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Information processing second law for an information ratchet with finite tape
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We model a class of discrete-time information ratchet with a finite tape and explore its thermodynamic
consequence as a Maxwell demon. We found that, although it supports the operational regime of an engine
or eraser, it cannot typically sustain these thermodynamic functionalities due to eventual equilibration as a result
of the finite information capacity of the tape. Nonetheless, cumulative work can be accrued or expended through
successive tape scans and we prove that at all time the ratchet obeys the information processing second law
(IPSL). Unlike the IPSL for the infinite-tape ratchet which operates only at the stationary state, the IPSL here is
applicable also at the transient phase of the ratchet operation. We explore two ratchet designs with the single-state
perturbed coin (PC) ratchet being the simplest ratchet without memory, while the double-state modified Boyd’s
(MB) ratchet is the simplest ratchet with memory. Our analysis shows that the MB ratchet can harness correlation
to accumulate more work by having a larger time constant to reach steady state relative to the PC ratchet.
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I. INTRODUCTION

Purportedly a violation of the second law of thermo-
dynamics by Maxwell, his eponymous demon had initially
baffled physicists who sought to overcome its challenge to
the paradigm prescribed by classical thermodynamics [1,2].
Notwithstanding the eventual resolution by Landauer [3] and
Szilard [4] that heat dissipation is inevitable with information
erasure, it had generated new insights in this burgeoning field
at the intersection between information science and statistical
physics [5–8]. A critical knowledge of this new understanding
will not only augment existing theoretical frameworks [9–17],
but also pave the way for the next generation of computer
processors dominated by miniaturization at the nanoscale
[18–22].

The literature presents various approaches to conflate in-
formation theory and thermodynamic principles, and can be
broadly classified into two distinct classes. The measurement-
feedback formalism is the first approach expounding on the
ideas of Maxwell and Szilard by performing an explicit
measurement on the system under consideration whose in-
stantaneous outcome determines its parameters to be altered
[23–25]. The act of measurement drives the system away
from equilibrium and governs its subsequent evolution. In this
description, Sagawa and Ueda have established an integral
fluctuation theorem whose corresponding inequality bounds
the extracted work, originated as heat from a coupled heat
bath, by the information acquired in the preceding measure-
ment [26,27]. This perspective thus generalizes the second law
to such systems operating on feedback-driven schemes. The
second approach utilizes a tape with an infinite sequence of
symbols or bits to interact with the system. It seeks to replicate
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the dynamics of an autonomous information ratchet similar to
that in the earlier treatment but now accounting for the pre-
viously absent thermodynamic costs accrued by measurement
and information erasure [28,29]. In this framework, a similar
inequality was derived where the single-symbol Shannon en-
tropy difference between outgoing and incoming tape is an
upper bound for the maximal rate of work extraction. The
model described deals with stochastic transitions spanning
continuous time but there exist analogs for discrete time.

This paper considers an information ratchet that interacts
with a finite length of symbol or bit sequence in discrete time
solely from the perspective of a fully autonomous Maxwell
demon with no external agent manipulating it or explicit ther-
modynamic force driving it, adopting the second approach
introduced earlier in [28,29]. Such a finite sequence consti-
tutes a finite tape which relaxes from being an information
reservoir of the original discrete-time information ratchet with
an infinite bit sequence [30]. Moreover, the finite tape opens
up the possibility of recycling the output tape with repeated
tape scans by the information ratchet (i.e., preceding output
sequence is the input sequence in the immediate scan). It
provides a paradigm for the realization of a more physically
realistic ratchet system with the promised behaviors of engine
or eraser. Attempts to make the tape-ratchet system more
realistic had also been achieved with a model of a thermal
tape [31].

The organization of our paper is as follows. We first in-
troduce the setup for an information ratchet with a finite
tape before giving details to its mathematical formulation. We
then prove the information processing second law (IPSL) for
it in terms of the extracted work and its upper bound. We
then proceed to demonstrate two designs of this finite-tape
information ratchet. One design is based on the perturbed
coin (PC) [32,33], while the other is a modification of Boyd’s
(MB) information ratchet [30,32,34]. Our choice of design is
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FIG. 1. Schematic representation of an information ratchet with
the finite tape moving unidirectionally (indicated by arrow below
the bit highlighted in yellow) as it sequentially interacts with each
bit successively; the bit highlighted in yellow is the current bit BN

interacting with the ratchet.

simplicity, where the former and the latter are the simplest
information ratchets with and without memory, respectively.

II. INFORMATION RATCHET WITH FINITE TAPE

An information ratchet can be perceived as a channel me-
diating exchanges between the heat, work, and information
reservoirs. The heat and work reservoirs have their usual in-
terpretations from classical thermodynamics, with the latter
arbitrarily perceived as a mass-pulley system which stores
(expends) work as the mass is raised (lowered). Instead of an
information reservoir with an infinite sequence of bits with
values of 0 or 1 as depicted in other information ratchet
systems, our information ratchet interacts with a tape that
stores a finite string of 0 or 1. Figure 1 gives a diagram-
matic representation of the processing of a bit stream by the
finite-tape information ratchet, with RN and BN the random
variables for the ratchet state and bit state, respectively, at time
step Nτ . The tape moves unidirectionally (counterclockwise
in Fig. 1) as the ratchet (fixed spatially) sequentially interacts
with each input bit successively for a fixed period τ . At the
start of a cycle, the ratchet is initially not attached to any bit
before the incoming input bit BN attaches to it. This bit BN

of the tape is the current bit attached to and interacts with
the ratchet via thermal transitions stochastically governed by
a Markovian dynamic [30,32,34,35]. Next, the output bit B′

