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Enhanced diffusion in soft-walled channels with a periodically varying curvature
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The motion of particles along channels of finite width is known to be hindered by either the presence of
energy barriers along the channel direction or by variations in the width of the channel in the transverse direction
(rugged channel). Remarkably, when both features are present, they can interact to produce a counterintuitive
result: adding energy barriers to a rugged channel can enhance the rate of diffusion along it. This is the result of
competing energetic and entropic effects. Under the approximation of particles instantaneously in equilibrium in
the transverse direction, one can tailor the energy barriers to the ruggedness to recover free diffusion. However,
such fine-tuning and potentially restrictive approximations are not necessary to observe an enhanced rate of
diffusion as we demonstrate by adding a range of (non-fine-tuned) energy barriers to a channel of sinusoidally
varying curvature. Furthermore, this was observed to hold for systems with a finite characteristic timescale for
motion in the transverse direction, thus, suggesting that the phenomenon lends itself to be exploited for practical
applications.
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I. INTRODUCTION

Transport processes in channels of varying profile have
been studied for many years. With applications in disparate
fields, such as zeolites and porous solids [1–3], biological
membranes [4–6], separating particles by their size [7–9] and
carbon nanotubes [10], the importance of understanding these
systems’ behaviors is clear.

The free diffusion of particles along a channel can be hin-
dered by the introduction of either a series of energy barriers
or variations in the width of the channel (ruggedness). In-
terestingly, combining the two features—adding barriers to a
rugged channel or ruggedness to a channel with barriers—can
sometimes increase the rate of diffusion along the channel.
This counterintuitive phenomenon can be understood in a
precise way in the limit where motion along the length of
the channel is much slower than in the transverse direc-
tion so that the ensemble of particles can be assumed to
be in instantaneous transverse equilibrium as it propagates.
In this case, as we will review below, the motion is effec-
tively a one-dimensional diffusion problem where the effect
of the ruggedness enters through a modification to the one-
dimensional potential along the line of the channel. It is then
clear that one can trade ruggedness against energetic barriers
to flatten the free-energy profile, and, in some instances, even
restore free diffusion. This typically requires fine-tuning.

Here we investigate the case of overdamped motion
in a soft-walled channel whose profile varies periodically.
By introducing a (matching) periodic potential along the
channel—for example, through the application of an exter-
nal field (e.g., an electric field for charged particles in the
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channel [11])—we show that it is possible to increase the rate
of diffusion above that observed without the potential for a
range of phase shifts between the roughness and the barriers
and for finite damping rates in the transverse direction. Our
results demonstrate that the counterintuitive enhancement of
diffusion along a rough channel upon the addition of energy
barriers occurs also in realistic settings of potential practical
interest.

The paper is structured as follows. Section II briefly
reviews the relevant background knowledge and literature.
Section III introduces the model and the main analytical re-
sults, which are then contrasted with numerical simulations
that account for the finite relaxation time in the transverse
direction in Sec. IV. The case of a channel with hard walls is
considered for completeness in Sec. V. And we finally draw
our conclusions in Sec. VI.

II. BACKGROUND

A common starting point in studying the motion of
particles in finite-dimensional channels is the Fick-Jacobs
equation, an effective one-dimensional equation for the evo-
lution of the concentration of a solute along the center line
of a multidimensional tube. Jacobs’ treatment [12], which he
attributed to Fick [13], was refined by Zwanzig [14], who
produced a more general version. By assuming that the sys-
tem is fully equilibrated in the confining direction, Zwanzig
reduced the multidimensional Smoluchowski equation to a
one-dimensional form with a modified potential. The chang-
ing profile of the channel produces a logarithmic contribution
to this potential, which leads to the description of the effect
upon the motion in terms of “entropic” barriers [15].

However, it is not always safe to assume that the system
equilibrates fully in the confining direction; a profile which

2470-0045/2022/105(5)/054141(7) 054141-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1975-1042
https://orcid.org/0000-0003-1752-6343
https://orcid.org/0000-0002-4583-4071
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.054141&domain=pdf&date_stamp=2022-05-24
https://doi.org/10.1103/PhysRevE.105.054141


GRAY, CASTELNOVO, AND YONG PHYSICAL REVIEW E 105, 054141 (2022)

varies too rapidly, for instance, can prevent equilibrium from
being established [16]. Zwanzig [14] acknowledged the lim-
itations of this approach and suggested how small deviations
from equilibrium might be accounted for. This work, based
around a spatially varying diffusion coefficient, has been ex-
amined in various contexts and built upon heavily [17–21].

