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We present the solution of the weak noise theory (WNT) for the Kardar-Parisi-Zhang equation in one
dimension at short time for flat initial condition (IC). The nonlinear hydrodynamic equations of the WNT are
solved analytically through a connection to the Zakharov-Shabat (ZS) system using its classical integrability.
This approach is based on a recently developed Fredholm determinant framework previously applied to the
droplet IC. The flat IC provides the case for a nonvanishing boundary condition of the ZS system and yields
a richer solitonic structure comprising the appearance of multiple branches of the Lambert function. As a
byproduct, we obtain the explicit solution of the WNT for the Brownian IC, which undergoes a dynamical
phase transition. We elucidate its mechanism by showing that the related spontaneous breaking of the spatial
symmetry arises from the interplay between two solitons with different rapidities.
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I. INTRODUCTION AND AIM OF THE PAPER

Nonlinear stochastic equations are a central tool in
nonequilibrium physics [1]. They are often studied using op-
timal fluctuation theory and instanton methods [2–4]. This
usually amounts to performing a saddle point evaluation on
the action of the associated dynamical field theory [5,6]. In
the favorable situations this approximation is controlled by a
small parameter. This is often the case when describing rare
large fluctuations, i.e., large deviations [7,8]. The resulting
saddle point equations are typically a set of coupled nonlinear
equations, which can only be solved in some special limits, or
numerically. It is rare that there are exact solutions, and even
more remarkable when this set of equations is fully integrable.

Recently we showed [9] that the saddle point equa-
tions which describe the large deviations at short time for
the Kardar-Parisi-Zhang (KPZ) stochastic growth equation in
one space dimension, the so-called weak noise theory (WNT)
[10–21], can be solved exactly. As noted in Ref. [13], the
basic system of nonlinear equations is the so-called {P, Q}
system, a cousin of the nonlinear Schrödinger equation. Using
inverse scattering methods coupled to a recently developed
Fredholm determinant framework [22,23], we showed how
to construct general solutions of this system and obtained an
explicit solution for the so-called droplet initial condition (IC)
which is localized in space and decays at infinity. In this paper
we extend the method and present solutions in the case of
initial conditions which are nonvanishing at infinity. We first
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treat the case of the flat IC for the KPZ equation, from which,
in a second stage, we obtain the solution for the Brownian IC.

The KPZ equation [24] describes the stochastic growth in
time τ of the height field h(y, τ ) of an interface, here in one
space dimension y ∈ R:

∂τ h(y, τ ) = ∂2
y h(y, τ ) + (∂yh(y, τ ))2 +

√
2η(y, τ ), (1)

where η(y, τ ) is a standard space-time white noise, i.e.,
η(y, τ )η(y′, τ ′) = δ(τ − τ ′)δ(y − y′). In this work we first fo-
cus on the solution of Eq. (1) with the flat IC,

h(y, τ = 0) = 0. (2)

Because of the nonlinear term in Eq. (1), the growth at late
times belongs to a different universality class (the so-called
KPZ class) than its simpler version, the Edwards-Wilkinson
equation (without the nonlinear term). Interestingly, this non-
linearity has a profound effect already at short time, not for the
typical height fluctuations, which are Gaussian with Edwards-
Wilkinson scaling δh ∼ τ 1/4, but for the rare but much larger
fluctuations δh = O(1). For example, the probability P(H, T )
to observe the value of the field h(0, T ) = H at some time
τ = T takes, for T � 1 and H = O(1), the following large
deviation form:

P(H, T ) ∼ exp(−�(H )/
√

T ). (3)

The rate function �(H ) was obtained analytically in a few
cases where Bethe ansatz solutions of the KPZ equation are
available [25–31] and confirmed numerically through impor-
tance sampling simulations in Refs. [32,33]. In our previous
work [9] we showed how to obtain �(H ) by solving exactly
the weak noise theory equations. This is a completely different
route, which until now was limited to numerical or asymptotic
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solutions [10–20]. Being classically integrable, the {P, Q} sys-
tem has an infinite number of conserved quantities, and we
showed that �(H ) is obtained from one of them. Solving the
full equations gives much more information beyond the rate
function, since it determines the exact “optimal” KPZ height
and noise space-time fields producing the rare fluctuations.
Here we obtain these fields for the flat and Brownian IC as
well as the rate functions. We follow the same outline as in
Ref. [9] and indicate how the present case differs in crucial
ways.

Let us recall how the {P, Q} system arises. It is more
convenient to work with the exponential field Z = eh(y,τ ). It
is also equal to the partition sum of a directed polymer x(τ ) at
equilibrium in a random potential η(x(τ ), τ ) (the KPZ noise)
in dimension d = 1 + 1. The equivalence of the two problems
is quite convenient, e.g., for numerical simulations [32–35].
We have introduced the rescaled time and space variables as
t = τ/T , x = y/

√
T , where T , the observation time, is fixed

[36]. The field Z (x, t ), expressed in these coordinates, satisfies
the (rescaled) stochastic heat equation (SHE) in the Ito sense,

∂t Z (x, t ) = ∂2
x Z (x, t ) +

√
2T 1/4η̃(x, t )Z (x, t ). (4)

Here η̃(x, t ) is another standard space-time white noise. This
equation is now studied for t ∈ [0, 1]. The noise amplitude
being now O(T 1/4), a short observation time T � 1 corre-
sponds to a weak noise. As in Refs. [25–31] and in Ref. [9], it
is convenient to study the following generating function which
admits a large deviation principle at short time T � 1, with
z � 0:

exp(−zeH/
√

T ) ∼ exp(−�(z)/
√

T ). (5)

Inserting Eq. (3) into the expectation value over P(H, T ) in
the left-hand side (lhs), we see that for T � 1, �(z) and �(H )
are related through a Legendre transform:

�(z) = min
H

(zeH + �(H )). (6)

As detailed in Ref. [9], in the short time limit T � 1 the
expectation value (5) over the stochastic dynamics (4) can be
obtained from saddle point equations, which take the form of
the {P, Q}g system,

∂t Q =∂2
x Q + 2gPQ2,

−∂t P =∂2
x P + 2gP2Q.

(7)

These equations for P(x, t ) and Q(x, t ) must be solved for x ∈
R and t ∈ [0, 1] with mixed boundary conditions, which for
the flat IC read

Q(x, 0) = 1, P(x, 1) = δ(x), (8)

and with the coupling set to g = −z. The new feature, as
compared to Ref. [9], is that Q(x, t ) → 1 for x → ±∞. The
function P, however, as well as the product PQ, still decay
at infinity. The solution of Eqs. (7) and (8) determines the
optimal height via Zopt (x, t ) = ehopt (y,τ ) = Q(x, t ) while the
optimal noise is η̃opt (x, t ) = P(x, t )Q(x, t ). As in Ref. [9] we
will calculate from the solution the value C1(g) of the first
conserved quantity, C1 = g

∫
R dxPQ, and from C1(g) obtain

the rate function �(z). Indeed C1 being time independent, at
t = 1 one has C1(g) = gQ(0, 1) = geH . On the other hand,

differentiating the Legendre transform in Eq. (6) with respect
to z gives � ′(z) = eH . Since g = −z this gives C1(−z) =
−z� ′(z), from which we obtain �(z) by integration and, in
a second stage, �(H ) by Legendre inversion of Eq. (6).

