an outlook.
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II. NUMERICAL METHODS AND OBSERVABLES

We use a combination of Wang-Landau and multicanoni-
cal simulations in a complementary strategy. This combined
scheme allows us to cross the phase boundary of the model
in two directions (see the dashed arrows in Fig. 2) and probe
efficiently the critical properties of the model.

A. Wang-Landau simulations

In a Wang-Landau simulation [32] random walks are per-
formed in energy space, and trial spin configurations are
accepted with a probability proportional to the reciprocal es-
timate of the density of states, 1/g(E). The estimate g(E) for
the current energy is modified as g(E) — f x g(E), where f
is known as the modification factor. During the simulation, an
energy histogram is also accumulated. If it is flat, the modi-
fication factor is adjusted according to the rule fj = \/]7/
where f| = e. In the present work we used a flatness criterion
of 90%, as well as jsna = 24. Furthermore, to increase statis-
tical accuracy we averaged over several independent samples,
typically ~32.

Our strategy follows the more stringent one-range imple-
mentation of the Wang-Landau algorithm compared to the
more efficient multirange approach in which one splits the
energy range into many subintervals and joins the densities of
states from the separate pieces at the end. This multirange ap-
proach is almost a necessity for very large lattices and in many
cases has produced results of high accuracy [32]. However,
there are some subtleties with respect to boundary effects [33],
especially in cases where first-order transition characteristics
appear [34], hence justifying our choice. The simulations were
facilitated by the use of restricted energy spaces, a practice
proven to be quite successful in many pure and disordered spin
models [34-38]. Estimating such ranges from a chosen pseud-
ocritical temperature, one should be careful to account for the
shift behavior of other important pseudocritical temperatures
and extend the subspace appropriately from both the low- and
high-energy sides in order to achieve an accurate estimation
of all finite-size anomalies. At an initial stage of this work,
preliminary comparative tests were also executed using the
Metropolis algorithm [39,40] to provide a benchmark (see
Fig. 3).

For the purposes of the present study we do not use the
final estimate of g(£) to compute thermodynamic averages
but rather employ it as a weight function in a final production
run. The sampled observables include estimates of the mean
energy (E); the order parameter (m), which is estimated from
the r.m.s. average of the magnetization per site of sublattices
A, B, and C [28,29,31],

mz‘/—mgﬁ”;%mé; 3)

C = [(E*) — (E)*1/(NT?), 4

the specific heat

and the magnetic susceptibility

x = N[(m*) — (m)*|/T, (5)
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FIG. 3. Specific-heat curves of the spin-1 Baxter-Wu model at
A = —10 for a system with linear size L = 24 obtained with Wang-
Landau and Metropolis simulations.

where N = L? is the number of lattice sites. Characteristic
specific-heat and magnetic susceptibility curves for the case
A = —10 obtained via Wang-Landau simulations are shown
in Fig. 4.

B. Multicanonical simulations

We now turn to the description of the multicanonical
(MUCA) method [41]. In this approach, instead of using
the canonical (unnormalized) Boltzmann weight e PE, with
B =1/T, a correction function is introduced, designed to
produce a flat histogram. For the purposes of the current work,
the multicanonical method was applied with respect to the
crystal-field energy EA fixing the temperature and allowing
us to continuously reweight to arbitrary values of A [20]. To

50 T
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150 / L=36 ——
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FIG. 4. Specific-heat (main panel) and magnetic susceptibility
(inset) curves corresponding to Egs. (4) and (5) at A = —10 from
Wang-Landau simulations. After an increase in the system size, the
location of the peaks shifts to the left.
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this end, the partition function

Z= ) g(By EyeMErAE (©6)

{Es,En}

is generalized to

Zwuca = Y 8(Es, En)e " W(ED), (7)

{Ej.En}

where g(Ej, Ep) is the two-parameter density of states. It
follows that the equilibrium probability distribution in the
multicanonical ensemble is

8(E;, Ex)e PE'W (En)

Pyuca(Er, Ea) = = . ®)
MUCA

In order to produce a flat E5 histogram, by carrying out a
summation with respect to Ej;, the modified weight should be
given by