Adding potential energy barriers to a channel of varying
width can cause interesting effects because of the interaction
between the energetic and the entropic contributions to the
potential. For instance, in the presence of a linear bias along
the channel, tuning the phase difference between the periodic
channel width and the periodic barriers can induce a reso-
nancelike behavior in the nonlinear mobility, and rectification
can be observed [22]. Another example involves a channel
with cosine-shaped walls which connects two reservoirs of
particles at different concentrations over one period. By in-
troducing a cosine energy barrier along the channel, tuning
the phase relative to the walls, and applying an oscillating
and unbiased force along the channel, it is possible to produce
transport from low to high concentration [23].

We note in passing that, although channels which are sym-
metrical about their center line feature prominently in this
field, the more general case of a curved midline and varying
width has also attracted attention. The motion can still be
mapped onto one dimension, albeit with a modified expres-
sion for the spatially varying diffusion coefficient, which now
reflects the variation in the midline of the channel [24–27].
Motion in serpentine channels where the midline is curved but
the width is constant has also been studied [28,29]. Channels
of curved midline and varying width can be created by using
the same function to describe both walls but then introduc-
ing an offset between the two. The current can be affected
by this shift, and a preferential direction of transport can
emerge [30,31].

III. A ONE-DIMENSIONAL MODEL FOR THE
EFFECTIVE DIFFUSION COEFFICIENT

We consider motion in a two-dimensional channel with soft
walls in the transverse (y) direction,

U (x, y) = Ux(x) + Uy(x, y), (1)

where Ux is the potential energy contribution along the chan-
nel and Uy describes how the profile of the channel varies
as a function of the displacement along it. If the channel is
periodic in x, then the long-time motion will be diffusive and
can be described by an effective diffusion coefficient Deff . We
will use Zwanzig’s derivation of the Fick-Jacobs equation to
explore the system’s behavior.

Zwanzig restricted his attention to the effect upon the dif-
fusion coefficient of changes in the profile of the channel [14].
Here we will retain the effect of energy barriers. Our starting
point is the two-dimensional Smoluchowski equation for the
probability density p(x, y, t ),

∂ p

∂t
= Dx

∂

∂x
e−βU (x,y) ∂

∂x
eβU (x,y) p

+ Dy
∂

∂y
e−βU (x,y) ∂

∂y
eβU (x,y) p, (2)

where Dx and Dy are the free diffusion coefficients in the x
and y directions, respectively. By inserting Eq. (1) into Eq. (2),
integrating over the y direction, and using the fact that Uy is
confining, we obtain

∂ρ

∂t
= Dx

∂

∂x
e−βUx

∫ ∞

−∞
dy

[
e−βUy

∂

∂x
eβUx+βUy p

]
, (3)

where ρ(x, t ) = ∫ ∞
−∞ dy p(x, y, t ) is the one-dimensional

probability density. Let us assume that the distribution is al-
ways in equilibrium in the y direction, i.e.,

p(x, y, t ) ≈ ρ(x, t )
e−βUy (x,y)

e−βA(x)
, (4)

where A(x) is defined through

e−βA(x) =
∫ ∞

−∞
dy e−βUy (x,y). (5)

This assumption is readily satisfied for systems with a high
degree of diffusion anisotropy (Dy � Dx ) or for systems
where the profile of the channel α(x) varies sufficiently slowly
along its length (x) for the ensemble of particles to remain
in equilibrium in the confining direction (y), while spreading
out along the length of the channel. To see this, consider the
following argument. Suppose that the mean first-passage time
to move one repeat unit (length L) in the x direction is τx, and
the equilibration time in the y direction is τy. From the stan-
dard expression for the mean first-passage time, the former is
proportional to L2/Dx [32]. The mean-squared displacement
of an ensemble of particles in a confining parabolic potential
approaches equilibrium according to 1 − e−t/τ , where τ ∝
1/Dy. Although the potential is of infinite extent, equilibrium
is attained after only a few multiples of τ have elapsed.
Equilibrium in the confining direction can then be sustained
throughout the motion provided that τy � τx or, equivalently,
τy/τx � 1. This condition leads to Dx/L2Dy � 1, which is
satisfied for the two cases outlined above: highly anisotropic
diffusion or a slowly varying channel profile (large L). Insert-
ing Eq. (4) into Eq. (3) and carrying out the integration over
y produces the following partial differential equation for the
one-dimensional density,