II. SCATTERING APPROACH
TO THE LARGE DEVIATIONS

A. Setting up the scattering problem

As in Ref. [9], to solve the nonlinear system (7) and (8),
one proceeds in two stages: the direct and the inverse scatter-
ing problems. First one studies an auxiliary scattering problem
[37], in which the scattering amplitudes obey a linear time
evolution and exhibit a very simple time dependence. In a
second stage, from these scattering amplitudes, one constructs
the solution of Eqs. (7) and (8). The {P, Q}g system belongs
to the Ablowitz-Kaup-Newell-Segur (AKNS) class [38], for
which there exists a Lax pair, i.e., a pair of linear differential
equations whose compatibility conditions are equivalent to
Eq. (7). Here the system reads ∂x	v = U1	v, ∂t 	v = U2	v, where
	v = (v1, v2)ᵀ is a two-component vector (depending on space,
time, and spectral variables x, t, k) where

U1 =
(−ik/2 −gP(x, t )

Q(x, t ) ik/2

)
, U2 =

(
A B
C −A

)
, (9)

where A = k2/2 − gPQ, B = g(∂x − ik)P, and C = (∂x +
ik)Q. One can check that the compatibility condition, ∂tU1 −
∂xU2 + [U1,U2] = 0, recovers system (7). In particular, the
Lax pair implies the existence of an infinite number of con-
served quantities. The new feature as compared to Ref. [9] is
that for the flat IC we have Q(±∞, t ) = c (we set c = 1 later);
hence the eigenvectors at x = ±∞ of the matrix U1 are now
(1, c/(−ik))ᵀ and (0, 1)ᵀ with eigenvalues −ik/2 and ik/2,
respectively. We define two linearly independent pairs of solu-
tions of the x member of the Lax pair as 	v = ek2t/2φ with φ =
(φ1, φ2)ᵀ and 	v = e−k2t/2φ̄ with φ̄ = (φ̄1, φ̄2)ᵀ for the first
pair, and φ, φ̄ replaced by ψ, ψ̄ for the second pair. The pair
φ, φ̄ is such that, at x → −∞, φ 
 e−ikx/2(1, c/(−ik))ᵀ and
φ̄ 
 eikx/2(0,−1)ᵀ. The pair ψ, ψ̄ is such that, at x → +∞,
ψ 
 eikx/2(0, 1)ᵀ and ψ̄ 
 e−ikx/2(1, c/(−ik))ᵀ. The linear
relation between the two independent pairs of solutions de-
fines the four scattering amplitudes

φ(x, t, k) = a(k, t )ψ̄ (x, t, k) + b(k, t )ψ (x, t, k),

φ̄(x, t, k) = b̃(k, t )ψ̄ (x, t, k) − ã(k, t )ψ (x, k, t ). (10)

Equivalently, this implies the following asymptotics for φ, φ̄

at x = +∞:

φ 

x→+∞

(
a(k, t )e− ikx

2

b(k, t )e
ikx
2 + c

−ik a(k, t )e− ikx
2

)
,

φ̄ 

x→+∞

(
b̃(k, t )e− ikx

2

−ã(k, t )e
ikx
2 + c

−ik b̃(k, t )e− ikx
2

)
. (11)

Plugging this form into the ∂t equation of the Lax pair at x →
+∞, one finds a very simple time dependence, a(k, t ) = a(k)
and b(k, t ) = b(k)e−k2t , ã(k, t ) = ã(k) and b̃(k, t ) = b̃(k)ek2t .
The Wronskian W = φ1φ̄2 − φ2φ̄1 is space and time indepen-
dent since ∂xW = Tr(U1)W = 0 and ∂tW = Tr(U2)W = 0. It
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is W = −1 at x = −∞ and evaluating it using Eqs. (11) at
x = +∞ leads to the relation

a(k)ã(k) + b(k)b̃(k) = 1 (12)

as in the case c = 0.

B. Solving the direct scattering

Let us now make use of the boundary data in Eq. (8),
and characterize the scattering amplitudes. Integrating the ∂x

equation of the Lax pair at t = 1 for φ̄ using Eq. (8) al-
lows to obtain (see Appendix C) b̃(k) = ge−k2

, together with
some relations between a(k) and ã(k) and Q(x, 1) (which is
yet unknown). Using that Q(x, 0) = c = 1 is even in x then
ã(k) = a(−k) = [a(k∗)]∗ and b(k) is real and even. This leads
to the form

a(k) = e−iϕ(k)
√

1 − gb(k)e−k2
, (13)

where we still have two unknown functions, a phase ϕ(k),
which is odd ϕ(k) = −ϕ(−k), and b(k).

The form for the amplitudes obtained at this stage is still
quite similar to the general solution for decaying IC (i.e.,
of the droplet type) obtained in Ref. [9]. For the droplet IC
we obtained b(k) = 1. Here we obtain b(k) for the flat IC as
follows. Let us return to the ∂x equation at t = 0 using that
Q(x, 0) = c. It reads

∂xφ1 = −i
k

2
φ1 − gP(x, 0)φ2, ∂xφ2 = i

k

2
φ2 + cφ1. (14)

Eliminating φ1 we obtain

∂2
x φ2 +

(
cgP(x, 0) + k2

4

)
φ2 = 0. (15)

Unlike the general case, it is a Schrödinger equation with a
real potential. Hence if φ2 is solution, so is φ∗

2 . Note that
φ̄2 satisfies also Eqs. (14) and (15). For x → −∞, from the
aforementioned asymptotics, one has φ∗

2 = c
−ik φ̄2. Hence the

same relation should hold for any x, including x → +∞.
From Eqs. (11) one then obtains a∗(k∗) = ã(k), which we
already knew, and

b(k) = − c2

k2
b̃(k) = − g

k2
e−k2

, (16)

where we set c = 1 in the last identity.
It remains to obtain ϕ(k). Here we will rely on Ref. [9],

where for a general b(k) we obtained

ϕ(k) = −
∫
R

dq

2π

k

q2 − k2
log(1 − gb(q)e−q2

). (17)

The proof presented there was based on a random walk repre-
sentation which assumes that b(q) has a proper inverse Fourier
transform. It thus cannot be readily applied here. We believe
that this is a technical issue (which maybe can be resolved
using proper regularizations) and we will here conjecture that
Eq. (17) extends to the present case. This conjecture will be
abundantly confirmed by the results below. Importantly, note
also that Eq. (17) follows if one assumes that a(k) is analytic
in the upper half plane [38], from Kramers-Kronig relations
(see Appendix F).

C. Solving the inverse scattering

Having determined the scattering amplitudes we now fol-
low Ref. [9] to perform the inverse-scattering transform and
obtain the solution of the {P, Q}g system (7) for the flat IC (8)
as

Q(x, t ) = 〈δ|Axt (I + gBxtAxt )
−1|δ〉,

P(x, t ) = 〈δ|Bxt (I + gAxtBxt )
−1|δ〉, (18)

where |δ〉 is the vector with component δ(v) so that 〈δ|O|δ〉 =
O(0, 0) for any operator O. Here Axt , Bxt are two linear
operators from L2(R+) to L2(R+) with respective kernels

Axt (v, v′) = At (x + v + v′), Bxt (v, v′) = Bt (x + v + v′),

(19)

where the two functions At (x) and Bt (x) are the Fourier trans-
forms of the time-dependent reflection coefficients and obey
the heat equation (and, respectively, its time reverse) and are
given for g < 0 by

At (x) = −g
∫
R

dk

2π

eikx−k2(1+t )+iϕ(k)

k2
√

1 + g2k−2e−2k2
+ 1

2
, (20)

Bt (x) =
∫
R

dk

2π

e−ikx−k2 (1−t )−iϕ(k)√
1 + g2k−2e−2k2

. (21)

Here the phase reads

ϕ(k) = −
∫
R

dq

2π

k

q2 − k2
log(1 + g2q−2e−2q2

). (22)

We used Eq. (11) of Ref. [9], inserting the scattering data
obtained above. Note, however, the additional constant 1/2
in Eq. (20). Indeed, since the product AxtBxt vanishes for
x → +∞, one must have Q(x, t ) 
 At (x) for x → +∞. Since
Q(±∞, x) = 1 we must have limx→+∞ At (x) = 1. We have
checked that this is indeed the case from Eq. (20), the 1/2
constant being crucial. Its origin can be traced to the pole
in the integrand of Eq. (20), following the general scheme
in Ref. [37]. The functions ϕ(k) and Ax(t ), Bx (t ) are plotted
in Appendix D for various values of t, g. Note that ϕ(0±) =
∓π

2 for any g �= 0 so that the integrand in At behaves as
−sgn(g)/(ik) = 1

ik since Eqs. (20) and (21) are valid only for
g < 0, at small k. We further note the unexpected relation
A′′

t (x) = gB−t (x).