-1
W(EA)aZMUCA[Zg(EJ,EA)eﬁEJ} )

E;

These weights can be calculated in an iterative fashion
starting with an initial guess. At the nth step spins are flipped
using the weights e P& W " (E, ), and the histogram H™ (E,)
of the energies En is sampled. After a specified number
of spin-flip attempts the histogram is used to recalibrate
the weights via W "+ D(Ey) = WW(EL)/H™(E,). The pro-
cess is complete when a sufficiently flat histogram has been
achieved, after which a series of production runs is carried out.
At each step the histogram H"(E, ) satisfies the equation

<H<"><EA)> o P™(En)

W(En)
W(Es)

Zg(E,,Ew PEIW " (En) o
ZMUC

(10)

justifying the scheme for updating the weights using sampled
histograms.

We employ a parallel implementation of the multicanonical
method [42,43], guided by its already successful application
in studies of the Blume-Capel model in two and three di-
mensions [20,22,44]. In this setup weights are distributed to
parallel workers, each producing a histogram. At the end of
each iteration all histograms are added into a single one which
is then used to recalibrate the weights. Our simulations were
implemented on an Nvidia K80 GPU, effectively running
tens of thousands of simulation threads in parallel. Finally,
the histogram flatness was tested using the Kullback-Leibler
divergence [43,45].

As the multicanonical method allows for continuously
reweighting to any value of A, canonical expectation values
for an observable O = O({o'}) at a fixed temperature can be
obtained by estimating the expectation values

DW=UEx))muca
TDW=1(Ea))muca

In this framework, it is natural to compute A derivatives of
observables rather than the usual T ones. For instance, in place

(O({o})ePrEso
(e=PAEA(o

(O)a = (1)
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FIG. 5. Specific-heat-like quantity (main panel) and first-order
logarithmic derivative of the order parameter (inset) obtained via
multicanonical simulations at 7 = 1.8503. Like in Fig. 4 the location
of the peaks shifts to the left as we increase the linear size of the
system.

of the usual specific heat (4) one may define a specific-heat-
like quantity [20]

1 9(Ey)
N 9A

which shows the shift behavior expected from the usual spe-
cific heat, as can be seen from the main panel of Fig. 5.
Additionally, in order to obtain direct estimates of the critical

exponent v from finite-size scaling, one may compute the
logarithmic derivatives of the order parameter [46,47]

o In (m") _ (m"EA)
FYNE (m™)
see the inset in Fig. 5 for the case with n = 1.
Other useful observables accumulated during the multi-

canonical simulations are the magnetic susceptibility x and
the fourth-order Binder cumulant of the magnetization

(m*)

C3m2)?

A= = —[(EJEA) — (E))(Ex)]/(NT),  (12)

- (EA>:|/T; (13)

Um =

(14)

C. Simulation parameters

The numerical protocol described above was applied on
triangular lattices with periodic boundary conditions. To ac-
commodate not only the ferromagnetic ground state but also
the three ferrimagnetic ones, the allowed values of the linear
size of the lattice L must be a multiple of three [29]. In the
course of our simulations we considered linear sizes within the
range 12 < L < 120 respecting this constraint. Wang-Landau
simulations were carried out at two values of the crystal
field, namely, at A = —10 and —1. We also performed a
high-precision analysis using multicanonical simulations at
the temperature 7 = 1.8503, which roughly corresponds to
the value A = —1 of the phase diagram. Some additional sim-
ulations were conducted at T = 2.2578 (red dashed arrows in
Fig. 2). Finally, we would like to point out that for the fitting
procedure discussed in Sec. III we restricted ourselves to data
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FIG. 6. P(EA) for L = 96 obtained via multicanonical simula-
tions at 7 = 2.2578. Results for three adjacent crystal-field values
are shown.

with L > Ly, adopting the standard x?2 test for the goodness
of fit. Specifically, we considered a fit as being acceptable only
if 10% < Q < 90%, where Q is the quality-of-fit parameter
[48].