N
from this (bit scan) interaction detaches from the ratchet and it
shifts to the left of the ratchet, completing the cycle. We note
that the specific points of onset of attachment and detachment
of the individual bits to the ratchet do not involve any net
energy flow between the interacting bit-ratchet subsystem and
the reservoirs, and also the distributions of BN and RN are
unchanged. The start and end instances of this attachment and
detachment mechanism do not play a role in the energetics
or informational change within the cycle but manifest as an
intrinsic feature of this information ratchet necessary for the
sequential interaction of each bit with the ratchet.

We will now present the mathematical formalism to model
this ratchet operation described above.

FIG. 2. Schematic representation of a single bit scan operation
O with the intermediate stages detailing the coupling between the
interacting bit BN and the ratchet RN , taking into account the position
of BN (and subsequently B′

N ) relative to the other bits in the finite
tape of length L. The linear tape here corresponds to the circular
tape in Fig. 1 and is presented in a different but physically equivalent
manner; the bit highlighted in yellow in Figs. 1 and 2 is the same bit
BN .

III. MATHEMATICAL FORMALISM FOR FINITE-TAPE
INFORMATION RATCHET

We present the previous circular tape (Fig. 1) in a linear
fashion in Fig. 2, where we arbitrarily take the forward direc-
tion spatially in which the tape is scanned as the left-to-right
direction in this paper hereafter. In our proposed framework,
we characterize the joint tape-ratchet states of the information
ratchet system by the probability distribution p. The consider-
ation of joint tape-ratchet states would capture the statistical
behavior of all the microstates of this (tape-ratchet) system.
For an information ratchet with NR ratchet states and a tape
of L bits, p is a 2LNR × 1 vector. The ratchet itself (with
NR ratchet states) interacting with the L-bit tape constitute
our information ratchet (tape-ratchet) system. The memory
capacity of this system is thus attributed to the ratchet itself
with a memory of log2 NR bits and the L-bit tape with its
memory of L bits.

We employ the operator matrix O to evolve p, which math-
ematically models a single bit scan, and successive operations
reflect the ratchet operation mechanism where each bit in-
teracts with the ratchet sequentially. In Fig. 2, note that the
attachment (from stage 1 to 2) and detachment (from stage 3 to
4) of bits to the ratchet only facilitate this ratchet mechanism
and have no bearing on the energy or informational flow in a
cycle O. Other processes involved in this cycle are the thermal
transition M and switching operation S required to move the
output bit from the leftmost end of tape to the right end as
modeled by the linear tape. Each bit scan thus effectively con-
stitutes a two-step process of thermal transition M followed
by switching S, which can now be perceived as a composite
operation O = SM.

The matrix M accounts for a stochastic transition of the
bit-ratchet state due to thermal excitation. After the opera-
tion M, the interacting leftmost bit of the tape transforms to
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an output bit that remains in position at the left end of the
tape, signifying its continued physical attachment with the
ratchet and corresponds to the transformation from stage 2
to 3 in Fig. 2. To exemplify this operation, let us consider
a single-state ratchet NR = 1 here for clarity. For L = 1, the
left stochastic transition matrix corresponding to this thermal
transition step M is

M1-bit =
( 0 1

0 × ×
1 × ×

)
=

(
E F
G H

)
, (1)

with × denoting the respective transition probabilities. Note
that the ratchet state in the joint tape-ratchet state labels at the
top and side of the matrix in Eq. (1) has been omitted without
compromising the ensuing discussion. For this NR = 1 ratchet
with 2-bit tape,

M2-bit =

⎛
⎜⎝

00 01 10 11
00 × × × ×
01 × × × ×
10 × × × ×
11 × × × ×

⎞
⎟⎠, (2)

where the only bit involved in this thermal transition is the
leftmost attached bit and underlined for emphasis. Note that
the labels of the joint tape-ratchet state at the top of the matrix
are the input and that at the side of the matrix correspond to
the output.

In general, E , F, G, and H are NR × NR submatrices of
the 1-bit tape transition matrix M1-bit for arbitrary NR and
ratchet design since only the leftmost bit is coupled to the
ratchet and can undergo transitions governed by this M1-bit.
Correspondingly,

M2-bit =

⎛
⎜⎝

E F
E F

G H
G H

⎞
⎟⎠ =

(
12 ⊗ E 12 ⊗ F
12 ⊗ G 12 ⊗ H

)
,

(3)

ML-bit =
(

12L−1 ⊗ E 12L−1 ⊗ F
12L−1 ⊗ G 12L−1 ⊗ H

)
, (4)

with 12 = (1 0
0 1

)
the 2 × 2 identity matrix.