III. SOLVING THE LARGE DEVIATIONS
VIA THE CONSERVED QUANTITIES

A. Conserved quantities and the main branch
of the large deviation function

We can now examine the conserved quantities Cn and
obtain �(z) from C1. The Cn for the {P, Q}g system were ob-
tained in Ref. [9], with C1 = g

∫
R dxPQ, C2 = g

∫
R dxP∂xQ,

C3 = g(
∫
R dxP∂2

x Q + gP2Q2), and so on. Since the prod-
uct PQ still vanishes at infinity, these remain valid in the
present case. As before, the values Cn(g) of these conserved
charges can be extracted (see Appendix B) by expanding
−iϕ(k) = ∑

n�1
Cn(g)
(ik)n in powers of 1/k in Eq. (22). This

leads to C2m+1(g) = (−1)m−1
∫
R

dq
2π

q2m log(1 + g2q−2e−2q2
).
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FIG. 1. Left: Plot of the coupling g = g(H ) of the {P, Q} system (7) and (8) to be used to obtain �(H ) for a given H . It is obtained
from H = log � ′(z = −g). From left to right are the main branch, the first continuation, and the second continuation. The fields Hc1 = 0
and Hc2 = 0.926581 correspond to the limits of the three branches of solutions discussed in the text (with gc1 = 0 and gc2 = 1/

√
2e). Right:

Schematic plot of the branches for �(z) as z = −g is varied, and the corresponding ranges of values for H . For H < Hc1 = 0 one uses
�(z) = �0(z) given in Eq. (23). At H = Hc1 = 0, one needs to turn around the branching point of �0(z) at z = 0, and change the Riemann
sheet. This leads to the continuation �(z) = �0(z) + �0(z) which, using Eqs. (24), determines �(H ) for all Hc1 = 0 < H < Hc2 by decreasing
z from zero to −gc2. A second continuation �(z) = �0(z) + �1(z) is obtained similarly by rotating around z = −gc2, which, using Eqs. (24),
determines �(H ) for all Hc2 < H by increasing z from −gc2 back to zero.

Since −z� ′(z) = C1(−z), with g = −z, we obtain −z� ′(z) =∫
R

dq
2π

Li1(− z2

q2 e−2q2
), where Li1(y) = − log(1 − y). Using the

relation between polylogarithmic functions, z∂zLin = Lin−1,
we obtain upon integration our final result for the flat IC,

�(z) = �0(z) := −
∫
R

dq

4π
Li2

(
− z2

q2
e−2q2

)
. (23)

Taking a derivative of Eq. (6) one obtains the rate function
�(H ) in a parametric form:

eH = � ′(z), �(H ) = �(z) − z� ′(z). (24)

As in Ref. [9] this is valid only for z > 0 (i.e., g < 0) since the
right-hand side in Eq. (5) diverges for z < 0. Since �′(H ) =
−zeH , the range z > 0 corresponds to H in (−∞, 0], where
H = 0 is the most probable value of H defined by �′(H ) = 0.
Thus up to now we have solved the case g < 0, i.e., z > 0,
which corresponds to the left-hand side of P(H, t ) and to the
main branch for �(z).

B. Continuations of the conserved quantities via the generation
of solitons

To obtain the right-hand side H > 0 we proceed as in
Ref. [9]. Equations (7) also hold for any H > 0, correspond-
ing to the attractive regime g > 0 of the {P, Q}g system.
Indeed, �(z) can be analytically continued to z < 0, allowing
to determine �(H ) for any H . By contrast with the droplet IC,
the flat IC requires a continuation in two steps. Since �0(z)
has a branch cut on the negative real axis, for H ∈ [0, Hc2],
with Hc2 = 0.926581 [see Eq. (A8)], a first continuation is
needed, with �(z) = �0(z) + �0(z) (second branch), where
�0(z) is obtained from the cut of �0(z). In that branch, g =
−z increases from zero to gc2, with gc2 = 1/

√
2e = 0.428882.

This is further explained in Fig. 1.
For H ∈ [Hc2,+∞], a third branch is required, �(z) =

�0(z) + �1(z) and g = −z now decreases from gc2 back to
zero (see Fig. 1). These continuations correspond to two
branches of solutions of the {P, Q}g system for 0 < g � gc2.

As in Ref. [9] these branches have a very nice physical ori-
gin, and one finds that the second branch corresponds to the
spontaneous generation of a soliton while the third one is
interpreted as a modification of the rapidity of the soliton. In
all branches, the rate function �(H ) is obtained from Eqs. (24)
by inserting the corresponding result for �(z), i.e., �0 for the
main branch, and �0 + �0 and �0 + �1 for the second and
third branches.

Technically, the second branch arises from the fact that, for
g > 0, the logarithm inside ϕ(k) has a cut for the integration
variable in Eq. (22) located at q = ±iκ0 with

κ2
0 e−2κ2

0 = 1/g2, κ2
0 = − 1

2W0(−2g2), (25)

where W0 is the Lambert function [40] and κ0 is the positive
root of Eqs. (25). This cut exists only if 0 < g � gc2. The third
branch arises from the continuation of the Lambert function
W0 to W−1 (see Appendix E), so that the position of the cut is
located at q = ±iκ1 with κ2

1 = − 1
2W−1(−2g2). The contribu-

tion of the cuts give rise to a pole in the integrand of At (Bt )
in the upper (lower) half plane which according to the general
construction of Ref. [37] simply generates solitons.

Practically, the cuts of the phase ϕ modify the expression
of At and Bt by adding rational factors providing poles whose
residues generate the solitons (see Sec. S-K of the Supplemen-
tal Material of Ref. [9]). For the second branch, 0 < g < gc2

and 0 < H < Hc2, one finds

At (x) = −g
∫
R

dk

2π

eikx−k2 (1+t )+iϕ(k)

k2
√

1 + g2k−2e−2k2

k + iκ0

k − iκ0

+ 1

2
+ 2g

κ0
e−κ0x+κ2

0 (1+t )+iϕ(iκ0 ),

Bt (x) =
∫
R

dk

2π

e−ikx−k2(1−t )−iϕ(k)√
1 + g2k−2e−2k2

k − iκ0

k + iκ0

+ 2κ0e−κ0x+κ2
0 (1−t )−iϕ(−iκ0 ), (26)
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FIG. 2. Left: The optimal height hopt (x, t ) for flat initial conditions plotted for various times t and for two values of H indicated by the
black dots [one in the main branch, H = −7.5266 (dashed line), and the other in the third branch, H = 2.965 (solid line)]. Right: Plot of
the order parameter �h of the parity-breaking transition for the Brownian IC as a function of HB predicted here in Eq. (31), as compared to
−�/2, where � is defined and obtained numerically in Ref. [13]. Courtesy of B. Meerson for the data of the numerical solution of the WNT
equations.

where ϕ(k) is given in Eq. (22). The cuts also modify
the conserved quantities by adding a solitonic contribution
�Cn(g) = 2

nκn
0 for n odd and zero even charges [9]. Integrat-

ing −z�′
0(z) = �C1(g = −z) one finds

�0(z) =
√

2

3
[−W0(−2z2)]3/2 −

√
2[−W0(−2z2)]1/2. (27)

The third branch, 0 < g < gc2 and H > Hc2, is obtained by
the minimal replacement of κ0 by κ1 in both functions At (x)
and Bt (x) in Eqs. (26). This leads again to �C1(g) = 2κ1 and,
by integration, to �1(z) given by the same equation as Eq. (27)
with W0 → W−1. As in Ref. [9] the solitonic part dominates
the large deviations for H → +∞.

