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We investigate the phase diagram and the nature of the phase transitions of three-dimensional lattice gauge-
Higgs models obtained by gauging the ZN subgroup of the global Zq invariance group of the Zq clock model
(N is a submultiple of q). The phase diagram is generally characterized by the presence of three different phases,
separated by three distinct transition lines. We investigate the critical behavior along the two transition lines
characterized by the ordering of the scalar field. Along the transition line separating the disordered-confined
phase from the ordered-deconfined phase, standard arguments within the Landau-Ginzburg-Wilson framework
predict that the behavior is the same as in a generic ferromagnetic model with Zp global symmetry, p being the
ratio q/N . Thus, continuous transitions belong to the Ising and to the O(2) universality class for p = 2 and p � 4,
respectively, while for p = 3 only first-order transitions are possible. The results of Monte Carlo simulations
confirm these predictions. There is also a second transition line, which separates two phases in which gauge
fields are essentially ordered. Along this line we observe the same critical behavior as in the Zq clock model, as
it occurs in the absence of gauge fields.
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I. INTRODUCTION

Classical and quantum Abelian gauge models have been
extensively studied as they provide effective theories for
superconductors, superfluids, and antiferromagnets [1–13].
They are also supposed to provide the effective theory for
the paradigmatic example of the quantum deconfined criti-
cality scenario [4], the transition between the Néel and the
valence-bond-solid (VBS) state in two-dimensional quantum
antiferromagnets; see Refs. [4,7–10] and references therein.
The phase diagram and the nature of the transition lines of
systems with U(1) gauge symmetry are controlled by several
properties of the model. Beside the obvious dependence on the
number of components of the scalar field, results depend on
the charge Q of the scalar field [14–18], the explicit absence
or presence of monopoles [19,20], the compact or noncompact
nature of the gauge field; see, e.g., Refs. [21–23] and refer-
ences therein.

In this work we study a different class of Abelian models,
in which the gauge group U(1) is replaced by its subgroup
ZN . Models with discrete local Z2 symmetry have been ex-
tensively studied. For instance, the Z2 gauge theory is the
paradigmatic example of a model undergoing a topological
transition, without a local order parameter [13,24,25], and
is often used as a toy model to understand nonperturbative
properties of lattice gauge models relevant for high-energy
physics; see, e.g., Refs. [26,27]. Moreover, they are relevant
to interpret critical transitions in magnetic systems [28–32]
and in liquid crystals [33,34]. Models with discrete Abelian
symmetries are also relevant for quantum computations. The
simplest example is the Z2 gauge theory coupled with Ising
Z2 spins [35–41]. Generalizations with Zq scalar fields have

also been considered. In the quantum setting, Zq scalar fields
can be realized by using parafermions [42]. When cou-
pled with specifically engineered ZN gauge fields, they may
provide new routes for implementing quantum-technology
devices (see Ref. [43] for a discussion and a list of relevant
references).

To define the model that we consider, we start from the Zq

clock model, in which the scalar fields are phases that take q
discrete values, and we gauge the ZN subgroup of the invari-
ance symmetry group Zq. Models with global Zq symmetry
occur in several contexts and have attracted significant interest
in recent years because of their connection with the Néel-
VBS transition in antiferromagnets; see Refs. [44–47] and
references therein. In the absence of gauge fields, for q � 4,
one observes the phenomenon of symmetry enlargement at
the transition. Large-scale universal properties become O(2)
invariant, the Zq anisotropy playing the role of a dangerously
irrelevant operator. It is important to stress that models with
discrete gauge and global symmetry groups are also relevant
in view of their possible realization using cold-atom quantum
technology. Indeed, in this framework it is essential that the
Hilbert space be finite. Possible implementations of Z2 gauge
systems have recently been proposed; see, e.g., Ref. [48].
Moreover, the discretization of the scalar degrees of freedom
leads to faster classical and quantum computations [49–52].

In this work we investigate the role that the gauge sym-
metry group plays in determining the phase diagram and the
nature of the transition lines. We find that all transition lines
where the matter fields show long-range correlations can be
interpreted in terms of an effective Landau-Ginzburg-Wilson
theory in which one only considers the dynamics of a scalar
order parameter. As a consequence, the universality class of
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the transitions only depends on the global symmetry group
and on the discrete nature of the scalar field. A second, impor-
tant issue is the question of the symmetry enlargement at the
transition. In other words, we would like to determine under
which conditions one can observe the O(2) critical behavior
in the presence of ZN local invariance. As we shall see, it also
occurs in the gauged model for p = q/N � 4.

The paper is organized as follows. In Sec. II we define the
model, while in Sec. III we specify the quantities that are de-
termined in the Monte Carlo simulations. The expected phase
diagram is discussed in Sec. IV, while the numerical results
are presented in Sec. V. Finally, in Sec. VI we summarize the
results and draw our conclusions. In the Appendices we report
some useful results. In Appendices A and B we report exact
results for the Z4 and Z8 models with Z2 gauge invariance. In
Appendix C we compute the relevant scaling functions for the
Ising and the XY model that are compared with the numerical
results in Sec. V.

II. THE MODEL

We consider a ZN gauge model coupled with a complex
scalar field defined on a cubic lattice. The fundamental fields
are complex phases wx, satisfying |wx| = 1, associated with
the sites of the lattice and phases σx,μ, |σx,μ| = 1, associated
with the lattice links. These phases can only take q and N
values, respectively, where q is an integer multiple of N . More
precisely, we set

w = exp(2π im/q), σ = exp(2π in/N ), (1)

where m = 0, . . . , q − 1, n = 0, 1 . . . N − 1.
The corresponding Hamiltonian is defined as

H = Hkin + Hg. (2)

The first term is

Hkin = −J Re
∑
x,μ

w̄xσx,μ wx+μ̂, (3)

where the sum is over all lattice sites x and directions μ (μ̂ are
the corresponding unit vectors). The second term is

Hg = −g
∑

x,μ>ν

Re �x,μν, (4)

where the sum is over all lattice plaquettes, and the plaquette
contribution is given by

�x,μν = σx,μσx+μ̂,ν σ̄x+ν̂,μσ̄x,ν . (5)

The partition function is

Z =
∑
z,σ

e−H/T . (6)

In the following we use β = J/T and κ = g/T as independent
variables. The model is invariant under local ZN and global Zq

transformations. The global symmetry group is Zq/ZN = Zp

with

p = q

N
. (7)

The model is well defined also if N is unrelated to q, but in
this case it is only invariant under ZM local transformations,

where M is the greatest common divisor of N and q. If N is an
integer multiple of q, then the model is invariant under local
Zq transformations and it is possible to integrate out the scalar
fields, performing the change of variable τx,μ = σx,μw̄xwx+μ̂.
One obtains the Hamiltonian of a ZN gauge model in the
presence of a linear gauge-symmetry breaking term,

H = −g
∑

x,μ>ν

�x,μν − J Re
∑
x,μ

τx,μ, (8)

where the plaquette is expressed in terms of the new field
τ . For N = q = 2 this model has been extensively studied
[26,27,32,35–41]. Here we shall focus on the case q > N .