For L > 1, the (underlined) output bit does not imme-
diately interact with the ratchet in the next bit scan. The
switching step S is required to switch this (now detached)
leftmost output bit from the preceding thermal transition M
to the right end of the tape before the ratchet is ready to attach
to the next input bit, i.e., stage 4 to 5 in Fig. 2. With the NR = 1
ratchet, the required operation is

S2-bit =

⎛
⎜⎝

00 01 10 11
00 1 0 0 0
01 0 0 1 0
10 0 1 0 0
11 0 0 0 1

⎞
⎟⎠, (5)

where the interacted bit in the prior thermal transition (under-
lined above) has been shifted from the leftmost to rightmost

end of tape. Similarly, it can be compacted to

S2-bit =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ =

(
12 ⊗

[
1
0

]
12 ⊗

[
0
1

] )

(6)
and generalized for any NR and ratchet design:

S2-bit =
(

12 ⊗
[
1NR

0NR

]
12 ⊗

[
0NR

1NR

] )
, (7)

SL-bit =
(

12L−1 ⊗
[
1NR

0NR

]
12L−1 ⊗

[
0NR

1NR

] )
. (8)

This completes one cycle of the composite two-step operation
O = SM, which in general reads

OL-bit =
(

12L−1 ⊗
[

E
G

]
12L−1 ⊗

[
F
H

] )
, (9)

consisting of a thermal transition step M followed by a switch-
ing step S that physically moves the leftmost (output) bit to the
right end of the tape.

We highlight a pertinent feature unique to this finite-tape
information ratchet not exhibited by its infinite-tape counter-
parts, i.e., the output bit will eventually return as the input bit
in the next tape scan once the ratchet has scanned all bits.
This allows us to define a tape scan operation (OL-bit )L of
L successive bit scan operations OL-bit in the forward spatial
direction, previously unattainable in models with an infinite
tape. It also provides the mechanism for the system to pos-
sibly equilibrate to a steady-state behavior governed by the
stationary distribution of OL-bit. This is guaranteed with those
matrices O corresponding to ergodic finite Markov chains for
which Ok has all positive entries for some power k ∈ Z+

0 ,
which is also termed as regular matrices [36], and we will
focus exclusively on such regular O in this paper.

IV. PROOF OF IPSL

We will now embark on proving the IPSL for a general
ratchet design with an arbitrary number of bits and ratchet
states, which is represented by the probability vector p. The
evolution of this vector is governed by the two-step composite
operation O, i.e.,

p′(τ ) = O p(0). (10)

The matrix O physically performs a single bit scan operation
and switches to the next input bit, with its dimension deter-
mined by the joint tape-ratchet states. For a L-bit tape and
NR ratchet states, the size of O = SM is 2LNR × 2LNR, with
substeps M and S necessarily having the same dimensions as
O.

A. 1-bit tape

For simplicity, we will begin the proof with a 1-bit tape
before giving the proof for a tape of arbitrary length L. Note
that, for a 1-bit tape, independent of the ratchet design, the
switching operation S1-bit = 12NR is the identity matrix which
is physically intuitive to understand as the ratchet only inter-
acts with this sole bit throughout its operation.
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During each thermal transition step M involving the joint
single bit-ratchet states, detailed balance is obeyed by the
Markovian dynamics. The stochastic transition from state i to
state j (i → j) of the joint state is quantified by the transition
probability Mji, which is the ( j, i) entry of the left stochastic
transition matrix M with its columns sum to one due to proba-
bility conservation. The detailed balance constraint thus reads

Mji p
eq
i = Mi j peq

j ∀ {i, j}, (11)

where the equilibrium distribution

peq(x|β, E) = e−βEx∑
x e−βEx

= exp [β(F − Ex )] (12)

is given by the canonical ensemble in equilibrium statisti-
cal mechanics. Note that the system is in contact with a
single heat bath, which is responsible for driving the tran-
sition between states of different energies, and F (β, E) is
its Helmholtz free energy. Since the stochastic transitions
governing each bit-ratchet interaction are time independent,
the transition matrix M and equilibrium distribution peq in
Eq. (11) do not have explicit time dependence.

As the ratchet does not retain energy over each op-
eration cycle O (�E = 0), energy conservation warrants
�E = �Q = �W , where �Q is the heat transferred into the
system and �W is the work extracted from the system. This
relation applies to every bit for every cycle O. Equations (11)
and (12) allow the energy difference �Eji ≡ Ej − Ei to be
fixed and expressed as a log ratio of transition probabilities.
The expected work production 〈W 〉 from a single transition
(bit scan) at any arbitrary time is then given by

〈W 〉 =
∑
i, j

Mji pi ln

(
Mi j

Mji

)
, (13)

which is the sum of the respective dimensionless work (origi-
nating from thermal transition i → j, with kBT = 1) weighted
by the corresponding probability Mji pi for such a transition to
occur.

The switching operation S can be neglected here since only
a single bit is involved throughout this ratchet operation so
O1-bit = M1-bit and this thermal transition step M immediately
evolves the distribution p(0) to p′(τ ) in each cycle O from
Eq. (10).

Next, let us evaluate the change in entropy of the system
using the Shannon entropy [37]:

�H = H[p′] − H[p] =
∑

i

pi ln pi −
∑

j

p′
j ln p′

j

=
∑

i

(∑
j

Mji

)
pi ln pi −

∑
j

(∑
i

Mji pi

)
ln p′

j,

(14)

where
∑

j Mji = 1 (from probability conservation) is inserted
in the first parentheses and the second parentheses results
from the action of M on p (matrix multiplication). Putting the
double sums and terms together, the informational term �H

thus reads

�H =
∑
i, j

Mji pi ln

(
pi

p′
j

)
. (15)

Note that H[ · ] is the base 2 binary entropy function but we
will use the natural logarithm from hereon to drop the ln 2
factor in the proof.