From the above exact solutions for At (x) and Bt (x) we
obtain the solutions to the {P, Q}g system through the Fred-
holm operator inversion formula (18) for various values of
H and g. We use the numerical method in Sec. S-L of
Ref. [9]. We have performed several numerical checks of
some highly nontrivial consequences of the formulas, which
validate our conjecture: (i) the functions P, Q are even in x,
(ii) Q(x, t = 1) = A1(|x|), (iii) Q(0, t = 1) = eH = � ′(−g),
and (iv) Q(±∞, t ) = 1. The results for the optimal height
hopt (x, t ) = log Q(x, t ) are plotted in Fig. 2.

The above results provide the first direct analytical deriva-
tion of �(H ) for the flat IC. Note that they are in agreement
with those of Ref. [16] which were cleverly inferred, using
various symmetries of the weak noise theory together with
the known rate function of the Brownian initial condition
calculated from the Bethe ansatz in Ref. [26].

IV. SOLVING THE BROWNIAN INITIAL CONDITION
USING THE FLAT ONE

Conversely, starting from the flat IC, a remarkable byprod-
uct of our results is the solution of the WNT for the KPZ
equation with the Brownian (i.e., stationary) IC. It is de-
fined as the solution of Eq. (1) with h(y, 0) = W (y) where
W (y) is a two-sided standard Brownian motion with zero
drift with W (0) = 0. This corresponds to Eq. (4) with initial
condition Z (x, 0) = eT 1/4W (x). We are interested in the prob-

ability P(HB, τ ) that h(0, τ ) = HB, which behaves at small t
as P(HB, T ) ∼ exp(−�(HB)/

√
T ). To obtain the solution in

that case we first notice that our solution for the flat IC for
P(x, t ), Q(x, t ) defined in Eqs. (18) is also well defined in
the extended interval t ∈ [−1, 1], since Eqs. (20) and (21) are
also well defined in this interval. In the spirit of Ref. [16], let
us now define the functions PB and QB for t ∈ [0, 1] as

QB(x, t ) = e
HB
2 Q(

√
2x, 2t − 1),

PB(x, t ) =
√

2P(
√

2x, 2t − 1). (28)

One can check that PB, QB satisfy the {P, Q}gB system (7) with
coupling constant gB = √

2ge−HB/2 and QB(0, 1) = eHB with
HB = 2H . As we show in Appendix A, they obey the bound-
ary conditions (i) QB(0, 0) = 1, (ii) PB(x, 1) = δ(x), (iii)

gBPB(x, 0)QB(x, 0) + ∂2
x log QB(x, 0) = gBeHBδ(x), (29)

as well as (iv) QB(0, 1) = eHB . As shown in Ref. [13] the
boundary conditions (i)–(iv) for the {P, Q}gB system are the
ones corresponding to the Brownian IC, hence PB, QB con-
structed as above provide the solution of the WNT in that case.

We have thus obtained through Eqs. (28) the solution for
the Brownian IC in terms of our solution P, Q for the flat IC
(extended in t ∈ [−1, 1]). Let us discuss now what happens
for the different branches as HB = 2H is varied. In the main
branch, H � 0, the functions At and Bt are given by Eqs. (20)
and (21). A consequence (see Appendix A) is that �(H ) =

1
2
√

2
�B(2H ) for H � 0 (in fact for H � Hc2 see below).

The discussion of the other branches is a bit more involved
in the Brownian case. For the second branch 0 < H = HB

2 <

Hc2 the construction is exactly the same as for the flat IC, i.e.,
one uses Eqs. (28) and in P, Q one chooses the continuations
for At , Bt given in Eqs. (26) which includes the solitonic part
with rapidity κ0. For the third branch H = HB

2 > Hc2 it is in
principle allowed to proceed to the change κ0 → κ1 solely in
one of the functions At or Bt : hence there exist two additional
distinct asymmetric solutions that we did not consider for the
flat IC. In that case the solutions P, Q will not be even in
x, providing a mechanism for a spontaneous breaking of the
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symmetry x → −x. This was forbidden for the flat IC, which
is why one must choose κ0 → κ1 in both At and Bt , leading
to an even solution. For the Brownian IC, however, it was
shown numerically [13] and analytically [26] that the large de-
viation function �B(HB) has a second-order phase transition
at precisely this value H = Hc2. The solution obtained here
provides a mechanism for this transition. As was observed
in Refs. [13,15] this phase transition is indeed accompanied
by a spontaneous symmetry breaking of the spatial parity in
the {PB, QB}gB solution, although no analytical results were
obtained there for HB ≈ 2Hc2 . Hence for the Brownian IC
we claim that there are two equivalent solutions, denoted
±, related by parity, i.e., P−

B (x, t ) = P+
B (−x, t ), Q−

B (x, t ) =
Q+

B (−x, t ), and which are obtained by replacing solely one
κ0 into a κ1 inside either At (+) or Bt (−) and using Eqs. (28).

This is further understood from the solitonic contributions
to the conserved quantities of the {P, Q}g system given for all
n in this case as (see Eq. (S59) in the Supplemenal Material of
Ref. [9])

�C±
n = ±1

n
(κn

0 − (−κ1)n). (30)

For n = 1 this implies that the corresponding value of �(z)
for this asymmetric solution is �(z) = �0(z) + �0(z)+�1(z)

2 ,
which gives g(H ) in that branch from � ′(z = −g) = eH , in
agreement with Ref. [26] (see Appendix A). Note that now the
even conserved quantities are nonzero, indicating the breaking
of the spatial parity together with the presence of a nonzero
current in the solutions. Such continuation corresponds to
a true phase transition, since the conserved quantities are
not smooth functions of the coupling parameter g at gc2

[26]. Indeed, as was noticed numerically in Ref. [13] the
conserved quantity �h = hopt,B(+∞, t ) − hopt,B(−∞, t ) =
hopt (+∞, t ) − hopt (−∞, t ) = ∫

R dx∂xQ(x, t )/Q(x, t )
[where hopt,B(x, t ) is the optimal height for the Brownian
IC] can be considered as an order parameter since it is
nonzero for H = HB

2 > Hc2 and vanishes for H � Hc2. Here
we conjecture (see Appendix B) that �h can be obtained
analytically and is equal to

�h = 2 log
κ1

κ0

∣∣∣∣
g=g(H=HB/2)

(31)

for g ∈ (0, 1/
√

2e] and H = HB
2 � Hc2 and �h = 0 for H �

Hc2. Note that Eq. (31) can be seen as the n → 0 limit of
Eq. (30) and is not part of the standard ZS conserved quantities
[41]. The prediction (31) is compared to the numerical results
of Ref. [13] in Fig. 2.