III. THE OBSERVABLES

In our numerical study we consider cubic lattices of linear
size L. As we are dealing with topological transitions, one
should carefully choose the boundary conditions. We con-
sider open boundary conditions, to avoid slowly decaying
dynamic modes that are present in systems with periodic
boundary conditions. Indeed, in the latter case, the Polyakov
loops (the product of the gauge compact fields along non-
trivial lattice paths that wrap around the lattice) have a very
slow dynamics, especially in the gauge deconfined phase, if
one uses algorithms with local updates. For open boundary
conditions, Polyakov loops are not gauge invariant and thus
their dynamics is not relevant for the estimation of gauge-
invariant observables. A local algorithm is therefore efficient.
Of course, open boundary conditions give rise to additional
scaling corrections, due to the boundary, and thus larger sys-
tems are needed to obtain asymptotic results.

We simulate the system using a standard Metropolis algo-
rithm. We compute the energy densities and the specific heats

Ek = 1

V
〈Hkin〉, Ck = 1

V

(〈
H2

kin

〉 − 〈
Hkin

〉2)
,

Eg = 1

V
〈Hg〉, Cg = 1

V

(〈
H2

g

〉 − 〈
Hg

〉2)
,

(9)

where V = L3.
We consider the two-point correlation function of the field

w with charge Q:

GQ(x, y) = Re 〈(w̄xwy)Q〉,
= 〈cos [2πQ(mx − my)/q]〉, (10)

where mx is defined in Eq. (1). If Q is a multiple of N , then
the correlation function GQ(x, y) is gauge invariant. Then, we
define the Fourier transform

G̃Q(p) = 1

V

∑
x,y

eip·(x−y)GQ(x, y) (11)

(V is the volume), and the corresponding susceptibility and
correlation length,

χQ = G̃Q(0), (12)

ξ 2
Q ≡ 1

4 sin2(π/L)

G̃Q(0) − G̃Q(pm)

G̃Q(pm)
, (13)

where pm = (2π/L, 0, 0). Note that, since we use open
boundary conditions, the choice of pm is somewhat arbitrary.
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Other choices, as long as they satisfy |pm| ∼ 1/L, would be
equally valid.

In our FSS analysis we use renormalization-group invariant
quantities. We consider

Rξ,Q = ξQ/L, (14)

and the charge-Q Binder parameter

UQ =
〈
μ2

2,Q

〉
〈μ2,Q〉2

, μ2,Q =
∑

xy

Re (w̄xwy)Q. (15)

To determine the nature of the transition, one can consider the
L dependence of the maximum Cmax(L) of one of the specific
heats. At a first-order transition, Cmax(L) is proportional to the
volume L3, while at a continuous transition it behaves as

Cmax(L) = aLα/ν + Creg. (16)

The constant term Creg, due to the analytic background,
is the dominant contribution if α < 0. The analysis of the
L-dependence of Cmax(L) may allow one to distinguish first-
order and continuous transitions. However, experience with
models that undergo weak first-order transitions indicates that
in many cases the analysis of the specific heat is not conclu-
sive. The maximum Cmax(L) may start scaling as L3 at values
of L that are much larger than those at which simulations can
be actually performed. A more useful quantity is a Binder
parameter U , which has a qualitatively different behavior at
continuous and first-order transitions. In the latter case, the
maximum Umax(L) of U at fixed size L increases with the
volume [53,54]. On the other hand, U is bounded as L → ∞
at a continuous phase transition. In this case, in the FSS limit,
any renormalization-group invariant quantity R scales as

R(β, L) ≈ fR(X ) + L−ω fc,R(X ),

X = (β − βc)L1/ν,
(17)

where ω is a correction-to-scaling exponent. Thus, a first-
order transition can be identified by verifying that Umax(L)
increases with L, without the need of explicitly observing the
linear behavior in the volume.

In the case of weak first-order transitions, the nature of the
transition can also be understood from the combined analysis
of U and Rξ . At a continuous transition, in the FSS limit any
renormalization-group invariant quantity R scales as

R(β, L) = FR(Rξ ) + L−ωFc,R(Rξ ) + . . . , (18)

where FR(x) is universal and Fc,R(x) is universal apart from
a multiplicative constant. The Binder parameter U does not
obey this scaling relation at first-order transitions, because of
the divergence of U for L → ∞. Therefore, the order of the
transition can be understood from plots of U versus Rξ . The
absence of a data collapse is an early indication of the first-
order nature of the transition.

IV. PREDICTED PHASE DIAGRAM

Our simulations are consistent, as we shall see in Sec. V,
with the phase diagram shown in Fig. 1, with three different
phases. To clarify their nature and the universality class of the
different transition lines, it is useful to discuss some limiting
cases.

κ

β

0 ∞

∞

OD

DC
DD

Zq

ZN

Zp

FIG. 1. Phase diagram of the model. Three phases are present: a
disorderd-confined (DC) phase, a disordered-deconfined (DD) phase,
and an ordered-deconfined (OD) phase. For κ = 0 there is a fer-
romagnetic Zp (p = q/N) transition, for β = 0 a topological ZN

transition, and for κ → ∞ a ferromagnetic Zq transition.