Now consider the difference between �H and 〈W 〉:

�H − 〈W 〉 =
∑
i, j

Mji pi ln

(
Mji pi

Mi j p′
j

)
. (16)

The log sum inequality is first applied to the inner sum (within
the square brackets) to yield

�H − 〈W 〉 =
∑

i

pi

[∑
j

Mji ln

(
Mji pi

Mi j p′
j

)]

�
∑

i

pi

[(∑
j

Mji

)
ln

( ∑
j Mji∑

j
1
pi

Mi j p′
j

)]

=
∑

i

pi ln

(
pi

p′′
i

)
, (17)

where we have used
∑

j Mji = 1 and
∑

j Mi j p(n)
j = p(n+1)

i ,
with the superscript denoting the probability vector after n
interactions (bit scans). Applying the log sum inequality once
again to the last expression, we obtain

�H − 〈W 〉 �
∑

i

pi ln

(
pi

p′′
i

)
�

(∑
i

pi

)
ln

(∑
j p j∑
k p′′

k

)

= ln 1 = 0, (18)

since probability conservation holds at any discrete time. We
have thus established our proposed IPSL:

〈W 〉 � �H. (19)

B. >1-bit tape

We emphasize that detailed balance holds for every step
M but not O, except for L = 1. Another subtle difference
relates to the energy levels of the joint states of the equilib-
rium distribution peq in Eq. (12); they refer only to the joint
interacting bit-ratchet states and not the entire tape with the
noninteracting bits. Internal energy thus resides only within
the coupled bit-ratchet subsystem. The work expression 〈W 〉,
arising from the energy exchanged in the thermal transition of
the interacting bit-ratchet joint states, for L > 1 is therefore
the same as that for L = 1 given in Eq. (13). The construction
of ML-bit is such that the transition probabilities in its respec-
tive entries will correspond to the same transitions for the 1-bit
tape in M1-bit from Eq. (1). Detailed balance thus holds for
each thermal transition step which is independent of L and the
different dimensions of ML-bit. As it is the leftmost bit of the
tape that interacts with the ratchet physically, it is also possible
to express the average work 〈W 〉 in terms of the marginal
interacting bit-ratchet distribution pBN ⊗RN , which is shown in
the Appendix. It shows that the work expression in terms of
this marginal distribution is consistent with the expression as
given in Eq. (13) using ML-bit.
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However, this ML-bit, L 
= 1 acting on an initial probability
distribution p does not yield p′ immediately but an inter-
mediate distribution p̃, i.e., ML-bitp = p̃. We now see that
we require switching S to transform this intermediate p̃ to
p′ at the end of each cycle whose physical operation is to
move the detached (leftmost) output bit from the prior thermal
transition to the right end of tape. Essentially SL-bit is a per-
mutation matrix from Eq. (5) and its operation in p′ = SL-bitp̃
amounts to reordering the probabilities in p̃ but leaving the
values unchanged. Thus p̃ and p′ have the same elements and
H[p′] = H[p̃], which corresponds to the physical fact that
there is no information creation or erasure from this switching
operation. In addition, there is no work involved here as the
ratchet is not interacting with any bit.

With p̃ j = ∑
i Mji pi now for L > 1, the expression for �H

is modified from Eq. (15),

�H =
∑
i, j

Mji pi ln

(
pi

p̃ j

)
, (20)

and subsequently the difference

�H − 〈W 〉 =
∑
i, j

Mji pi ln

(
Mji pi

Mi j p̃ j

)
. (21)

The proof follows similarly as earlier for L = 1 with the
application of the log sum inequality in Eq. (17),

�H − 〈W 〉 =
∑

i

pi

[∑
j

Mji ln

(
Mji pi

Mi j p̃ j

)]

�
∑

i

pi

[(∑
j

Mji

)
ln

( ∑
j Mji∑

j
1
pi

Mi j p̃ j

)]

=
∑

i

pi ln

(
pi∑

j Mi j p̃ j

)
, (22)

where we have again used
∑

j Mji = 1 (probability conserva-
tion). However, the difference stems from the term

∑
j Mi j p̃ j ,

which essentially is an element of another probability distri-
bution since p̃ = Mp is an intermediate distribution and M is
a transition matrix, so Mp̃ = M2p is again some probability
distribution. Applying the log sum inequality once again, in
the same vein as Eq. (18), we obtain the finite-tape IPSL in
Eq. (19) from conservation of probability

∑
i

( ∑
j Mi j p̃ j

) =
1.

This completes the proof of IPSL for finite tapes of all
length L.

We also mention the IPSL inequality in (19) saturates [and
equivalently the difference �H − 〈W 〉 in Eqs. (16) and (21)
vanishes] in the steady-state behavior when the system has
converged to its stationary distribution which obeys detailed
balance, i.e., in equilibrium. This can be inferred from the
arguments of the log terms in Eqs. (16) and (21) and the
detailed balance condition in Eq. (11). Conversely, a nonva-
nishing �H − 〈W 〉 is expected to persist even in steady state
as a manifestation of stationary distributions which are not in
equilibrium.