V. CONCLUSION

In this work, we constructed the explicit solution to the
weak noise theory of the KPZ equation for the flat and

Brownian initial conditions, and obtained the exact optimal
height and noise fields. The structure of the solution is richer
than in the case of the droplet IC recently solved in Ref. [9].
We have shown that the interplay between solitons with dif-
ferent rapidities provides a mechanism for obtaining a phase
transition in the large deviation.
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APPENDIX A: RELATION BROWNIAN-FLAT

1. Previous results for the Brownian IC

Let us recall the results of Ref. [26], which were ob-
tained by a completely different method making use of the
exact determinantal solution available for the stationary KPZ
equation at any finite time. There, the following generating
function was computed (see Eq, (119) in the Supplemental
Material [39] or Eq. (18) in the limit w̃ → 0+; see also dis-
cussion around formula (7.3.21) of Ref. [30]), together with
its small time large deviation form, for z̃ > 0:∫

R
dHBP(HB, T ) exp

(
−2

√
z̃√

T
eHB/2

)
∼ exp

(
−�B(z̃)√

T

)
.

(A1)

Note that the argument in Eq. (A1) is 2
√

z̃, for technical
reasons. The result for �B(z̃) obtained in Ref. [26] reads

�B(z̃) = �B,0(z̃) = −
∫
R

dq

2π
Li2

(
− z̃

q2
e−q2

)
(A2)

corresponding to the main branch. One defines the continua-
tion of this function in the two other branches,

�B(z̃) = �B,0(z̃) + �B,0(z̃) (second branch), (A3)

�B(z̃) = �B,0(z̃) + �B,0(z̃) + �B,1(z̃)

2
(third branch),

(A4)

where the jump functions are expressed in terms of the Lam-
bert functions W0,W−1 [40] as

�B,0(z̃) = 4
3 [−W0(−z̃)]3/2 − 4[−W0(−z̃)]1/2, (A5)

�B,1(z̃) = 4
3 [−W−1(−z̃)]3/2 − 4[−W−1(−z̃)]1/2. (A6)

Once the function �B(z̃) is known the rate function �B(HB)
is obtained via a Legendre transform, which reads explicitly

�B(HB) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxz̃∈[0,+∞[[�B,0(z̃) − 2
√

z̃eHB ], HB � Hc,B = 0

maxz̃∈[0,e−1][�B,0(z̃) + �0,B(z̃) + 2
√

z̃eHB ], Hc,B � HB � Hc2,B

minz̃∈]0,e−1]

[
�B,0(z̃) + �0,B (z̃)+�1,B (z̃)

2 + 2
√

z̃eHB
]
, HB � Hc2,B,

(A7)
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with Hc2,B = 2Hc2, where

Hc2 = log � ′(z)|z=−gc2

= log

(
� ′

0

(
− 1√

2e

)
+ �′

0

(
− 1√

2e

))
≈ 0.926581

(A8)

is defined in the text. Note that one can understand the change
of sign in front of 2

√
z̃eHB in Eqs. (A7) as follows: We first

decrease z̃ from +∞ to zero and then increase it to e−1. In
the complex z̃ plane, turning around zero induces a branch
change in the square root function

√
z̃ → −√

z̃. The change
from a maximum to a minimum can be seen from a change of
convexity in the argument of the variational problem.

2. From the exact solution of the WNT for flat IC
to the one for the Brownian IC

In the paper [16] the symmetries of the WNT action were
studied in the case of the Brownian IC. The authors cleverly
noticed that they imply that at time tB = 1/2 the KPZ height
field is flat, i.e., QB(x, 1/2) is independent of x (where for clar-
ity we denote tB ∈ [0, 1] the time for the Brownian IC). From
this they concluded that one can deduce the WNT solution
for the flat IC if one knows the solution for the Brownian IC.
Using our result in Ref. [26], recalled in the previous section,
they displayed the solution for the flat IC, expected from these
symmetries. They obtained the following relation between the
rate functions, which read in our notations

�(H ) = 1

2
√

2
�B(2H ), H < Hc2, (A9)

valid for the main and second branch. In the third branch,
there are in fact three solutions to the WNT equations: one
is relevant for the flat IC, and the two others for the Brownian
IC, as discussed in the text.

In the text we have done the converse: we have obtained
directly the solution for the flat IC (which had not been ob-
tained directly before), denoted P(x, t ), Q(x, t ) in the text.
We noticed that it can be extended for t ∈ [−1, 1] instead
of the original interval [0,1]. From this extension we con-
structed using Eqs. (28) the solution PB(x, tB), QB(x, tB) (with
tB = 2t − 1) for the Brownian IC.

Let us now give the arguments in support of this con-
struction. The method makes use of the nontrivial “fluctuation
dissipation” symmetry of the dynamical action for the KPZ
equation, and of its implementation on the saddle point equa-
tions of the WNT, used in Ref. [16] (for earlier applications of
this symmetry see [42]). We first recall the following general
property of the {P, Q} system. Let us define Q̃(x, t ) and P̃(x, t )
via the relations

Q̃(x, t ) = 1/Q(−x,−t ) (A10)

and

2gP̃(x, t )Q̃(x, t ) + ∂2
x log Q̃(x, t )

= 2gP(−x,−t )Q(−x,−t ) + ∂2
x log Q(−x,−t ). (A11)

One can show that if P, Q are solutions of Eqs. (7) (with
coupling g) in some time interval, P̃, Q̃ are also solutions

of Eqs. (7) (with the same coupling g) in the mirror image
interval.

We now use this symmetry to define an extended solution
of the {P, Q}g system (7), PF , QF on the interval t ∈ [−1, 1],
such that

QF (x, t ) =
{

Q(x, t ) for t ∈ [0, 1]
Q̃(x, t ) for t ∈ [−1, 0]

(A12)

and similarly for PF . Let us now define the functions PB and
QB for t ∈ [0, 1] as

QB(x, t ) = e
HB
2 QF (

√
2x, 2t − 1),

PB(x, t ) =
√

2PF (
√

2x, 2t − 1). (A13)

One can check that PB, QB satisfy the {P, Q}gB system (7) with
coupling constant gB = √

2ge−HB/2 and QB(0, 1) = eHB with
HB = 2H . The important point for us now is that if P, Q satisfy
the boundary conditions for the flat IC,

Q(x, 0) = 1, P(x, 1) = δ(x), (A14)

then, PB, QB constructed as above satisfy the boundary condi-
tions for the Brownian IC, which read [13]

(i) QB(0, 0) = 1,
(ii) PB(x, 1) = δ(x),
(iii) gBPB(x, 0)QB(x, 0) + ∂2

x log QB(x, 0) = gBeHBδ(x),
(iv) QB(0, 1) = eHB .
This can be checked using all the above definitions. For

condition (i) one has

QB(0, 0) = e
HB
2 QF (0,−1) = e

HB
2 Q̃(0,−1)

= e
HB
2 /Q(0, 1) = e

HB
2 −H = 1. (A15)

For condition (ii) it is obvious. For condition (iii), denoting
y = √

2x and using gB = √
2ge− HB

2 ,

gBPB(x, 0)QB(x, 0) + ∂2
x log QB(x, 0)

=
√

2gBe
HB
2 P̃(y,−1)Q̃(y,−1) + 2∂2

y log Q̃(y,−1)

= 2gP̃(y,−1)Q̃(y,−1) + 2∂2
y log Q̃(y,−1)

= 2gP(−y, 1)Q(−y, 1)

= 2geHδ(y)

=
√

2gBeHBδ(
√

2x)

= gBeHBδ(x) (A16)

where in the third line we have used the symmetry (A11) and
the flat IC. For condition (iv), QB(0, 1) = eHB/2Q(0, 1) = eHB

using HB = 2H . Note that Eq. (A10) is continuous at t = 0
since Q(x, t = 0) = 1. Hence PB, QB constructed as above are
the solution of the WNT for Brownian initial conditions.