III. RESULTS

A. Order of the transition

As discussed above, there have been recent reports of first-
order transition features even along the putatively continuous
part of the transition line [27,31]. In particular, the authors
of Ref. [27], using Wang-Landau simulations and a system
with linear size L = 16, studied the shape of the energy prob-
ability distribution P(E') at several values of the crystal field,
A ={-2,0, 1, 1.5}. Indeed, they observed that P(E') exhibits
two peaks of the same height close to the estimated transi-
tion temperature (see Fig. 2 in Ref. [27]). It is well known
that a double-peak structure in the density function in finite
systems is an expected precursor of the two-3-peak behavior
in the thermodynamic limit occurring for a first-order phase
transition [49,50].

In order to provide clarity regarding the transition order,
we studied the reweighted probability density function P(Ex)
normalized to unity as obtained directly from the multicanon-
ical simulations. This approach has already been successfully
applied to a number of models undergoing first-order phase
transitions [20,22,44]. We start with Fig. 6, which illustrates
the probability density function P(E,) for a system with
linear size L = 96 at temperature 7" = 2.2578, corresponding
to A = —10 (see Fig. 2). Clearly, no sign of a double-peak
structure is observed, which would indicate the presence of
a first-order transition. On the other hand, as we lower the
temperature gradually to T = 1.8503 (corresponding to A =
—1), first-order-like characteristics appear [see Fig. 7(a)], in
agreement with the results of Ref. [31] for the case with
A =0.

This observation calls for a systematic analysis of the
relevant surface tension and latent heat of the transition as sug-
gested by Lee and Kosterlitz [51]. In fact, the multicanonical
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FIG. 7. (a) Reweighted probability density functions P(E,) for
various system sizes. With increasing L the distance between the two
peaks decreases. (b) Limiting behavior of the corresponding surface
tension X(L) (main panel) and latent heat Ae,(L) (inset). Results
were obtained via multicanonical simulations at 7 = 1.8503.

method is instrumental for this purpose as it allows direct esti-
mation of the barrier associated with the suppression of states
during a first-order phase transition. Considering distributions
with two peaks of equal height (eqh) [52], such as the ones
shown in Fig. 7(a), allows one to extract the free-energy-like
barrier in the Ex space,

l Pmax
AF(L)= —1In ,
egh

ZIBA Pmin (15)

where Ppax and Py, are the maximum and local minimum
of the distribution P(E,), respectively. The resulting bar-
rier connects a spin-0 dominated regime (E, small) and a
spin-+1 rich phase (E large). The corresponding surface ten-
sion X(L) = AF(L)/L is expected to scale as X(L) = X, +
ciL™' +O(L7?) in two dimensions, possibly with higher-
order corrections [53-55]. Similarly, we may define the latent
heat of the transition Aea (L), where ex = Ex/L?, as the dif-
ference in energies of the two peaks. The scaling behavior of
these observables is presented in Fig. 7(b). Note the existence
of a crossover length L* &~ 30 where the slope in the trend of
(L) changes sign, indicating strong finite-size effects. The
dashed line in the main panel shows a fit including third-order
correction terms for L > L*, giving a practically zero value
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FIG. 8. Shift behavior of the peak locations of the specific heat
and magnetic susceptibility as a function of the inverse linear system
size at A = —10 (main panel) and A = —1 (inset). The black dashed
line denotes the critical temperature of the model at A — —o0, i.e.,
the critical temperature of the spin-1/2 Baxter-Wu model. In both
panels the black solid lines are joint fits of the form (16). Data were
produced with the Wang-Landau algorithm.

of Too = =5 x 1077 £ 11 x 107°. A similar, but somehow
slower, downward trend is also observed in the latent heat
presented in the inset in Fig. 7(b).

Thus, our numerical data and analysis highlight the pres-
ence of non-negligible finite-size effects that become more
pronounced while approaching the pentacritical point, and
that could possibly account for misleading previous conclu-
sions that the transition is of first order. However, we should
note that for the present spin-1 Baxter-Wu model reaching
an unquestionable conclusion is a very difficult numerical
exercise that is also heavily undermined by the ambiguity in
the location of its pentacritical point [26,27].