FIG. 3. Transition state diagram for the PC ratchet.

V. PERTURBED COIN (PC) RATCHET

We begin our design and analysis of finite-tape informa-
tion ratchet with the perturbed coin (PC) model, inspired by
[32,33] for simulating stochastic processes. It is the simplest
ratchet design with a single ratchet state, and we shall first
consider the case for 1-bit finite tape (L = 1) to shed light on
the underlying single bit-ratchet dynamics before progressing
to ratchets with tapes of longer lengths, and also ratchets with
multiple states.

A. 1-bit tape

The transition state diagram for the PC ratchet with 1-bit
tape is schematically represented in Fig. 3, which has the
smallest joint tape-ratchet state space of dimension 2, i.e.,
{0 ⊗ A, 1 ⊗ A}. Note that A is the arbitrary label of the single
ratchet state (NR = 1) which we will drop from hereon. The
left stochastic transition matrix corresponding to this thermal
transition step M is

MPC
1-bit =

( 0 1
0 1 − p q
1 p 1 − q

)
=

(
E F
G H

)
, (23)

with transition probabilities 0 � p, q � 1 and its partition
labels match those in Eq. (1). For L = 1, this MPC

1-bit = OPC
1-bit

governs the dynamics and is responsible for the evolution of
joint single bit-ratchet state probabilities in pPC

1-bit. Its eigenval-
ues λ are 1 and 1 − p − q with respective right eigenvectors
ρ1 ≡ πPC

1-bit = [ q
p+q ,

p
p+q

]�
and ρ1−p−q = [1,−1]�, with πPC

1-bit

(normalized to unity) the invariant or stationary (steady-state)
distribution. For an arbitrary initial distribution with the fol-
lowing decomposition

p(0) = a1π +
∑
|λ|<1

aλρλ, (24)

this implies with Eq. (10) the following generic expression for
a regular O [36]:

p(k) = Ok p(0) = a1π +
∑
|λ|<1

aλλ
kρλ. (25)

With the corresponding OPC
1-bit = MPC

1-bit in Eq. (25) above,
the sum (with only one term here: λ = 1 − p − q satisfying
|λ| < 1) vanishes, limk→∞ p(k) = a1π

PC
1-bit and a1 = 1. Here,

we are dealing with stationary equilibrium states where the
stationary distribution is the equilibrium canonical distribu-
tion in Eq. (12), i.e., πPC

1-bit = pPC, eq
1-bit . It also relates the energy

levels corresponding to each stochastic transition with the
respective extracted work as given in the IPSL proof for 1-bit
tape; see Eq. (11).

The necessary and sufficient conditions for convergence
are a finite state space and Markovian dynamics, i.e.,
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p(k + 1) = O p(k) exhibited by an ergodic Markov chain.
Ergodicity here refers to finite Markov chains with all states
accessible (irreducible) and acyclic (no periodic distribu-
tions); this encompasses those regular matrices O which is
required to invoke the Perron-Frobenius theorem for a unique
and time-independent π. It is apparent that OPC

1-bit = MPC
1-bit

satisfies the above conditions for both p, q 
= 0 or 1.
It is possible to deduce the analytic expressions of the joint

state probabilities pi between successive transitions:

p0(k) = q

p + q
+

(
b − q

p + q

)
(1 − p − q)k, (26a)

p1(k) = p

p + q
−

(
b − q

p + q

)
(1 − p − q)k, (26b)

after bit scan k for k ∈ Z+
0 for pPC

1-bit(0) = [p0(0), p1(0)]� with
p0(0) = b, p1(0) = 1 − b, where parameter b can be inter-
preted as the statistical bias of a “0” in this bit.

Using Eq. (13), the expected work extracted from each bit
scan (single bit-ratchet interaction) reads

〈W 〉k+1 =
∑

i, j={0,1}
Mji pi ln

(
Mi j

Mji

)

= (p + q)

(
b − q

p + q

)
(1 − p − q)k ln

(
q

p

)

= [p0(k) − p0(k + 1)] · W0→1, (27)

where W0→1 = ln(q/p) denotes the work done from joint
bit-ratchet state 0 to 1. Notice that only transitions between
different joint states 0 ↔ 1 (and thus with different energies)
contribute to the sum since the heat exchanged with the heat
reservoir is nonzero. From an information-theoretic perspec-
tive, the corresponding change in Shannon entropy of joint
distributions over a cycle O is

�Hk+1 = H[p(k + 1)] − H[p(k)]

=
∑

i={0,1}
pi(k) ln pi(k)−

∑
j={0,1}

p j (k + 1) ln p j (k + 1).

(28)

With Eqs. (27) and (28), we classify this ratchet operation
into three distinct regimes [30]: engine (pink) 0 < 〈W 〉k �
�Hk , eraser (blue) 〈W 〉k � �Hk < 0, and dud (green)
〈W 〉k � 0 � �Hk , with the corresponding color scheme in
Fig. 4 for each bit scan k up to 16 repeated such scans,
where the output bit from the preceding bit scan is the input
bit for the immediate bit scan since L = 1. The respective
behaviors can be physically interpreted as follows: engine
operation entails (positive) expected work extracted from the
heat reservoir with the mass raised at the expense of writing
information to the distribution of joint single-bit ratchet states
(and consuming its memory capacity), erasure behavior erases
information within this joint distribution with the expenditure
of work (mass lowered), while the dud performs neither useful
operation; see [28,29] for similar models.