In the previous paragraph we constructed PF (x, t ), QF (x, t )
using symmetries. It is not a priori obvious that these func-
tions should coincide with P(x, t ), Q(x, t ) extended to the
interval t ∈ [−1, 1] as constructed in the text. It turns out that
this is the case and one has

Q(x, t ) = QF (x, t ), P(x, t ) = PF (x, t ), t ∈ [−1, 1].
(A17)
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This implies, from Eqs. (A10) and (A11), that the solutions
obtained in the text for P(x, t ), Q(x, t ) should satisfy, for t ∈
[−1, 1],

Q(x, t )Q(−x,−t ) = 1 (A18)

as well as

2gP(x, t )Q(x, t ) + ∂2
x log Q(x, t )

= 2gP(−x,−t )Q(−x,−t ) + ∂2
x log Q(−x,−t ).

These conditions are highly nontrivial to check on the ana-
lytical form of the solutions provided in the text. Thus we
have performed some numerical checks, e.g., we have checked
numerically that the symmetry (A18) holds (see below in
Appendix D).

Note that all the above construction is correct for each
given branch of solutions. For H = HB

2 � Hc2 one thus inserts
in Eqs. (A12) and (A13) the solution P, Q for the flat IC
given in the text for the main and second branches, and one
obtains the solution for the Brownian IC for HH � 2Hc2. For
H � Hc2 (third branch) there are three simultaneous solutions,
as discussed in the text. One of these solutions (with the
choice {κ0, κ0} for the solitonic rapidities) is even in x and
corresponds to the flat IC solution. This solution does not al-
low to obtain the solution for the Brownian IC (it corresponds
to a subleading contribution to the dynamical action). The
two other solutions (with the choice {κ1, κ0} and {κ0, κ1} for
the solitonic rapidities), denoted as P±, Q± in the text, break
the x → −x symmetry and are mirror images of each other.
These are the solutions which should be inserted in Eqs. (A12)
and (A13) to obtain the solution for the Brownian IC in that
regime. Note the symmetries (A10) and (A11) are never bro-
ken for any of these solutions, irrespective of whether x → −x
is broken or not.

3. Rate functions: Relations between flat and Brownian

Let us recall our result in the text for the rate function �(z)
for the flat IC in the main branch z > 0. It reads

�(z) = �0(z) := −
∫
R

dq

4π
Li2

(
− z2

q2
e−2q2

)
. (A19)

Comparing with the result for the rate function �B(z̃) for the
Brownian initial condition (A2) in the main branch, we see
that the following relation holds:

�0(z) = 1

2
√

2
�B,0(z̃ = 2z2). (A20)

Let us recall that the rate functions �0 and �B,0 are related
to the rate functions �(H ) and �B(HB) in the main branch
through the Legendre transform

�0(z) = min
H

(�(H ) + zeH ), (A21)

�B,0(z̃) = min
HB

(�B(HB) + 2
√

z̃eHB ). (A22)

One can easily verify that this is compatible with the relation
obtained in Ref. [16],

�(H ) = 1

2
√

2
�B(2H ). (A23)

This is easily checked inserting �(H ) from this relation into
the first equation in Eqs. (A21) and defining z = √

z̃/2. In fact
the relation

�(z) = 1

2
√

2
�B(z̃ = 2z2) (A24)

holds for each branch and each solution. As a consequence the
jumps are also related. One has

�0(z) = 1

2
√

2
�0,B(z̃ = 2z2) (A25)

as can be checked by comparing Eqs. (27) and (A5). The
same relation holds between �1(z) and �B,1(z). Finally in the
third branch the spatially asymmetric solutions discussed in
the text associated to �(z) = �0(z) + �0(z)+�1(z)

2 correspond
to the result in the third line of Eqs. (A7) for the Brownian
initial condition via the same relation.

Remark. In Ref. [26] we have obtained the series expan-
sion

�B,0(z̃) = 1√
4π

∑
n�1

(−1)n−1 (4z̃)n/2

n!
�

(n

2

)(n

2

) n−3
2

. (A26)

It is useful to note that this provides, using the relation (A20),
the following series expansion for the rate function of the flat
IC, for z > 0:

�0(z) = 1√
4π

∑
n�1

(−1)n−1 (2z)n

n!
�

(n

2

)
n

n−3
2 . (A27)

Remark. We can give an alternative interpretation of the
rate function �(z) of the flat IC. Consider now the solution to
the SHE (in rescaled variables) for the droplet IC considered
in Ref. [9] and denote it by Zδ (x, t ). Then one has

exp

(
− z√

T

∫
R

dx Zδ (x, 1)

)
∼ exp

(
−�(z)√

T

)
. (A28)

This implies that the probability distribution function (PDF)
of the rate function for the variable

∫
R dx Zδ (x, 1) is the same

as �(H ) for the flat IC.
Indeed, to compute the lhs of Eq. (A28) one performs

the same manipulations as in Ref. [9] choosing j(x, t ) =
−zδ(t − 1) in Eq. (6) there. This leads to the P, Q system with
boundary conditions Pδ (x, 1) = 1 and Qδ (x, 0) = δ(x). Upon
the transformation

Qδ (x, t ) = P(x, 1 − t ), Pδ (x, t ) = Q(x, 1 − t ), (A29)

which leaves invariant the {P, Q} system, one reduces the
problem to studying the flat IC and measuring the height field
at time t = 1. Note that this relation is in fact more general
and valid beyond the WNT as an identity in law between the
partition function with flat IC and the integral over space of
the partition function with droplet IC (both being the so-called
point to line partition sum of directed polymers).

APPENDIX B: ADDITIONAL CONSERVATION
LAW AND ORDER PARAMETER

In the case considered here where Q does not vanish at in-
finity, there is an additional nontrivial conservation law which
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was not discussed in Ref. [9]. Indeed it is easy to check, using
the equations for the {P, Q} system, that

∂t
∂xQ(x, t )

Q(x, t )
= ∂xJ0(x, t ),

J0(x, t ) = 2gP(x, t )Q(x, t ) + ∂2
x Q(x, t )

Q(x, t )
. (B1)

Assuming that J0 vanishes at x → ±∞ this implies the con-
servation law

d

dt

∫
R

dx
∂xQ(x, t )

Q(x, t )
= d

dt
[log Q(+∞, t ) − log Q(−∞, t )]

= 0. (B2)

Note that Eqs. (B1) can also be written in terms of the height
field and the response (or noise) field (see definitions in
Eqs. (S42) and (S43) in Sec. S-B of Ref. [9]),

∂t∂xh(x, t ) = ∂x
(
2h̃(x, t ) + ∂2

x h(x, t ) + (∂xh)2
)
, (B3)

which in these variables is simply the time derivative of
Eq. (S42) in Ref. [9].

It is interesting to note (although we will not use it here)
that a similar conservation equation holds for P, i.e.,

∂t
∂xP(x, t )

P(x, t )
= ∂xJ̃0(x, t ),

J̃0(x, t ) = −2gP(x, t )Q(x, t ) − ∂2
x P(x, t )

P(x, t )
, (B4)

which under similar assumptions implies the conservation of
log P(+∞, t ) − log P(−∞, t ).

Hence the order parameter defined in the text,

�h = h(+∞, t ) − h(−∞, t )

= log Q(+∞, t ) − log Q(−∞, t ), (B5)

is time independent. If the solution is even by spatial parity
one has �h = 0, as is the case for the flat IC and in the main
and second branches for the Brownian IC. If the spatial parity
is broken, as in the third branch for the Brownian IC, it is
nonzero.