In the limit κ → ∞, the gauge degrees of freedom freeze
and one can set σx,μ = 1 on all links (when open boudary
conditions are used this is also true in a finite volume), ob-
taining the ferromagnetic Zq clock model, which undergoes a
standard finite-β transition. For q = 2 and 4 it belongs to the
Ising universality class, for q = 3 it is of first order, while for
q � 5 the critical behavior is the same as in the XY model, see
Refs. [45,47,49].

Note that a Zq perturbation is irrelevant [55] at the XY
fixed point for any q � 4 and, in particular, also for q = 4.
Thus, XY critical behavior is generically expected in models
with Z4 global invariance and it has been indeed observed
in systems with soft Z4 breakings [46,56]. The standard Z4

clock model, which undergoes an Ising transition [45], is an
exception. It behaves differently, because the model can be
formulated in terms of two decoupled Ising spins on each
site. In generic Z4 systems with discrete fields, one can
still parametrize the model in terms of two Ising spins, but
now they are coupled by an energy-energy interaction. At
the decoupled Ising fixed point, this perturbation is relevant,
although with a rather small renormalization-group dimen-
sion [55] given by 2/νIs − 3 = 0.17475(2), if we use the
estimate νIs = 0.629971(4) of the Ising-model exponent [57].
The energy-energy interaction is the one that drives the system
towards the XY fixed point, if the transition is continuous.

For β = 0, there are no scalar fields and one obtains a
pure gauge ZN model, that can be related by duality [44]
to a ZN spin model, with a global ZN symmetry. The ZN

gauge theory undergoes a topological transition at κc, which
belongs to the same universality class as the corresponding
transition in the ZN spin clock model. Estimates of κc can
be found in Ref. [58]. For N = 2, we can use the results of
Ref. [59] for the standard Ising model and duality to estimate
κc = 0.761413292(12). For N → ∞, one has [18,58]

κc 	 κgc N2, (19)

where κgc = 0.076051(2) is the critical coupling of the in-
verted XY model [60].
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For κ = 0, one can sum over the gauge fields and obtain
a gauge-invariant Hamiltonian that depends on the fields wx

only. For generic values of N , the expression of the effective
Hamiltonian is complex and not very illuminating. However,
one expects the same critical behavior for any local Hamil-
tonian that is invariant under local ZN transformations. One
such Hamiltonian is

Heff = −J
∑
x,μ

Re (w̄x+μ̂wx)N

= −J
∑
x,μ

cos

[
2πN

q
(mx+μ̂ − mx)

]
. (20)

If we express mx = pn1,x + n2,x, with n1,x = 0, . . . N − 1,
n2,x = 0, . . . p − 1 (p = q/N), then we obtain the Hamilto-
nian of a ferromagnetic Zp clock model (the Ising model for
p = 2). Analogously, the correlation function GN (x, y) in the
model with Hamiltonian Eq. (20) is equivalent the correlation
function G1(x, y) in the Zp clock model. For N = 2 and
q = 4, one can show that the Hamiltonian Eq. (2) is exactly
equivalent to Eq. (20) for κ = 0, see Appendix A, and thus, in
this case, the relation of the gauge model with the Ising model
is exact.

On the basis of the previous argument we predict the
universality class of the transition at κ = 0 to depend only
on the ratio p = q/N , and to be the same as that of the Zp

clock model (as we discuss below, for p 
= 4). Therefore, if
the transitions are continuous, then they should belong to the
Ising universality class for p = 2 and to the XY universality
class for p � 5. For p = 3, instead, we expect a discontinuous
transition as in the Z3 clock model. For p = 4, the transition
in the Z4 clock model is not the generic one expected in Z4

invariant systems. In Appendix B we have performed an exact
calculation for the Z8 model with Z2 gauge invariance. For
κ = 0, the model can be rewritten in terms of two Ising spins
ρ (1)

x and ρ (2)
x , with Hamiltonian

Heff =
∑
x,μ

[
B(β )ρ (1)

x ρ
(1)
x+μ̂ + B(β )ρ (2)

x ρ
(2)
x+μ̂

+C(β )ρ (1)
x ρ

(1)
x+μ̂ρ (2)

x ρ
(2)
x+μ̂

]
, (21)

where the functions B(β ) and C(β ) can be derived using
the results of Appendix B. The decoupling of the two Ising
systems that occurs in the Z4 clock model does not occur here
[C(β ) does not vanish] and therefore we expect XY behavior,
if the transition is continuous. The same result is expected for
any q and any N , with p = 4.

Finally, several results [34] are available for N = 2 in the
limit q → ∞, in which wx is an unconstrained phase and the
global invariance group is U(1). The phase diagram is similar
to the one reported in Fig. 1. There are three different phases
that can be characterized by the behavior of the gauge and
scalar degrees of freedom [34]. For small β and κ , gauge
modes are confined, while they are deconfined in the other
two phases. As for the scalar degrees of freedom, they are dis-
ordered in the two small-β phases, while they are ordered (the
Zq symmetry is broken) in the large-β phase. The three phases
are separated by three transition lines. Along the transition
lines that separate the large-β ordered-deconfined (OD) phase
from the two low-β phases, transitions belong [34] to the XY

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

U
N

Rξ,N

p = 2 L=24,N=3
L=32,N=3
L=24,N=5
L=32,N=5
L=48,N=5

Ising

FIG. 2. Estimates of UN versus Rξ,N for the models with N = 3,
q = 6 and with N = 5, q = 10, at fixed κ = 0.4. In both cases p =
q/N = 2. We also report the universal curve Fξ,1(Rξ,N ) computed in
the Ising model (“Ising”).

universality class, as in the models obtained for κ → 0 and
κ → ∞. Along the line that separates the disorderd-confined
(DC) phase from the disordered-deconfined (DD) phase one
expects the same behavior as in the ZN gauge model obtained
for β = 0.

It is conceivable, and we shall verify it in the next section,
that the same phase diagram holds for the models we consider
here as long as q > N . Moreover, as in the case q = ∞, we
expect the critical behavior along the three lines to be the
same as at the corresponding endpoint at β = 0, κ = 0, and
κ → ∞. The only exceptions might occur for N = 4, along
the DC-DD line and for q = 4 along the DD-OD line. In these
cases, it is a priori possible to observe XY behavior instead
of Ising behavior. However, since the crossover exponent of
the relevant perturbation that drives the system out of the
decoupled Ising fixed point is rather small [55], significant
crossover effects may be present.