B. Finite-size scaling and universality

Having established the continuous nature of the transition,
we proceed to a detailed finite-size scaling analysis of the
numerical data designed to probe the universality class of the
second-order transition. In what follows we show a selection
of results obtained via Wang-Landau and multicanonical sim-
ulations for a range of observables that support the original
expectation that the spin-1 Baxter-Wu model in a crystal field
belongs to the universality class of the four-state Potts model.

In order to extract critical temperatures 7.(A) and crystal
fields A.(T) of the system as well as a first estimate of the
correlation-length exponent v we present in Fig. 8 the shift
behavior of suitable pseudocritical temperatures 7,*, defined
as the peak locations of the specific heat C and susceptibility
x curves in Fig. 4. Two data sets are shown, corresponding to
A = —10 (main panel) and A = —1 (inset). For each value
of A the solid lines are joint fits of the expected power-law
behavior

T =T, +bL™ " (1 +bHL™®) (16)

to the data, where the correction-to-scaling exponent w is
fixed hereafter to the accepted value of 2 [5,6,26,29]. Using

-0.55 T T T T
06 L Cp" —— 4
0.6 .
N L (@Inimy/an)”
0.65 (PInm2/8A)"

-0.7 b

-0.75 | 1
a s lL
4 0.8

) T =1.8503: A, =-1.002(2), v = 0.68(2)
I I I

001 002 003 004 005 006 007
1/L

0 0 0.002 0.004 0.006

L

-0.1 ; !
-1.3 -1.2 -1.1

FIG. 9. (a) Shift behavior of several pseudocritical fields as a
function of the inverse linear system size. (b) Fourth-order Binder
cumulant curves of the order parameter. The black vertical dashed
line marks the value A = —1. The inset shows the limiting behavior
of the crossings U, on pairs of lattice sizes (L, 2L). Data were
produced at 7 = 1.8503 via multicanonical simulations.

Lyin = 12, we obtain the values T.(A = —10) = 2.2578(5)
and T.(A = —1) = 1.8503(9), in excellent agreement with
the values 2.2578(116) and 1.8503(94), respectively, reported
in Ref. [26] using conventional finite-size scaling. More im-
portantly, our estimates v = 0.655(17) for A = —10and v =
0.652(18) for A = —1 agree nicely with the value v = 2/3 of
the g = 4 Potts universality class.

Similarly, in Fig. 9(a) we present the shift behavior of
several pseudocritical fields A7, defined as the peak locations
of the A-dependent curves defined in Sec. II. A simultaneous
fit of the form

A=A+ bBL7VV (1 +BL7?), (17)

using Ly, = 15, provides the estimates A (T = 1.8503) =
—1.002(2) and v = 0.68(2), in very good agreement with the
results of Fig. 8. Moreover, in the main plot of Fig. 9(b)
typical curves of the fourth-order Binder cumulant U, (13)
are shown, where the location of the crossing point also agrees
nicely with the value A = —1 (see also Figs. 2 and 8).
Additional estimates for the critical exponent v can be
obtained via the scaling of the maxima of the logarithmic
derivatives of the order parameter (13). We expect them to
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FIG. 10. Finite-size scaling of the logarithmic derivatives of
powers n = 1 and 2 of the order parameter at 7 = 1.8503. The solid
lines are fits of the form (18). Results were obtained via multicanon-
ical simulations.

scale as [46]

3 1n (m")
(55

The numerical data for n = 1 and n = 2 obtained from mul-
ticanonical simulations at 7 = 1.8503 are shown in Fig. 10,
and the solid lines are power-law fits of the form (18) with
Liin = 18, giving v = 0.669(5) and 0.673(6), respectively.
Again, these results point to the expected 2/3 value of the
q = 4 Potts universality class.