Although we have not attempted to prove it, we believe
that this conserved quantity takes a “simple” value in our
case. To provide a guess we have examined the value of
this quantity in the case of a low-rank soliton. Let us con-
sider as in Sec. S-D of Ref. [9] the case where Axt and
Bxt are rank n1 and n2 operators, respectively, i.e., Axt =∑n1

j=1 qκ j |κ j〉〈κ j | and Bxt = ∑n2
i=1 pμi |μi〉〈μi|, and qκ j =

qκ j (x, t ) = q̃ je
−κ j x+κ2

j t and pμi = pμi (x, t ) = p̃ie−μix−μ2
i t are

plane waves. In that case we obtained the formula

Q(x, t ) =
n1∑

i, j=1

qκi (I + gσγ )−1
i j ,

γi j = pμi qκ j

μi + κ j
, σi j = 1

κi + μ j
. (B6)

In the present case we take n1 = 2 and n2 = 1 and choose
κ2 = 0 and q̃2 �= 0 corresponding to At (x) being constant and
equal to q̃2 as x → +∞:

Q(x, t ) = q̃1e−κ1x
(
gκ2

1 p̃1q̃2e−μ1x + μ2
1(κ1 + μ1)2

) + μ2
1q̃2(κ1 + μ1)2

gμ2
1 p̃1q̃1e−κ1x−μ1x + (κ1 + μ1)2

(
gp̃1q̃2e−μ1x + μ2

1

)
∣∣∣∣
q̃1→q̃1eκ2

1 t
,p̃1→ p̃1e−μ2

1t
. (B7)

It is easy to check that

Q(+∞, t ) = q̃2, Q(−∞, t ) = q̃2
κ2

1

μ2
1

, (B8)

hence we find that the order parameter in that case is

�h = 2 log
μ1

κ1
. (B9)

We believe that this result extends to our case (the asym-
metric branches for the Brownian IC) with μ1 → κ0 and κ1 →
κ1 where κ0 and κ1 are defined in the text. This conjecture is
supported by the data in Fig. 2 in the text.

Remark. Note that in the case of purely solitonic solutions,
the standard conserved quantities are equal to

Cn = μn
1 − (−κ1)n

n
. (B10)

Interestingly, the additional conservation law presented here
and Eq. (B9), although it does not belong to the standard
family of conserved quantities, correspond to (twice) the limit
�Cn for n → 0.

Remark. In a recent work [43], a similar-looking addi-
tional conservation law, previously missed in the literature,

was identified in a discretized integrable version of the non-
linear Schrodinger equation.

Remark. The formula for the order parameter �h as a
function of HB indicated in the text,

�h = 2 log
κ1

κ0
|g=g(H=HB/2), (B11)

is evaluated there explicitly (see Fig. 2) from the parametric
system

�h = 2 log

√
−W−1(−2g2)√
−W0(−2g2)

, (B12)

� ′(−g) = eHB/2. (B13)

APPENDIX C: MORE DETAILS ON
THE SCATTERING PROBLEM

We give some details on the determination of the scattering
amplitudes mentioned in the text.

Equation for φ̄ at t = 1. Consider the ∂x equation of the
Lax pair for φ̄ at t = 1. Using that P(x, 1) = δ(x) it reads in
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components

∂xφ̄1 = −i
k

2
φ̄1 − gδ(x)φ̄2, ∂xφ̄2 = i

k

2
φ̄2 + Q(x, 1)φ̄1.

(C1)

Let us integrate the first equation. Since φ̄1 vanishes at −∞ it
gives

φ̄1(x, 1) = −ge−i k
2 x�(x)φ̄2(0, 1). (C2)

Taking the limit x → +∞, we obtain from the asymptotics
(11) that

b̃(k, t = 1) = −gφ̄2(0, 1). (C3)

To determine φ̄2(0, 1) we can integrate the second of
Eqs. (C1), which gives, using Eqs. (C2) and (C3),

e−i k
2 xφ̄2(x, 1) = φ̄2(0, 1) + b̃(k, 1)

∫ x
0 dx′Q(x′, 1)e−ikx′

, x > 0
φ̄2(x, 1) = −ei k

2 x, x < 0,
(C4)

where in the second equation we have used that φ̄2(x, 1) 
 −ei k
2 x for x → −∞. Assuming continuity of φ̄2(x, 1) at x = 0, this

leads to φ̄2(0, 1) = −1 and to

b̃(k, t = 1) = g ⇒ b̃(k) = ge−k2
(C5)

since we recall that b̃(k, t ) = b̃(k)ek2t .
Taking the x → +∞ limit of Eqs. (C4) and adding and subtracting c we see that it is compatible with the asymptotics (11)

and gives in addition a relation between ã(k) and Q(x, 1):

ã(k) = ã(k, 1) = 1 − g lim
x→+∞

(∫ x

0
dx′(Q(x′, 1) − c)e−ikx′ − c

−ik

)
(C6)

= 1 − g
∫ +∞

0
dx′(Q(x′, 1) − c)e−ikx′ + g

c

−ik
. (C7)

Equation for φ at t = 1. Consider the ∂x equation of the Lax pair for φ at t = 1. Using that P(x, 1) = δ(x) it reads in
components

∂xφ1 = −i
k

2
φ1 − gδ(x)φ2, ∂xφ2 = i

k

2
φ2 + Q(x, 1)φ1, (C8)

which can be rewritten as

[ei k
2 xφ1(x, 1)]′ = −gδ(x)φ2(x, 1)ei k

2 x, [e−i k
2 xφ2(x, 1)]′ = Q(x, 1)φ1(x, 1)e−i k

2 x. (C9)

Integrating these two equations, and using the asymptotics (11) at x → +∞ and φ1(x, 1) → e−ikx/2 and φ2(x, 1) → c
−ik e−ikx/2

at x → −∞, we obtain

φ1(x, 1) = e−i k
2 x(�(−x) + a(k)�(x)), a(k) − 1 = −gφ2(0, 1),

φ2(x, 1) = ei k
2 x lim

X→−∞

(∫ x

X
dx′Q(x′, 1)e−ikx′

(�(−x′) + a(k)�(x′)) + e−ikX c

−ik

)
,

(C10)

where we used that a(k, t ) = a(k). The last equation can be rewritten as

φ2(x, 1) = ei k
2 x lim

X→−∞

(∫ x

X
dx′Q(x′, 1)e−ikx′

(�(−x′) + a(k)�(x′)) −
∫ x

X
dx′e−ikx′

c + e−ikx c

−ik

)
. (C11)

Setting x = 0 we obtain a relation between ã(k) and
Q(x, 1):

a(k) = 1 − gφ2(0, 1)

= 1 − g
∫ 0

−∞
dx′(Q(x′, 1) − c)e−ikx′ − g

c

−ik
. (C12)

Note that integrating the second of Eqs. (C9) for
φ2(x, 1)e−i k

2 x between zero and +∞ and using the asymp-
totics (11) leads to an expression for b(k); however, this
expression is equivalent to the one obtained from the rela-
tion a(k)ã(k) + b(k)b̃(k) = 1 obtained from the Wronskian
(see the main text) together with the above results for
b̃(k), ã(k), a(k).

From the above results we see that if Q(x, 1) is even
one has ã(k) = a(−k) = a∗(k) (for real k). From the Wron-
skian relation and Eq. (C5) one thus gets b(k)ge−k2 = 1 −
a(k)a(−k) = 1 − |a(k)|2; hence b(k) is real and even in k.
Alternatively one sees that |a(k)| is fixed by b(k) so one can
write

a(k) = e−iϕ(k)
√

1 − gb(k)e−k2
, (C13)

where ϕ(k) is a real and odd function ϕ(k) = −ϕ(−k), as
discussed in the text.