V. NUMERICAL RESULTS

A. Small-κ transition line

Let us now discuss the behavior along the DC-OD transi-
tion line. For this purpose we have performed simulations at
fixed κ , varying β. In all cases, we set κ = 0.4, which, on the
basis of the estimates of κc at β = 0 reported in Ref. [58],
should guarantee that we are studying a transition belonging
to the DC-OD line. As we mentioned, we expect the phase
behavior to depend only on p = q/N .

1. Models with p = 2

For p = 2 we have performed simulations for (q, N ) =
(4, 2), (6, 3), and (10,5). In Fig. 2 we report we report UN

versus Rξ,N = ξN/L for N = 3 and 5, together with the scaling
function FU,1(Rξ,N ), where FU,1(x) is the asymptotic scaling
function that expresses U1 in terms of Rξ,1 in the Ising model
(the computation is discussed in Appendix C). For N = 3, the
data essentially fall on top of the Ising scaling curve, while
the results for N = 5 show tiny deviations that decrease as
L increases. To provide a better check that the asymptotic
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Δ 
Lω

Rξ,5

N=5,q=10

L=16
L=24
L=32

FIG. 3. Estimates of Lω� versus Rξ,N for N = 5, q = 10 (p =
q/N = 2), at fixed κ = 0.4. The function � is defined in Eq. (22). We
use the correction-to-scaling exponent for Ising systems, ω = 0.83.

behavior for N = 5 is the same as in the Ising model, we have
determined the corrections, defining

�(Rξ,N ) = UN − FU,1(Rξ,N ). (22)

If the transition belongs to the Ising universality class, then
the estimates of Lω�(Rξ,N ) should approximately belong to a
single curve, provided one uses ω = 0.8303(18), which is the
correction-to-scaling exponent for the Ising universality class
[57,61]. The results are shown in Fig. 3. For N = 5, q = 10
we observe a nice scaling. Moreover, as expected, the shape
of the curve is similar to that observed for the Ising model, see
Appendix C.

As an additional check, we have performed combined fits
of UN and Rξ,N to Eq. (17), parametrizing fR(x) and fc,R(x)
with polynomials. If we let ν be a free parameter and fix ω =
0.83 (the value for the Ising universality class), then we obtain
ν = 0.62(1) (N = 3) and 0.64(1) (N = 5). These results are
consistent with the Ising prediction ν = 0.629971(4) [57,61].
To estimate the position of the critical point, we have then
performed fits fixing ν = 0.629971. We obtain βc =

 1

 1.5
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

U
2

Rξ,2

N=2,q=4
L=24
L=32
L=48
L=64
Ising

FIG. 4. Estimates of U2 versus Rξ,2 for the model with N = 2,
q = 4 at fixed κ = 0.4. Results are compared with the scaling func-
tion computed in the Ising model, as in Fig. 2.

-3

-2
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 0
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Δ 
Lω

Rξ,2

N=2,q=4 L=16
L=24
L=32
L=48
L=64

FIG. 5. Estimates of Lω� versus Rξ,2 for N = 2, q = 4 at fixed
κ = 0.4. The function � is defined in Eq. (22). We use the correction-
to-scaling exponent for Ising systems, ω = 0.83.

1.4546(1) and βc = 4.5660(7) for N = 3 and N = 5, respec-
tively.

Finally, we consider the case N = 2 and q = 4. The esti-
mates of U2 versus Rξ,2 are reported in Fig. 4. Data are close
to the Ising curve. However, at a closer look, deviations from
the Ising curve do not decrease as L increases. This is evident
from Fig. 5, where we report the deviations from the Ising
curve. For 0.2 � Rξ,2 � 0.35 deviations apparently increase
as L increases.

To clarify the nature of the transition, we have analyzed
U2 and Rξ,2 as a function of X = (β − βc)L1/ν . Again, results
are not consistent with an Ising behavior. Indeed, repeating the
combined analysis of UN and Rξ,N , as we did before, we obtain
ν = 0.56(1) if we consider all data, and ν = 0.54(1), if only
results with L � 24 are included. Additional information on
the critical behavior is provided by the analysis of the specific
heats Cg and Ck . They have a pronounced peak that increases
with L, see Fig. 6 for a plot of Ck . The maximum increases ap-
parently as L0.8, much more than in the Ising model, in which
it increases as Lα/ν with α/ν ≈ 0.17. Finally, we compute the

 0
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 50

 60

 70

 0.696  0.698  0.7  0.702  0.704  0.706  0.708  0.71

C
k

β

N=2,q=4 L=24
L=32
L=48
L=64

FIG. 6. Estimates of the specific heat Ck versus β for N = 2, q =
4 at fixed κ = 0.4.
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FIG. 7. Probability distribution of the order parameter μ2,2/V
(V = L3 is the volume) for the model with N = 2, q = 4. Results
for β = 0.7007, 0.7010, 0.7015 at fixed κ = 0.4. Here L = 64.

distributions of the order parameter μ2,2 defined in Eq. (15). In
Fig. 7 we report the results for three values of β and for lattices
of size L = 64. For β = 0.7010 we observe the presence of
two maxima, a hint for a first-order transition: a very sharp
one for μ2,2 ≈ 0 and a broad one at a finite value of μ2,2.

Collecting all results we conclude that the critical behavior
along the DC-OD transition line for N = 2 is not the same
as for N � 3. The most likely possibility is that the Ising
transition that occurs for κ = 0 (for this value of the gauge
coupling, the model can be mapped exactly onto the Ising
model, see Appendix A) turns into a first-order transition at
some critical value κ∗: for κ < κ∗ we have an Ising transition,
for κ > κ∗ the transition becomes of first order, while for
κ = κ∗ there is a tricritical point with mean-field exponents
(in particular, ν = 1/2) with logarithmic corrections. We are
not able to estimate κ∗. We can only infer from the data that
κ∗ should be smaller than, but not very much different from,
κ = 0.4, the value at which simulations have been performed.
Indeed, the numerical data in Fig. 4 are close to the Ising uni-
versal curve, indicating the presence of strong Ising crossover
effects that can be explained by the presence of a nearby Ising
transition line. Moreover, the estimates of the critical exponent
ν and of the specific-heat exponent α/ν are not far from the
values expected for a tricritical point, ν = 1/2 and α/ν = 1.