We can perceive the behaviors described for our finite-tape
ratchet as a collective of the assembly of ratchets, and not
assertive of the behavior of any single ratchet (specific real-
ization). Thus operating in the engine regime extracts only a

FIG. 4. Phase plots in p-q parameter space (transition probabili-
ties in Fig. 3) of first five bit scans (alternating engine and erasure
behaviors above diagonal p + q = 1) and bit scans 8, 12, and 16
(emergence of eventual dud at this diagonal) for PC ratchet with
1-bit tape starting in initial distribution pPC

1-bit(0) = [p0(0), p1(0)]� =
[b, 1 − b]� (b = 0.9) denoting the different operation regimes: en-
gine (pink; the lightly shaded region), eraser (blue; the most darkly
shaded region), and dud (green; the intermediate shaded region),
which all satisfy the IPSL in Eq. (46).

positive amount of expected work from a random ensemble
of finite-tape ratchets. On the other hand, erasing information
in the finite-tape paradigm refers to decreasing the Shannon
entropy of the joint distribution of tape-ratchet states (with
work expenditure).

It is easy to see that 〈W 〉k → 0, �Hk → 0 as k → ∞
respectively from the term (1 − p − q)k with |1 − p − q| < 1
and pPC

1-bit(k) converging to πPC
1-bit. The p-q phase plot will thus

be eventually dominated by the dud regime as the system
equilibrates with no useful expected work to be drawn further.
In Fig. 4, the top-left to bottom-right diagonal line p + q = 1
are (p, q) points where the eigenvalue |λ| < 1 vanishes and
the rate of convergence is the fastest from Eq. (25). This is
responsible for the emergence of a dud region originating
from this line where 〈W 〉k becomes vanishingly small and
approaches zero.1 Above the diagonal (p + q > 1), the sign of
〈W 〉k alternates between successive scans from (1 − p − q)k ,
which brings about an interchanging engine and erasure be-
havior.

This interesting feature, where the same (p, q) can sup-
port various operation regimes in different bit or tape scans
performed successively, may confer flexibility to a user oper-
ating the finite-tape ratchet as a means to switch modalities,
although the ratchet could be unreliable in sustaining a single
mode of operation.

As we run the PC ratchet, the magnitude of 〈W 〉k dimin-
ishes for successive k from Eq. (27), i.e., |〈W 〉k+1| � |〈W 〉k|.
We thus expect the cumulative expected work

∑
k〈W 〉k to

have the same sign as 〈W 〉1 from the first bit scan even though
individual bit scans may suggest an alternating engine and

1Both 〈W 〉k and �Hk can only approach close to zero at long time
and numerical errors potentially throw up misleading cases of IPSL
violation. We address this by classifying ratchet behavior based on
their signs in Fig. 4: opposite signs for dud and same signs (both
positive for engine and both negative for eraser), since our IPSL
proof shows that these violations are not mathematically possible.
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erasure behavior noted earlier from the phase plots in Fig. 4.
Summing 〈W 〉k in Eq. (27), the cumulative expected work
reads

∞∑
k=1

〈W 〉k = (p + q)

(
b − q

p + q

)
ln

(
q

p

) ∞∑
k=1

(1 − p − q)k−1

=
(

b − q

p + q

)
ln

(
q

p

)
= [p0(0) − π0] · W0→1.

(29)

Depending on the intended objectives, a user equipped with
the PC ratchet may thus choose to operate the finite-tape
ratchet either once to extract a one-shot (expected) work 〈W 〉1

or over multiple bit scans to leverage the cumulative (ex-
pected) work

∑
k〈W 〉k depending on the parameter settings

p + q ≶ 1 and knowledge of Fig. 4 to determine the signs of
successive 〈W 〉k .

B. >1-bit tape

Next, let us generalize to a PC ratchet with L-
bit tape by first taking L = 2 as an example. We
consider an initial 2-bit tape with joint distribution
pPC

2-bit(0) = [p00(0), p01(0), p10(0), p11(0)]�, where we have
again dropped the single ratchet state in the labels. As the
ratchet interacts with each bit sequentially, the marginal
interacting bit-ratchet distribution pBN ⊗RN from the joint tape-
ratchet distribution p determines the work 〈W 〉 in each bit scan
operation; see the Appendix for further details. For the single-
state PC ratchet, essentially pPC

BN ⊗RN
= pPC

BN
since NR = 1 and

we can thus characterize pPC
Bi

(bi ) with its respective bias bi to
be a “0” bit, independent of the other bits in the tape.