It is important to note that the analysis of the scattering
equation was performed here assuming that the parity is not
broken, which holds for the flat IC.
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Remark: Small k behavior. Since we expect that Q(x, 1)
is smooth and decays fast towards c as x → ±∞ we can
extract from the relations obtained above the behavior of the
scattering amplitudes as k → 0,

a(k) 
 g
c

ik
, ã(k) 
 g

c

−ik
, (C14)

which implies

b(k) = 1

b̃(k)
(1 − a(k)ã(k)) 
 −gc2 1

k2
, (C15)

which is consistent with Eq. (16) in the text. The integrands
in the functions At (x) and Bt (x) in Eqs. (20) and (21), i.e., the
reflection amplitudes r(k) and r̃(k), thus behave respectively
for small k as

r(k) = b(k)/a(k) 
 −ã(k)/g 
 c

ik
,

r̃(k) = b̃(k)/(gã(k)) 
 −ik
cg

. (C16)

Remark: Schrödinger equation. It is interesting to note that
the ∂x equation of the Lax pair can always be written as a
Schrödinger equation, albeit with a complex potential in the
general case. One has

∂xφ1(x) = −i
k

2
φ1(x) − gP(x)φ2(x),

∂xφ2(x) = i
k

2
φ2(x) + Q(x)φ1(x), (C17)

where here Q(x) = Q(x, t ), P(x) = P(x, t ), and t can be ar-
bitrary and fixed, so we suppress the time variable. One can
eliminate φ1 and one obtains that φ2 satisfies

φ′′
2 (x) − φ′

2(x)Q′(x)

Q(x)
+

(
gP(x)Q(x) + k2

4
+ ikQ′(x)

2Q(x)

)

× φ2(x) = 0. (C18)

The first derivative term can be eliminated by writing

φ2(x) =
√

Q(x) f2(x), (C19)

where now f2(x) satisfies a Schrödinger equation

f ′′
2 (x) + 1

4
f2(x)

(
4gP(x)Q(x) + k2 + 2(Q′′(x) + ikQ′(x))

Q(x)

− 3Q′(x)2

Q(x)2

)
= 0. (C20)

In the general case the potential is complex, and the problem
is non-Hermitian. However, for the flat IC, Q(x) = c, it sim-
plifies and one obtains the simple result given in the text.

APPENDIX D: NUMERICAL EVALUATIONS

In this section we present some additional numerical eval-
uations which support the results presented in the text.

1. Functions ϕ, At , and Bt

First we have plotted in Fig. 3 the function ϕ(k) defined
in Eq. (22) as a function of k. It clearly shows that it has a
discontinuity at k = 0 with ϕ(0±) = ∓π

2 as stated in the text.

FIG. 3. The phase ϕ(k) defined in Eq. (22) plotted versus k for
various values of g.

Next we have plotted in Fig. 4 the function At (x) for several
values of positive time t and g corresponding to the main
branch (20) and to the second branch (26), as well as at the
critical point g = gc2. We recall that the function g(H ) is
plotted in Fig. 2 in the text.

In Fig. 5 we have plotted the function Bt (x) for several
values of positive time t and g corresponding to the main
branch (21) and second branch (26), as well as at the critical
point g = gc2.

We have also plotted these functions for negative times (as
is of interest for the Brownian IC; see text) for the same values
of g for the main and second branches. These are shown in
Figs. 6 and 7. Note the relation (see text) A′′

t (x) = gB−t (x)
valid in all the symmetric branches.

2. Optimal height and noise, evaluation of P, Q

From the above exact solutions for At (x) and Bt (x) we
obtain the solutions to the {P, Q}g system through the Fred-
holm operator inversion formula (18) for various values of H
and g. We use the numerical method developed in Sec. S-l of
Ref. [9].

For the solution for the flat IC, we have performed several
numerical checks of some highly nontrivial consequences of
the formulas, which validate our conjecture:

(i) The functions P, Q are even in x.
(ii) Q(x, t = 1) = A1(|x|).
(iii) Q(0, t = 1) = eH = � ′(−g).
(iv) Q(±∞, t ) = 1.
We found them to hold in all three branches in the case

of the flat IC. The results for the optimal height hopt (x, t ) =
log Q(x, t ) are plotted in Fig. 2. Concerning the extension of
the flat IC solution to negative times, of interest for the Brow-
nian initial condition, we have also performed a numerical
check of the symmetry (A18) in the main branch, the second
branch, and the symmetric third branch.

APPENDIX E: THE LAMBERT W FUNCTION

We introduce the Lambert W function [40] which we use
extensively throughout this work. Consider the function de-
fined on C by f (z) = zez; the W function is composed of all
inverse branches of f so that W (zez ) = z. It does have two real
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FIG. 4. Plot of the function At (x) for various positive times t and coupling constants g for the main and second branches.

branches, W0 and W−1, defined respectively on [−e−1,+∞[
and [−e−1, 0[. On their respective domains, W0 is strictly
increasing and W−1 is strictly decreasing. By differentiation
of W (z)eW (z) = z, one obtains a differential equation valid for

all branches of W (z):

dW

dz
(z) = W (z)

z(1 + W (z))
. (E1)

FIG. 5. Plot of the function Bt (x) for various positive times t and coupling constants g for the main and second branches.
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FIG. 6. Plot of the function At (x) for various positive times t nad coupling constants g for the main and second branches.

Concerning their asymptotics, W0 behaves logarithmically for
large argument W0(z) 
z→+∞ log(z) − log log(z) and is linear
for small argument W0(z) =z→0 z − z2 + O(z3). W−1 behaves
logarithmically for small argument W−1(z) 
z→0− log(−z) −

log(− log(−z)). Both branches join smoothly at the point z =
−e−1 and have the value W (−e−1) = −1. These remarks are
summarized in Fig. 8. More details on the other branches, Wk

for integer k, can be found in Ref. [40].

FIG. 7. Plot of the function At (x) for various positive times t and coupling constants g for the main and second branches.
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FIG. 8. The Lambert function W . The dashed red line corre-
sponds to the branch W0 whereas the blue line corresponds to the
branch W−1.

APPENDIX F: PHASE ϕ(k) FROM THE AMPLITUDE a(k)

Let us recall briefly how the phase ϕ(k) can be obtained
from the analytic properties of the amplitude a(k) from the
Kramers-Kronig relations. Let us recall that a(k) is assumed
to be analytic in the upper half plane. By definition a∗(k) =

(a(k∗))∗. Hence a∗(k) is analytic in the lower half plane.
Consider the contour C which passes just above the real axis,
i.e., p = i0+ + R, and which closes at infinity along a large
half circle the upper half plane. One has∫

C
d p

1

p + i0+ − k
log a(p) = 0. (F1)

Since we know that log a(k) 
 C1/(ik) for large |k| the con-
tribution of the large circle vanishes. In the contribution near
the real axis we can replace 1

p+i0+−k = PV 1
p−k − iπδ(p − k)

(using the Sokhotski-Plemelj theorem) and one finds

log a(k) = −
∫

C

d p

iπ
1

p − k
log a(p). (F2)

Taking the imaginary part one obtains

Im log a(k) = −−
∫

C

d p

2π

1

p − k
log a(p)a∗(p). (F3)

We have defined a(k) = |a(k)|e−iϕ(k); hence we get

ϕ(k) = −
∫

C

d p

2π

1

p − k
log a(p)a∗(p), (F4)

which agrees with Eq. (22) in the text.
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