The present results can also be used to predict the behavior
of two Ising systems that interact by means of a Z2 gauge field
(this is the equivalent interpretation of the Z4 model with Z2

gauge invariance, see Appendix A). The gauge interaction, if
sufficiently strong, is able to drive the system far from the
Ising fixed point, giving rise to a first-order transition.

2. Models with p = 3

For p = 3 we have performed simulations for (q, N ) =
(6, 2) and (9,3). As expected, in all cases data suggest a first-
order transition, at βc ≈ 0.875 and βc ≈ 1.89, respectively, as
in the Z3 model. To clarify the nature of the critical behavior,
we have studied the behavior of the Binder parameters UN

as a function of Rξ,N . The results for the two models are
reported in Fig. 8. In both cases, we do not observe scaling.
As L increases, the estimates of UN at fixed Rξ,N apparently
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FIG. 8. Estimates of UN versus Rξ,N for N = 2, q = 6 (top) and
N = 3, q = 9 (bottom), at fixed κ = 0.4. In both cases p = q/N = 3.

increase, especially for 0.07 � Rξ,N � 0.15. In particular, the
maximum Umax(L) slightly increases as a function of L. These
results are all consistent with a first-order transition. It is clear
that a convincing identification of the first-order nature of the
transition requires significantly larger lattices. However, given
that these conclusions are already in agreement with what is
expected on the basis of the arguments of Sec. IV, we have
not further pursued this issue.

3. Models with p � 4

For p = 4 we have performed simulations for (q, N ) =
(8, 2) and (12,3), while for p = 5 we have performed simu-
lations for (q, N ) = (10, 2) and (15,3). For both values of p,
data are consistent with an XY behavior; see Fig. 9. While for
p = 5 this is the same behavior as observed in the Z5 model,
for p = 4 we do not observe the Ising behavior characterizing
the clock Z4 model. On the one side, this is expected, since in
generic models with Z4 symmetry breaking one expects the
emergence of an enlarged O(2) symmetry. On the other side,
it is somewhat surprising to observe such a good agreement,
given that we expect very slowly-decaying corrections (behav-
ing approximately as L−0.1) due to the spin-four operator that
breaks the O(2) symmetry down to Z4. We have no evidence
of such corrections in the plots of UN versus Rξ,N .

To estimate the critical point βc we have performed fits
to Eq. (17). Assuming the transition to belong to the XY
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FIG. 9. Estimates of UN versus Rξ,N for N = 2, q = 8 and N = 3,
q = 12 (data with p = 4, top) and for N = 2, q = 10 and N = 3, q =
15 (data with p = 5, bottom), at fixed κ = 0.4. Results are compared
with the scaling function appropriate for the XY universality class,
see Appendix C.

universality class, we have fixed ν = 0.6717 and ω = 0.789
[49,62,63]. Results show a very tiny dependence on q. For
N = 2 we obtain βc = 0.8869(1) and 0.8869(2) for q = 8
and 10, respectively. For N = 3, we have βc = 1.9160(15),
1.9150(15) for q = 12 and 15.

4. Summary and Landau-Ginzburg-Wilson effective theory

The numerical simulations confirm the predictions of
Sec. IV. The only relevant variable along the DC-OD line
is the ratio p = q/N . For p = 2 we confirm that the models
belong to the Ising universality class, with one only exception,
the model with q = 4 and N = 2, which undergoes a first-
order transition, at least for not too small values of κ . For
p = 3, the transition is apparently of first order, as in the Z3

clock model. For p � 4, we observe XY behavior in all cases,
including p = 4. Note that in the latter case the Z4 clock
model has an Ising transition due to a peculiar factorization
of the degrees of freedom, see Appendix A.

These results have a very simple interpretation in the
Landau-Ginzburg-Wilson (LGW) framework. In this ap-
proach, one assumes that the critical behavior is completely
determined by the gauge-invariant scalar modes, so that it
can be determined by considering a gauge-invariant order pa-
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FIG. 10. Estimates of the gauge specific heat Cg as a function of
κ at fixed β = 0.2. Top: results for N = 2 and q = 6. Bottom: results
for N = 3 and q = 9. An extrapolation of the position βmax of the
maximum of Cg (we use βmax = βc + bL−s, with s = 1/νIsing = 1.59
for N = 2 and with s = d = 3 for N = 3) gives βc ≈ 0.76 and βc ≈
1.08 for N = 2 and 3, respectively.

rameter and studying the corresponding effective Hamiltonian
HLGW that is invariant under the global symmetry group of
the model. For the model we consider, the microscopic order
parameter is wN and the global symmetry group is Zq/ZN =
Zp. For p = 2, wN is real and therefore, we must consider
a LGW model for a scalar real field with Z2 global invari-
ance. Such a model describes the standard Ising behavior. For
p > 2, wN is a complex number, so that the fundamental field
is a complex field ψ . The effective Hamiltonian density is

HLGW =
(∑

μ

∂μψ̄∂μψ

)
+ r|ψ |2 + u|ψ |4

+ gp(ψ p + ψ̄ p) + . . . (23)

For p > 4, the terms with coefficient gp are irrelevant, and
thus we obtain the O(2)/XY LGW model. For p = 4, the
Hamiltonian Eq. (23) is equivalent to that of the so-called
cubic model [64] for a two-component real field. A RG anal-
ysis shows that continuous transitions in this class of models
belong to the XY universality class: the cubic-symmetric per-
turbation proportional to gp is irrelevant [64] at the XY fixed
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FIG. 11. Estimates of U2 versus Rξ,2 along the DD-OD line for
q = 4. Results for N = 2 along the line κ = 1. We also report results
for Z4 clock model.

point. For p = 3, the approach predicts a first-order transition
because of the presence of a cubic term.