∂ρ

∂t
= Dx

∂

∂x
e−βUx−βA ∂

∂x
eβUx+βAρ, (6)

from which we can deduce the following expression for the
one-dimensional effective potential U ∗ defined as

U ∗(x) = Ux(x) − 1

β
ln

(∫ ∞

−∞
dy e−βUy (x,y)

)
. (7)

Before we restrict our attention to a particular channel it is
worth remarking upon an implication of Eq. (7). Variations in
the profile of the channel impede motion, a feature accounted
for by the second term in the expression for the effective
potential. However, Eq. (7) implies that this retarding effect
can be countered by introducing a potential in the x direction:
by setting Ux = 1

β
ln

∫ ∞
−∞ dy e−βUy (x,y), the effective potential

is zero, and free diffusion is predicted. This is a point to which
we will return.
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FIG. 1. A three-dimensional sketch of a section of the channel
U (x, y) described by Eq. (8) is shown for the following parameter
values α0 = 2, α1 = 1.8, and βQ = 1.255 25.

We now focus on the potential energy landscape,

Ux(x) = Q

2

[
1 + cos

(
2π

L
(x − �x)

)]
,

(8)

Uy(x, y) = 1

2

[
α0 + α1cos

(
2πx

L

)]
y2,

where Q � 0, and α0 > α1 to make the channel confining, and
we study the effects of Q and �x on the motion (see Fig. 1).

With the expression for the one-dimensional effective
potential in Eq. (7), we can derive the effective diffusion co-
efficient by considering the mean first-passage time from the
potential energy maximum at x = �x to either of the maxima
at x = �x ± NL. This is given by

τN = PR

Dx

∫ �x+NL

�x
dy eβU ∗(y)

∫ y

�x−NL
dz e−βU ∗(z)

− PL

Dx

∫ �x

�x−NL
dy eβU ∗(y)

∫ y

�x−NL
dz e−βU ∗z), (9)

where PL and PR are the probabilities that the particle exits
the region [�x − NL,�x + NL] to the left and right, respec-
tively [32]. The symmetry of the energy landscape means that
PL = PR = 1/2, and Eq. (9) simplifies to

τN = N2

2Dx

∫ �x+L

�x
dy eβU ∗(y)

∫ �x

�x−L
dz e−βU ∗(z), (10)

where we have used the periodicity of the potential to recast
each integral over one period.

After evaluating Eq. (7) for the specific potential defined
in Eq. (8), inserting the result into Eq. (10), and changing
variables to θ = 2πx/L, we find

τN = (NL)2

8π2Dx
I−I+, (11)

where the quantities I± are given by

I± =
∫ 2π+φ

φ

dθ exp

[
±βQ

2
cos(θ − φ)

]
[α0 + α1cos θ ]±1/2,

(12)
and φ = 2π�x/L is the phase difference. Finally, we obtain
the effective diffusion coefficient,

Deff = lim
N→∞

(NL)2

2τN
= 4π2Dx

I−I+
. (13)

For some phases φ, the diffusion coefficient increases with
increasing barrier height

The derivative of Deff with respect to βQ can be an
informative quantity because it describes the response of
the system to an increase in the height of the potential
energy barriers. To see this, consider motion in the one-
dimensional potential Ux(x) = Q

2 [1 − cos(2πx/L)], for which
Deff = Dfree/[I0(βQ/2)]2, where I0 is the zeroth-order modi-
fied Bessel function of the first kind. This is a monotonically
decreasing function of the barrier height βQ, a fact reflected
by the gradient ∂Deff/∂ (βQ), which is zero when βQ = 0 and
negative for βQ > 0. As expected, adding—or increasing the
size of—energy barriers reduces the effective diffusion coef-
ficient. Although discussed here for a specific potential, this
behavior is common to motion in one-dimensional periodic
potentials: ∂Deff/∂ (βQ) is generally negative and at most van-
ishing at βQ = 0 [33,34]. Our quasi-one-dimensional system
displays a more complicated behavior,

∂Deff

∂βQ

∣∣∣∣
βQ=0

= −D0 C(α0, α1)