We now turn to the finite-size scaling behavior of the
maxima of the specific heat [C* and C*(A), respectively]
and magnetic susceptibility x* in order to probe the crit-
ical exponent-ratios /v and y /v, respectively. Figure 11
presents numerical data obtained via the Wang-Landau algo-
rithm [Fig. 11(a), at A = —10 and —1] and the multicanonical
approach [Fig. 11(b), at T = 1.8503]. In all cases the solid
lines are fits of the form

Cipy ~ L (1 + D'L™) (19)

) ~ LY+ VL), (18)

and

x*~ L1+ L), (20)

120 T T T (\)
a
400 yiv=1.75(1)
100 300 i
‘2 200 a/v =1.04(5)
=<
YV =1.76(3)
80 100 i
0
* 0 20 40 60 80 100 120
v 60 L b

av=1.01(2)
40 F

20

0 20 40 60 80 100 120
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14 ‘
b
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*%<200
10 | i
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8 0
* 0 20 40 60 80 100 av =1.01(1)
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@]
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2+ 4
O 1 1 1 1 1 1 1 1 1
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FIG. 11. (a) Finite-size scaling behavior of C* (main panel) and
x* (inset) at A = —10 and A = —1. Data were produced with the
Wang-Landau algorithm. (b) Similar analysis of data produced at
T = 1.8503 via multicanonical simulations.

with Ly, = 18. The obtained estimates of «/v and y /v
are listed in the panels (see also Table I) and are clearly
compatible with the exact values o/v =1 and y/v =7/4
of the four-state Potts universality class [3]. As a side note,
error propagation and v values from Fig. 8 suggest that ¢ =
0.662(22) and 0.678(38) for A = —10 and A = —1, respec-
tively [56].

TABLE I. Overview of exact and numerical results for the four-state Potts model and the spin-1/2 Baxter-Wu model, together with a
summary of numerical results for the spin-1 Baxter-Wu model in a crystal field obtained in the current work via (i) Wang-Landau simulations
at fixed values of the crystal field A (fourth and fifth columns) and (ii) multicanonical simulations at a fixed temperature 7 (sixth column).

Four-state Potts

Spin-1/2 Baxter-Wu

Spin-1 Baxter-Wu

(7] [3] A=-10 A=-—1 T = 1.8503
v 2/3 2/3 0.655(17) 0.652(18) 0.671(6)*
a/v 1 1 1.01(2) 1.04(5) 1.01(1)
y/v 7/4 7/4 1.76(3) 1.75(1) 1.76(1)
(/L) 1.02(3) [63] 1.00(4)
Upoo ~0.595 [13] 0.596(6)
T.(A) or A(T) 2.2578(5) 1.8503(9) —~1.002(2)

#This estimate corresponds to the average value of v obtained from the fits in Fig. 10. Cross correlations were not taken into account, but see

Ref. [65].
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FIG. 12. Main panel: Typical £/L curves as a function of the
temperature obtained from Wang-Landau simulations for all pairs
of system sizes studied and for A = —10. The temperature area of
the crossings conforms to the value 7. = 2.2578 in Fig. 8. Inset:
Finite-size scaling of the correlation-length ratios at their crossing
points (§/L)*. Results are shown for the largest pairs (L, 2L) of
system sizes: (30, 60), (36,72), (48, 96), and (60, 120). The solid
line shows a linear in L~ extrapolation to L — oo. The black dashed
line marks the value of (§ /L), of the four-state Potts model, as taken
from Ref. [63].

At this point we would like to make a remark about
the additional correction term »'L™® appearing in the fits in
Figs. 8—11. Although in the work of Jorge et al. [9] for the
spin-1/2 model critical exponents were obtained with very
good accuracy and without the need for corrections to scal-
ing, the situation here is rather different. In particular the
values of scaling amplitudes b and »" in Egs. (16)—(20) are
comparable, and in particular the values of b’ fluctuate within
the range 1-20 for the various observables and cannot be
neglected. Additionally, from our overall comparative tests we
may safely conclude that the fit quality measured in terms of
the probability Q is, indeed, improved when the correction
term &L~ is included.