B. Large-κ transition line

We have studied the behavior along the DD-OD line for
two values of N , N = 2, and N = 3. We have fixed κ = 1 and
κ = 1.5 in the two cases, respectively. These two values have
been chosen on the basis of the numerical estimates for the
location of the topological DC-DD transition line. For N = 2,
we have a transition at κc ≈ 0.76, both for β = 0 (see Sec. IV)
and for β = 0.2 (numerical results for q = 6, consistent with
an Ising transition, are given in Fig. 10). For N = 3, we have
a transition at κc ≈ 1.08 both for β = 0 [58] and for β = 0.2
(see Fig. 10). In both cases, along the DC-DD transition line,
κ is essentially constant. This guarantees us that, for the two
chosen values of κ , we are considering transitions along the
DC-DD line.

We have performed simulations for (q, N ) = (4, 2), (6,2),
and (6,3) observing an ordering transition at βc = 0.4437(1),
0.4541(3), 0.4555(10), respectively. To further check that the
transition belongs to the DD-OD line we have determined the
gauge energy Eg. Close to the transition we find Eg ≈ 2.98,
2.99 for N = 2 and 3, respectively; most of the plaquettes are
indeed equal to 1 (for κ → ∞ we have Eg = 3).

As we have discussed in Sec. IV, we expect the model
to behave as the ungauged Zq model. Our results are in full
agreement. In Fig. 11 we report the results for U2 versus Rξ,2

for q = 4 and compare them with the analogous results for
the Z4 model. We observe a very good agreement. Clearly,
the presence of the gauge interaction is unable to destabi-
lize the decoupled Ising behavior, as it does along the the
DC-OD transition line. This result is not totally unexpected,
as in the deconfined phase gauge fields are not expected to
play a role (plaquettes are mostly equal to 1). In Fig. 12 we
report results for the Binder parameters for q = 6. Since the
transition in the Z6 clock model is in the universality class of
the XY transition, one might think of comparing the scaling
curves with those computed in the XY model. However, this
is only possible for U1 and U2, but not for U3, as discussed
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FIG. 12. Estimates of UN versus Rξ,N along the DD-OD line, for
q = 6. Resulta for N = 2 along the line κ = 1 (top), and for N = 3
along the line κ = 1.5 (bottom). In the upper panel we also report
results for the XY model, in the lower panel for the Z6 clock model.

in Appendix C. Therefore, the results for U3 obtained in the
gauge-scalar model are directly compared with the Z6 results.
In all cases, we observe very good agreement, confirming the
irrelevance of the gauge coupling along the DD-OD line

VI. CONCLUSIONS

In this work we have studied a gauge-Higgs model with
discrete scalar fields and ZN gauge invariance. It is obtained
by gauging the ZN subgroup of the global invariance group
of the Zq clock model (N is a submultiple of q), in which the
scalar fields are phases that take the q values exp(2π in/q),
n = 0, . . . q − 1. The resulting model is invariant under local
ZN and global Zq/ZN = Zp (p = q/N) transformations. The
phase diagram of the model is reported in Fig. 1. There are
three different transition lines. On one line one expects the
topological transitions that characterize the pure gauge ZN

theory. We have studied in detail the behavior of the model
along the other two transition lines, along which the scalar
field orders. A summary of the models investigated is reported
in Table I.

The critical behavior along the small-κ transition line that
separates the disordered-confined phase from the ordered-
deconfined phase turns out to be in full agreement with
the predictions of the Landau-Ginzburg-Wilson approach.
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TABLE I. Summary of the results. For each q, N , and κ we report
the critical value βc and the universality class of the transition (last
column). Along the DC-OD transition line, as q increases at fixed
N , βc is essentially independent of q for p = q/N � 4. Along the
DD-OD line, βc is little dependent on q, N , and κ .

q N κ βc

DC-OD transition line
4 2 0.4 ≈ 0.70 First order
6 2 0.4 ≈ 0.875 First order
8 2 0.4 0.8869(1) XY
10 2 0.4 0.8869(2) XY
6 3 0.4 1.4546(1) Ising
9 3 0.4 ≈ 1.89 First order
12 3 0.4 1.9160(15) XY
15 3 0.4 1.9150(15) XY
10 5 0.4 4.5660(1) Ising

DD-OD transition line
4 2 1.0 0.4437(1) Z4/Ising
6 2 1.0 0.4541(3) XY
6 3 1.5 0.4555(10) XY

Criticality depends only on the global Zp symmetry group
of the effective theory, so that the model behaves as a ferro-
magnetic system with a one component complex field and Zp

global invariance. We thus predict that continuous transitions
belong to the Ising universality class for p = 2 and to the
O(2) universality class for any p � 4, the Zp breaking terms
being dangerously irrelevant perturbations. For p = 3 instead
only first-order transitions are possible. Numerical data con-
firm these predictions quite precisely. In particular, we verify
that symmetry enlargement occurs at the transition, as in the
standard clock model. The condition q � 4 is now replaced
by p = q/N � 4, consistently with the idea that p counts the
effective number of degrees of freedom per site.

It is interesting to remark that a similar result was ob-
tained for a very different quantum system in Ref. [43]. These
authors considered a one-dimensional quantum chain with
Z6 parafermions and showed that, by gauging a subgroup
of the symmetry group, one could change the nature of the
topological continuous transition. They verified numerically
that, in the presence of ZN (N = 2, 3) gauge fields, the tran-
sition belonged to the universality class of the Zp-invariant
(p = q/N , with q = 6) two-dimensional classical spin models
(the Ising model and the three-state Potts model for p = 2 and
3, respectively). These conclusions are in full agreement with
our results.

For large κ , the OD-DD line separates two phases, in which
the gauge fields are deconfined, see Fig. 1. On this line, gauge
fields do not play any role (modulo gauge transformations, we
have σx,μ = 1 on most of the links), and the model behaves as
the Zq clock model, irrespective of the values of N .