2
cos φ, (14)

where D0 = Deff (βQ = 0) and C(α0, α1) is a positive constant
given by

C(α0, α1) =
∫ 2π

0 dθ cos θ
√

α0 + α1cos θ∫ 2π

0 dθ
√

α0 + α1cos θ

−
∫ 2π

0 dθ cos θ/
√

α0 + α1cos θ∫ 2π

0 dθ /
√

α0 + α1cos θ
. (15)

By varying the phase between the energy barriers and the
curvature, it is possible for the gradient in Eq. (14) to become
positive, indicating a behavior which cannot be observed in
purely one-dimensional systems. This is the central result of
our paper: adding energy barriers can enhance the rate of
diffusion along the rugged channel.

In the following section, we compare our theoretical
predictions—as given by Eq. (13)—with the results of nu-
merical simulations. While agreement is expected when
instantaneous equilibrium in the transverse direction can
safely be assumed, our results allow us to assess the behav-
ior of the system when this condition is not satisfied (e.g.,
when diffusion in the transverse direction proceeds at a fi-
nite rate). Remarkably, the counterintuitive enhancement of
the diffusion coefficient with increasing barrier height sur-
vives up to equal transverse and longitudinal rates, thereby,
demonstrating its experimental relevance and potential practi-
cal application.
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IV. BROWNIAN DYNAMICS SIMULATIONS

We used Brownian dynamics simulations based on the
overdamped Langevin equation to study the two main aspects
of this paper: the effect of the phase difference φ upon the
behavior of the effective diffusion coefficient and the can-
cellation of energetic and entropic barriers to motion when
motion in the transverse direction is taken into account (and
equilibration cannot be taken for granted). For the general
form of the potential described in Eq. (1), the two-dimensional
overdamped Langevin equation decomposes as follows:

γx
dx

dt
= −∂Ux(x)

∂x
− ∂Uy(x, y)

∂x
+ ξx(t ),

γy
dy

dt
= −∂Uy(x, y)

∂y
+ ξy(t ), (16)

where ξ (t ) represents the thermal noise, which obeys the
usual fluctuation-dissipation relationship 〈ξx,y(t )ξx,y(t ′)〉 =
2kBT γx,yδ(t − t ′)δx,y. Unless stated otherwise, simulations
were performed with 105 noninteracting point particles, a
time step δt = 10−4 units, and unit values of the thermal
energy kBT and damping coefficients γx and γy. At each time
step the particles’ positions were advanced using the usual
first-order Euler scheme [35]. Motion was simulated until
the long-time diffusive regime was well established, and the
effective diffusion coefficient was then extracted according to
Deff = limt→∞〈x2(t )〉/2t . This regime is entered into once a
substantial fraction of the ensemble of particles has explored
beyond the first repeat unit of the potential energy landscape.
By simulating for long enough that the root mean-squared
displacement is equivalent to many repeat units, we can be
confident that the dynamics have reached the long-time limit.

Equation (14) predicts that the gradient of the effective
diffusion coefficient at βQ = 0 is proportional to cos φ. We
performed simulations for φ = 0 and φ = π to investigate
the extremal cases. We will start with the former, because the
behavior is familiar.

We expect a negative gradient at βQ = 0 and, hence, a
monotonically decreasing effective diffusion coefficient. Fig-
ure 2 confirms these expectations and reveals good agreement
between theory and simulations over a range of amplitudes.
This is because the potential energy minima—around which
the particles spend the bulk of their time—coincide with the
points of minimum curvature. The distribution can get closer
to its equilibrium shape in the regions of the channel where it
would otherwise struggle most to do so. Agreement improves
with increasing amplitude because more time is spent around
the minima. Finally, agreement is better for smaller values of
α1 because the variations in curvature are smaller.