The required thermal transition step here is

MPC
2-bit =

⎛
⎜⎝

00 01 10 11
00 1 − p 0 q 0
01 0 1 − p 0 q
10 p 0 1 − q 0
11 0 p 0 1 − q

⎞
⎟⎠, (30)

followed by a switching operation given earlier in Eq. (5)
which then leads to the two-step single bit scan operation
O = SM:

OPC
2-bit =

⎛
⎜⎝

00 01 10 11
00 1 − p 0 q 0
01 p 0 1 − q 0
10 0 1 − p 0 q
11 0 p 0 1 − q

⎞
⎟⎠. (31)

Since MPC
L-bit 
= OPC

L-bit for L > 1, we need to check the regu-
larity of OPC

L-bit for one complete bit scan and not just for the
thermal transition MPC

L-bit to determine possible convergence.
We see that OPC

2-bit is also a regular matrix so pPC
2-bit(0) will con-

verge to πPC
2-bit = [ q2

(p+q)2 ,
qp

(p+q)2 ,
pq

(p+q)2 ,
p2

(p+q)2

]� = π
PC, (1)
1-bit ⊗

π
PC, (2)
1-bit and exhibit identical long-term behavior as the 1-bit

tape. This applies to all OPC
L-bit due to their ergodicity and

similarly for all pPC
L-bit(0). Its eventual convergence can be

generalized as

lim
k→∞

pPC
L-bit(k) = πPC

L-bit =
L⊗

i=1

π
PC, (i)
1-bit . (32)

This follows from the independent marginal bit distributions
pPC

Bi
(bi ) which explain the independent individual bit-ratchet

interactions. Crucially, the single state of the PC ratchet is
responsible for the lack of correlation between the bit stream
and itself, which it is unable to generate and introduce from
its operation.

Unlike an information ratchet harvesting work out of an
infinite bit sequence, our finite-tape version squeezes work out
of the information in the tape through repeated tape scans.
In other words, it continues to act on the output bits from
the previous bit scan operations which circulate back to the
ratchet after all bits in the finite tape have been scanned in the
preceding tape scan. The involved bit scan work 〈W 〉 and tape
scan work 〈Wt〉 are mathematically related by

〈Wt〉k =
L∑

i=1

〈W (i)〉k, (33)

i.e., the work from tape scan k is the sum of the respective
bit scan works from the kth bit scan of all bits in an L-bit
finite tape. For L = 1, 〈Wt〉k = 〈W 〉k and there is no distinc-
tion between bit and tape scan work. For L > 1, as the bits
interact with the PC ratchet independently, the bias bi from the
marginal distribution of each bit Bi (again neglecting the sole
ratchet state; in general, Bi ⊗ R) is a parameter of 〈W (i)〉(bi )
for a fixed (p, q) and from the individual bit scan work in
Eq. (27),

〈Wt〉PC
k =

L∑
i=1

(p + q)

(
bi − q

p + q

)
(1 − p − q)k−1 ln

(
q

p

)

=
(

L∑
i=1

Ci(bi )

)
(1 − p − q)k−1, (34)

where Ci(bi ) = (p + q)[bi − q/(p + q)] ln(q/p) is introduced
to make the decay of 〈Wt〉PC

k manifestly apparent. The cumu-
lative tape scan work after N tape scans is thus

N∑
k=1

〈Wt〉PC
k =

(
L∑

i=1

Ci(bi )

)
N∑

k=1

(1 − p − q)k−1

=
(

L∑
i=1

Ci(bi )

)[
1 − (1 − p − q)N

]
p + q

. (35)

C. Maximizing
∑

k〈W 〉k

We seek to obtain the maximal work from the information
ratchet with tapes of different length L to study the effect of
different ratchet designs. For this, we will need to optimize
over a range of parameters such as the initial distribution p(0)
and the transition probability Mi j . For our finite-tape informa-
tion ratchet, we would like to optimize over the cumulative
work

∑
k〈W 〉k . Note that

∞∑
k=1

〈Wt〉k =
∞∑

k=1

L∑
i=1

〈W (i)〉k =
∞∑

k=1

〈W 〉k, (36)

where 〈W 〉k represents the expected work for bit scan k, i.e.,
Eq. (27) for the PC ratchet. Therefore, it is the same optimiz-
ing over the bit scan work or the tape scan work.
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FIG. 5. Plot of respective cumulative tape scan work
∑

k〈Wt〉k

for PC ratchet with 2-bit tape starting in the definite-state joint (tape-
ratchet) distributions [corresponding to (joint tape-ratchet) states 00,
01, 10, and 11] at fixed transition probabilities (p, q) = (0.1, 0.2).

Based on Eqs. (10) and (13), we have

〈W 〉k = p(0)�
(
O�)k−1

W, (37)

where W is a vector of size 2LNR × 1 with elements given
by Wi = ∑

j MjiWi→ j with Wi→ j = ln(Mi j/Mji ), ordered in
a corresponding manner to p(0). Note that � represents the
transpose operation. The cumulative work is then given by

∞∑
k=1

〈W 〉k =
∞∑

k=1

p(0)�
(
O�)k−1

W

= p(0)�
[ ∞∑

k=1

(
O�)k−1

W

]

= p(0)� W′, (38)

where the element W ′
i of

W′ =
∞∑

k=1

(
O�)k−1

W (39)

gives the cumulative work when the initial probability of the
joint tape-ratchet distribution p(0) has element pi = 1 with
the rest of its elements zero. We call such a joint distribution
the definite-state joint distribution.