APPENDIX A: RELATION BETWEEN THE Z4 MODEL
WITH Z2 GAUGE INVARIANCE AND THE ISING MODEL

In this Appendix, we relate the Z4 model with Z2 gauge
invariance with an Ising system. We rewrite wx = eiθx and
parametrize the field in terms of two Ising spins τ (1)

x and

τ (2)
x , as

cos θx = 1
2

(
τ (1)

x + τ (2)
x

)
, sin θx = 1

2

(
τ (1)

x − τ (2)
x

)
. (A1)

In terms of the Ising spins, the Hamiltonian Hkin becomes

1

T
Hkin = −β

2

∑
xμ

(
τ (1)

x τ
(1)
x+μ̂ + τ (2)

x τ
(2)
x+μ̂

)
σx,μ̂, (A2)

which shows that the model is equivalent to two Ising systems
coupled by the gauge field. Correspondingly, the correlation
functions GQ(x, y) become

G1(x, y) = 1
2

〈
τ (1)

x τ (1)
y + τ (2)

x τ (2)
y

〉
,

G2(x, y) = 〈
τ (1)

x τ (2)
x τ (1)

y τ (2)
y

〉
. (A3)

In the absence of the gauge fields, i.e., in the Z4 clock model,
the two Ising models decouple, and G1(x, y) corresponds to
the two-point function in the Ising model. In the same limit,
the Binder parameter U1 satisfies

U1 = 1
2UIs + 1

2 , (A4)

where UIs is the Binder parameter in the Ising model.
For κ → 0, the gauge fields can be integrated out. If a and

b can only take the values ±1, then we can easily prove the
identity ∑

σ=±1

eKaσ eKbσ = 2 cosh2 K + 2ab sinh2 K. (A5)

If we define β̃ and A as

tanh β̃ = tanh2 β

2
, A = 2

(
cosh2 β

2
+ sinh2 β

2

)1/2

, (A6)

and a new Ising spin ρx = τ (1)
x τ (2)

x , then we can rewrite the
partition function as

Z = A3L2L
∑
ρx

e−β̃ Heff , Heff = −
∑
x,μ

ρxρx+μ̂. (A7)

We have thus obtained an Ising model for a single spin
variable at inverse temperature β̃, The mapping allows us to
compute the critical temperature. Using β̃c = 0.221654626(5)
[59], we obtain βc = 1.01246856(1).

The phase diagram of the model is reported in Fig. 13. As
discussed in the text, a tricritical point occurs on the DC-OD
line. Little is known on the behavior of the other two transition
lines close to the multicritical point. The simulated points
at β = 0.2 (DC-DD line) and at κ = 1 (DD-OD line) are
consistent with an Ising transition.

APPENDIX B: THE Z8 MODEL WITH Z2 GAUGE
INVARIANCE

One can generalize the considerations of Appendix A to
the Z8 clock model. In this case the field wx = eiθx can be
parametrized in terms of three Ising spins τ (i)

x , i = 1, 2, 3, so
that

cos θx = 1

8

(
τ (1)

x + τ (2)
x

)[
2 +

√
2 − (2 −

√
2)τ (3)

x

]
−

√
2

8

(
τ (1)

x − τ (2)
x

)(
1 + τ (3)

x

)
,
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FIG. 13. Phase diagram for q = 4 and N = 2. Along the DC-OD
line, the transitions belong to the Ising universality class for κ < κ∗

and are of first order for κ > κ∗ up to the multicritical point (MCP).
We have no estimates of the tricritical point (located at κ = κ∗

along the DC-OD line, red triangle in the figure): the numerical
simulations suggest 0 < κ∗ � 0.4. The simulated points correspond
to the black dots, while the lines are only meant to guide the eye. We
note that the three transition lines end at κ = 0, β = 1.01246856(1)
(DC-OD line), κ = ∞, β = 0.443309252(10) (DD-OD line), and
κ = 0.761413292(12), β = 0 (topological DC-DD transition line).

sin θx = 1

8

(
τ (1)

x − τ (2)
x

)[
2 +

√
2 − (2 −

√
2)τ (3)

x

]
+

√
2

8

(
τ (1)

x + τ (2)
x

)(
1 + τ (3)

x

)
. (B1)

Under a gauge transformation wx → −wx, the three Ising
spins transform as

τ (1)
x → −τ (1)

x , τ (2)
x → −τ (2)

x , τ (3)
x → τ (3)

x . (B2)

Using this parametrization, we can rewrite

cos(θx − θy) = (
τ (1)

x τ (1)
y + τ (2)

x τ (2)
y

)(
a + bτ (3)

x τ (3)
y

)
+ c

(
τ (3)

x − τ (3)
y

)(
τ (1)

y τ (2)
x − τ (1)

x τ (2)
y

)
, (B3)

where

a = 1

4
√

2
(
√

2 + 1), b = 1

4
√

2
(
√

2 − 1), c = 1

4
√

2
.

(B4)
Let us now consider the model in the presence of a Z2 gauge
field σ . At κ = 0 we can integrate out the gauge field. We
compute

Zx,y =
∑

σ=±1

eβσ cos(θx−θy ), (B5)

obtaining

Zx,y = 2 cosh2 βa cosh2 βb cosh4 βc(1 + A1

+ A2τ
(3)
x τ (3)

y + A3τ
(1)
x τ (1)

y τ (2)
x τ (2)

y

+ A4τ
(1)
x τ (1)

y τ (2)
x τ (2)

y τ (3)
x τ (3)

y

)
, (B6)
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FIG. 14. Bottom: Data of U1 versus Rξ,1 for the Ising model and
extrapolated scaling function Fξ,1(Rξ,1) (“extrap”). Top: Plot of Lω�

versus Rξ,1, where � is defined in Eq. (22) and ω = 0.83.

where

A1 = −2
(
t2
a + t2

b

)
t2
c + t2

a t2
b

(
1 + t4

c

) + t4
c ,

A2 = 2tatb
(
1 − t2

c

)2 − 2t2
c

(
1 − t2

a

)(
1 − t2

b

)
,

A3 = (
t2
a + t2

b

)(
1 + t4

c

) − 2t2
c

(
1 + t2

a t2
b

)
,

A4 = 2tatb
(
1 − t2

c

)2 + 2t2
c

(
1 − t2

a

)(
1 − t2

b

)
, (B7)

and we have defined ta = tanh βa, . . . An important property
of the result is the relation A3 = A4, which is not apparent
from the previous expressions. To prove it, it is necessary to
express ta and tb in terms of tc and td , where d = 1/4. We end
up with

A3 = A4 = 2
(
1 − t2

c

)4
t2
d(

1 − t2
c t2

d

)2 . (B8)

Equation (B6) shows that the model can be parametrized in
terms of two Ising fields. We define