Universality classes are characterized by a whole range
of universal quantities, which include critical exponents and
also certain amplitude ratios g [11,44,57,58]. In contrast
to exponents, amplitude ratios depend on additional sys-
tem properties, such as the lattice geometry and boundary
conditions. In the present work we study two of these uni-
versal amplitudes, namely, the Binder cumulant g = U, [see
Eq. (14)] and the ratio of the correlation length over the linear
system size, g = &/L; typical curves for £/L at A = —10
are shown in the main panel of Fig. 12. For the estima-
tion of & we used the well-known second-moment definition
[44,59,60]: From the Fourier transform of the spin field,
6 (k) = ), ox exp(ikx), we determined

F = (1627 /L, 0)|* 4+ 16 (0, 27 /L)|?
+16Qn /L, 2 /L)*)/3 1)

and attained the correlation length via [60]

1 (m?)
2sin(r/L)V F

To monitor the size evolution and limiting behavior of these
amplitudes we employ the quotients method [57,61,62]: The
crystal field (temperature) where g,;/g; = 2, i.e., where the
curves for U,, (§/L) of sizes L and 2L cross, defines the finite-
size pseudocritical points [see Fig. 9(b) and also Fig. 12].
Let us denote the value of g at these crossing points as g*.
Within the framework of the quotients method a scaling of the
form g* = goo + O(L™?) is expected, where g, is a universal
value.

In the inset in Fig. 9(b) we provide an estimate of the
universal Binder cumulant U, o, extracted from this sequence
U;:. The solid line is a second-order polynomial fit in L™,
yielding Uy, .o = 0.596(6), in very good agreement with the
graphical estimate 0.595 obtained by Capponi et al. [13].
Similarly, in the inset in Fig. 12 we show the infinite-size
extrapolation of (£/L)* for the four largest pairs of system
sizes as listed in the caption. The solid line is a linear fit in
L~?, leading to

(%) = 1.00(4). (23)
00, spin—1 BW

We recall the value of (£ /L), for the two-dimensional g = 4
Potts model with periodic boundary conditions from the sem-
inal work of Salas and Sokal [63],

)
kA = 1.02(3). (24)
(L 00, g=4 Potts

A comparison of the results of Egs. (23) and (24) constitutes
our final universality check, which succeeds within ~2% ac-
curacy. We note here that an alternative approach that allows
us to fit the whole set of data points to a two-parameter finite-
size scaling ansatz that includes the temperature can be found
in Ref. [64].

& (22)

IV. SUMMARY AND OUTLOOK

We presented here an extensive numerical study of scaling
and universality in the phase diagram of the dilute Baxter-Wu
model. Using a highly optimized combination of Wang-
Landau simulations that cross the transition at constant crystal
field A and multicanonical simulations operating at fixed tem-
perature 7', we covered a range of the transition line defined
by A < —1. We provided strong evidence for a continuous
nature of the transition in this regime. The previously reported
first-order signature of the transition on approaching the pen-
tacritical point was also seen here, but a careful finite-size
scaling analysis showed that it is a finite-size effect with a
crossover length L* ~ 30 beyond which the first-order charac-
ter disappears, at least for the region of interest in this work. It
would be instrumental to probe in detail the system’s behavior
at positive crystal-field values, in particular within the regime
0.89 < A < 1.68, as marked by the two A, estimates of
Refs. [26,27], where the most strong first-order characteristics
of the transition have been recorded [27,31]. Everywhere in
the second-order regime our analysis clearly showed consis-
tency with the universality class of the four-state Potts model.

054143-8



UNIVERSALITY IN THE TWO-DIMENSIONAL DILUTE ...

PHYSICAL REVIEW E 105, 054143 (2022)

From the accuracy in the determination of critical exponents
one may conclude that logarithmic corrections to scaling are,
indeed, absent in this model compared to the four-state Potts
model. On the other hand, including the expected correction-
to-scaling term O(L™), with w = 2, at first order is necessary
to achieve the optimum merit of the fits. A comparative
overview of our results is provided in Table I. While it is clear
from our results that strong scaling corrections appear as the
pentacritical point where the transition changes to first order is
approached, the exact location of this pentacritical point and
its universality class were not considered here. This question
is left for future work. To conclude, we hope that this work
settles some of the previously reported controversies over the
critical behavior of the spin-1 Baxter-Wu model and lays the
foundation for intriguing extensions. One such interesting line

of research would be to unveil the effect of quenched disorder
in both parts of the phase diagram of the model.
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