Let us now turn to the case of φ = π . Equation (14) pre-
dicts that the effective diffusion coefficient initially grows
with the amplitude of the potential energy barriers. Figure 3
confirms this and reveals qualitative agreement between the-
ory and simulations. However, quantitative agreement is not as
good as in the previous case. This is because the points of min-
imum curvature coincide with the potential energy maxima.
These are unstable points, and particles pass through them
quickly, leaving little chance for the ensemble to equilibrate.
When α1 = 1 we see good quantitative agreement with the
theory for values of βQ > 2. In contrast, for α1 = 1.8 there

FIG. 2. Diffusion along the channel described by Eq. (8) is stud-
ied for the case of φ = 0 where the potential minima coincide with
the points of minimum curvature. (a) The diffusion coefficient Deff is
plotted as a function of the cosine barrier height for three values of α1

where α0 = 2. A monotonic decrease is observed, and agreement be-
tween the simulation results (symbols) and the theory (lines) given in
Eq. (13) improves with increasing barrier height. (b) A contour plot
of the potential U (x, y) used in the simulations. α0 = 2, α1 = 1.8,
and βQ = 1.25 525. Contours of constant potential (black lines) are
drawn at regular intervals to guide the eye.

is a lack of good agreement even for βQ = 4. This is because
the size of the entropic barriers to motion increases with the
variation in the curvature of the channel, which is controlled
by α1. For smaller values of α1, the rate of diffusion along
the channel becomes determined by the height of the poten-
tial energy barriers at smaller values of the barrier height.
Once in this regime, equilibration is less important for close

FIG. 3. Diffusion along the channel described by Eq. (8) is stud-
ied for the case of φ = π where the potential minima coincide
with the points of maximum curvature. (a) and (b) The diffusion
coefficient Deff is plotted as a function of the cosine barrier height
for two values of the damping coefficient in the y direction γy. Deff

initially increases with the height of the energy barriers, in contrast to
Fig. 2 where a monotonic decrease is observed. Agreement between
simulation results (symbols) and the theory (lines) given in Eq. (13)
is better in (a), where α1 = 1, than (b), where α1 = 1.8. (c) A con-
tour plot of the potential U (x, y) used in the simulations. α0 = 2,
α1 = 1.8, and βQ = 1.255 25. Contours of constant potential (black
lines) are drawn at regular intervals to guide the eye.
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FIG. 4. The effective potential U ∗ given in Eq. (7) is plotted for
the landscape described in Eq. (8). α1 = 1.8, α0 = 2. The panels (a)–
(d) reveal how the effect of increasing the barrier height βQ on U ∗

depends strongly upon the phase difference φ between the barriers
and the curvature. The contrasting behaviors—a monotonic increase
in the amplitude of the potential (φ = 0) vs a decrease followed by an
increase (φ = π )—the different response of the diffusion coefficient
to increasing βQ observed in Figs. 2 and 3.

agreement with the theory. As expected, decreasing γy im-
proves agreement with the theory.

Figure 4 provides insight into the origin of the behavior of
the effective diffusion coefficient: Increasing the amplitude of
the cosine potential does not necessarily increase the barrier
to motion in the effective potential. The energetic and entropic
contributions can interact with one another so as to decrease
the barrier to motion as can be seen by comparing the panels
for βQ = 0 and βQ = 1.255 25, chosen because it is a good
approximation to the amplitude which minimizes the barrier.

The contour plots in Figs. 2 and 3 illustrate this effect as
well. Figure 2 reveals that introducing the cosine potential
creates near-flat regions which extend away from the center of
the channel. By contrast, the near-flat regions in Fig. 3 extend
much further along the line of the channel than away from
it. The former will inhibit motion along the channel by en-
abling particles to move significant distances in unproductive
directions. The latter comes close to providing a continu-
ous near-flat region along the line of the channel, which is
combined with steeper barriers to motion away from it. The
region either side of the center line is flatter in Fig. 3 than in
Fig. 2, and the saddle points are broader, which is beneficial
for transport; it is easier for particles to move from a tighter
minimum into a broader saddle than vice versa.

Let us conclude this section by returning to a point made
after the introduction of the effective potential in Eq. (7). The
potential energy landscape,

U (x, y) = Ux(x) + Uy(x, y) = − 1

2β
ln

(
βα(x)

2π

)
+ 1

2
α(x)y2

(17)
has been constructed by adding to the Uy term describing the
profile of the channel a series of potential energy barriers
in the x direction Ux such that the effective potential U ∗ is
exactly zero. This predicts free diffusion.