ρ (1)
x = τ (1)

x τ (2)
x τ (3)

x , ρ (2)
x = τ (1)

x τ (2)
x , (B9)

obtaining the relation

Zx,y = K
[
1 + A1 + A2ρ

(1)
x ρ (1)

y ρ (2)
x ρ (2)

y

+ A3
(
ρ (1)

x ρ (1)
y + ρ (2)

x ρ (2)
y

)]
, (B10)
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FIG. 15. Bottom: Data of U1 versus Rξ,1 for the Z20 model and
extrapolated scaling function Fξ,1(Rξ,1). Top: Plot of Lω� versus Rξ,1

where � is defined in Eq. (22) and ω = 0.789 is the correction-to-
scaling exponent for the XY universality class [49].

where K is a constant. Since A2
3 
= A2(1 + A1), we obtain two

Ising models interacting by means of an energy-energy term.
Moreover, the model is symmetric under the exchange of the
two fields. In terms of the fields ρ (i), the Q = 2 correlation
function takes a very simple form:

G2(x, y) = 1
2

〈
ρ (1)

x ρ (1)
y + ρ (2)

x ρ (2)
y

〉
. (B11)

The critical behavior of model Eq. (B10) is well known [64].
The decoupled Ising fixed point (the one that controls the
behavior of the Z4 clock model) is unstable. If the transition
is continuous, then it is controlled by the XY fixed point.

APPENDIX C: ISING AND XY SCALING FUNCTIONS
FOR OPEN BOUNDARY CONDITIONS

As we have discussed in the text, depending on the values
of N and q, we expect to observe either Ising or XY behavior
in all cases in which the transition is continuous. To deter-
mine the Ising scaling curve for U1 as a function of Rξ,1 we
have performed runs on lattices of size L = 16, 32, 64, 128,
determining U1 and ξ1. The results are shown in the lower
panel of Fig. 14. Scaling corrections are significant and thus,
to obtain the asymptotic scaling function Fξ,1(Rξ,1), we need
to perform a fit including scaling corrections. We fit the data
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FIG. 16. Bottom: Estimates of U2 versus Rξ,2 for the Z20 model
and extrapolated scaling function Fξ,2(Rξ,2). Top: Lω� versus Rξ,2

where � is defined in Eq. (22) and ω = 0.789 is the correction-to-
scaling exponent for the XY universality class [49].

to Eq. (18), parametrizing the functions F (x) and Fc(x) with
polynomials in x. We fix ω = 0.83, which is the value pre-
dicted for the Ising universality class in Refs. [57,61]. The
resulting curve is reported in the lower panel of Fig. 14.
To verify the quality of the result, we have considered the
deviations � defined in Eq. (22). In the upper panel of Fig. 14,
we report Lω�. The data scale nicely on a single curve with
good precision, confirming that our estimate of the asymptotic
scaling function Fξ,1(Rξ,1) is reliable and providing us with
an estimate of the correction-to-scaling function Fc,ξ ,1(Rξ,1).
Note that this function is universal apart from a multiplicative
rescaling, and thus we expect scaling corrections to increase
monotonically up to Rξ,1 ≈ 0.25 in all models that belong to
the Ising universality class. We have also determined the value
of Rξ,1 and U1 at the critical point, by performing combined
fits of the two quantities to

R = f (X ) + L−ω fc(X ), X = (β − βc)L1/ν, (C1)

using βc = 0.221654626(5) [59] and ν = 0.629971(4) [57].
We obtain

U ∗
1 = 2.72(2), R∗

ξ,1 = 0.086(1). (C2)

These results apply to cubic-symmetric lattices with open
boundary conditions. They are significantly different from
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those for periodic boundary conditions: in this case, for in-
stance, U ∗

1 = 1.60356(15) [59].
Let us now discuss the computation of the scaling functions

that express UQ as a function of Rξ,Q for the XY universality
class. To speed up the calculation, we have considered the Z20

clock model and we have performed extensive simulations on
lattices of size up to L = 64. We report here the calculation
of the scaling functions for Q = 1 and Q = 2. Also in this
case, corrections to scaling are sizable, and therefore we have
applied the same strategy used in the Ising case. The scaling
functions have been parametrized using polynomials and we
have used ω = 0.789 [49]. Results are reported in Figs. 15
and 16, together with a scaling plot of the deviations. Devia-
tions scale nicely, confirming the reliability of the asymptotic
cirves. We have also determined the values of the two param-
eters at the transition:

U ∗
1 = 1.84(2), R∗

ξ,1 = 0.087(2), (C3)

U ∗
2 = 2.02(1), R∗

ξ,2 = 0.022(2). (C4)

The results we have obtained for the Ising and XY model
are the relevant ones that shall be compared with the numeri-
cal data for the gauge-scalar model. There are, however, a few
subtleties that should be taken into account.

First, in the Z4 clock model, although the transition be-
longs to the Ising universality class, the relation between Z4

and Ising correlation functions and Binder parameters is not
trivial, as discussed in Appendix A. Relation Eq. (A4) allows
us to relate the Binder parameter U1 in the Z4 model in terms
of the Ising Binder parameter. We have also determined the
Z4 Binder parameter U2 and Rξ,2 that are associated with Ising
replica correlations. At the critical point, performing the same
analysis we did in the Ising case, we obtain

U ∗
2 = 3.09(1), R∗

ξ,2 = 0.032(1). (C5)

For q � 5, the transition in the Zq clock model belongs to the
XY universality class. However, this does not imply that all
correlation functions GQ(x, y) are the same in the Zq clock
model and in the XY model. For instance, in the Zq model we
have the relations

GQ(x, y) = GQ′ (x, y), Q′ = |Q − nq|, (C6)

for any integer n. These relations do not hold in the XY model.
Similar relations hold for the Binder parameters UQ. We have
studied this issue in the Z6 clock model, verifying in this case
that the scaling function of UQ versus Rξ,Q is the same in the
Z6 and in the XY model for Q = 1, 2, while it differs for
Q = 3. The different behavior can be easily proved by noting
that, in the disordered limit (Rξ,3 → 0), we have U3 = 3, 2
in the Z6 model and in the XY model, respectively. Similar
arguments can be used for any q, to show that UQ differs in
the Zq model and in the XY model for Q � q/2.
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