Motion was simulated for a range of values of α1 for α0 =
2. In each case, the effect of decreasing γy from 100 to 10−2

FIG. 5. Diffusion along the channel described by Eq. (17) is
studied for the curvature profile α(x) given in Eq. (8). (a) The dif-
fusion coefficient Deff is plotted as a function of α1/α0 for a series
of values of the damping coefficient in the y-direction γy (α0 = 2
throughout). Smaller values of γy give better agreement with the
theoretical prediction (free diffusion) as expected for a theory based
on the assumption of equilibration in the y direction. The effective
diffusion coefficient in the absence of energy barriers (Ux = 0) is
also plotted and observed to be smaller than in the presence of
energy barriers: the barriers enhance the rate of diffusion. (b) The
contour plot of U (x, y) (α0 = 2, α1 = 1.5) reveals that the channel
has a near-flat central section along x. Contours of constant potential
(black lines) are drawn at regular intervals to guide the eye.

upon the effective diffusion coefficient was studied. Motion
was also simulated in the absence of the energy barriers. The
results are shown in Fig. 5.

For all values of α1 the effective diffusion coefficient is
larger in the presence of energy barriers than in their absence.
Again, as expected, decreasing γy improves agreement with
the theory.

V. CONNECTION TO THE HARD-WALLED POTENTIAL

In this paper we chose to restrict our focus to soft-walled
channels where the confining potential in the y direction per-
mits particles to explore out to y = ±∞. The hard-walled
potential, which features more commonly in the literature,
can be viewed as a limiting form of the soft-walled case we
studied.

Let us begin by considering Eq. (7), the expression for the
effective potential U ∗(x),

U ∗(x) = Ux(x) − 1

β
ln

(∫ ∞

−∞
dy e−βUy (x,y)

)
. (18)

The limits on the integral reflect the fact that the soft-walled
potential is defined out to y = ±∞. However, if we consider
a hard-walled potential which is flat between y = ±w(x)/2
and infinite otherwise, then the expression for the effective
potential becomes

U ∗(x) = Ux(x) − 1

β
ln

(∫ w(x)/2

−w(x)/2
dy

)
,

= Ux(x) − 1

β
ln[w(x)]. (19)
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Having derived the hard-wall expression for the effec-
tive potential, let us draw the link between the soft- and
hard-walled potentials. We chose to work with the potential
described by

Uy(x, y) = 1
2α(x)y2. (20)

Suppose that we modify this expression to

Uy(x, y) = 1
2 [α(x)y2]m, (21)

where m is a positive integer and then rearrange it into the
following form:

Uy(x, y) = 1

2

[(
y

w(x)/2

)2]m

, (22)

where we have defined w/2 = α−1/2.
Inserting Eq. (22) into the integral in Eq. (18) we find∫ ∞

−∞
dy e−βUy =

∫ ∞

−∞
dy exp

[
−β

2

(
y

w/2

)2m]
,

= w

2

∫ ∞

−∞
dz e−βz2m/2, (23)

where, in moving from the first line to the second, we have
changed variables to y = z/(w/2). It can be demonstrated that
the limiting value of the integral in Eq. (V) as m → ∞ is two.
Using this in Eq. (18), one obtains the same effective potential
as in Eq. (19).

By drawing an explicit link between hard- and soft-walled
potentials, we wish to point out that our results derived for
the case of a soft-walled potential have, in fact, much broader
relevance.

VI. CONCLUSIONS

We used the Fick-Jacobs equation to study the behavior
of particles diffusing in soft-walled channels of periodically

varying profile with potential energy barriers along their
length. Treating the variations in the profile of the channel as
entropic barriers to motion reduces the problem to diffusion
in an (approximate) one-dimensional potential.

For the cosine-based potential studied here, the position of
the potential energy minima relative to the points of minimum
curvature determines how the effective diffusion coefficient
responds to increasing the height of the energy barriers. If
the two coincide, then a monotonic decrease is observed,
and there is good quantitative agreement between numeri-
cal simulations and theory. If the two are perfectly out of
phase so that the energy minima coincide with the regions of
maximum curvature, then the effective diffusion coefficient
initially increases above its zero-amplitude value, resulting in
enhanced diffusion. Good quantitative agreement is observed
only when the energy barriers dwarf the entropic barriers. Be-
fore this point, lack of equilibration in the confining direction
precludes good agreement.

For a given channel it is possible to construct a series of
energy barriers which cancel out the entropic barriers; free
diffusion is then predicted. Numerical simulations confirm
that adding these barriers increases the rate of diffusion, and
decreasing the damping coefficient in the confining direction
leads ever closer to free diffusion.

Further work could explore the behavior of the system
when the curvature varies as a function of time [36,37]. Like-
wise, studying the motion of active particles might produce
some interesting results [38,39].
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