Our results in Eqs. (38) and (39) imply the following.
The maximal cumulative work occurs as the maximum of the
elements of W′. According to Eq. (38), any combination of the
elements in p(0) will lead to a cumulative work less than this
maximum except for pi = 1 and p j 
=i = 0 when the maximum
is W ′

i .
Thus, for the PC 2-bit tape, we need to ascertain which

of the following initial definite-state joint distributions:
[1, 0, 0, 0]�, [0, 1, 0, 0]�, [0, 0, 1, 0]�, and [0, 0, 0, 1]� for
the joint tape-ratchet states 00, 01, 10, and 11, respectively,
gives the maximum cumulative work. Figure 5 presents the
cumulative tape scan work

∑
k〈Wt〉PC

k from these distributions

FIG. 6. Plot of respective tape scan work 〈Wt〉k (in �) with
corresponding upper bound (�Ht )k (in Y), the change in Shannon
entropy of its joint (tape-ratchet) distribution over tape scan k, for PC
ratchet with 2-bit tape starting in the definite-state joint (tape-ratchet)
distributions in Fig. 5, i.e., joint states 00, 01, 10, and 11, at fixed
transition probabilities (p, q) = (0.1, 0.2).

for an arbitrarily chosen (p, q) = (0.1, 0.2). It is evident that
the distribution for 00, i.e., [1, 0, 0, 0]�, yields the maxi-
mum cumulative work. This distribution would also maximize
over all the other possible initial probability distributions of
pPC

2-bit(0) for the cumulative work when (p, q) = (0.1, 0.2),
since the work is simply a sum of W ′

i weighted by the respec-
tive initial probabilities pi in pPC

2-bit(0) as discussed above.
We also present the respective upper bounds (�Ht )k , i.e.,

the change in Shannon entropy of its corresponding joint
distribution over tape scan k in Fig. 6, noting 〈Wt〉k → 0,
(�Ht )k → 0 with k → ∞. Their difference (�Ht )k − 〈Wt〉k

vanishes, implying the steady-state behavior of these initial
definite-state joint distributions (in Fig. 5) are all in equi-
librium and saturate the IPSL inequality [over 1 bit scan in
the proof (19) and equivalently tape scan here]. The corre-
sponding stationary distributions thus satisfy detailed balance
in Eq. (11).

After maximizing over p(0) for fixed transition matrix
elements, the next optimization step is to maximize over the
transition matrix elements (transition probabilities). For the
PC 2-bit tape, the maximization is performed over the pa-
rameters p and q and we have employed the basin-hopping
algorithm [38] for this purpose. The maximal work

∑
k〈W 〉k

and corresponding optimized (p, q) will be presented subse-
quently in Tables I and II for further discussion.

VI. MODIFIED BOYD’S (MB) RATCHET

A. 1-bit tape

We have modified Boyd’s (MB) original ratchet design
[30] by including new transitions parametrized by ε, where
0 < ε < 1, in order to ensure that its thermal transition matrix
M is regular (Fig. 7). It has two possible ratchet states (arbi-
trarily labeled A, B) with corresponding transition matrix for
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TABLE I. Maximal cumulative tape scan work 〈W 〉max =
max

( ∑
k〈Wt〉k

)
for PC and MB (ε = 0.9) ratchets over 300 tape

scans with finite tapes of different length L and the corresponding
second largest eigenvalue |λ2nd| of the tape scan operation matrix
(OL-bit )L characterizing the convergence rate.

L-bit 〈W 〉PC
max 〈W 〉MB

max |λPC
2nd| |λMB

2nd |
1-bit 0.27846 0.59868 0.26568 0.91124
2-bit 0.55693 0.82838 0.26568 0.84338
3-bit 0.83539 1.10624 0.54441 0.81785
4-bit 1.11386 1.38440 0.14303 0.80903
5-bit 1.39232 1.66269 0.26568 0.80380
6-bit 1.67079 1.94105 0.44540 0.80027

L = 1:

MMB
1-bit =

⎛
⎜⎝

0 ⊗ A 0 ⊗ B 1 ⊗ A 1 ⊗ B
0 ⊗ A ε 1 − p 0 0
0 ⊗ B 1 − ε 0 q 0
1 ⊗ A 0 p 0 1 − ε

1 ⊗ B 0 0 1 − q ε

⎞
⎟⎠, (40)

which doubles the joint tape-ratchet space for all finite L-bit
tapes. This ratchet design allows for the possibility of generat-
ing correlation between bits and ratchet from their interaction
since the ratchet now also possesses memory. Previously
for the PC ratchet without memory, only the tape (of bits)
possesses memory where one approach outlined in [28,29]
attributed the tape as a “memory register” (with memory).

This perspective of conferring memory to the ratchet, de-
pendent on the number of its ratchet states NR, is inspired
by Boyd in [30,32,34], where he employed the framework
of computational mechanics (the study of patterns and struc-
tures in the organization of complex systems) to associate the
ratchet states with its causal states in the construction of its
hidden Markov model (HMM). Although we are not pursu-
ing his approach in our paper, we have nonetheless adopted
the perspective of both the tape and ratchet (with NR > 1)
possessing memory whose rationale is based on the earlier
analogy.

TABLE II. Respective optimal transition probabilities
(pmax, qmax) corresponding to the maximal cumulative tape
scan work 〈W 〉max in Table I for PC and MB ratchets with tapes of
different length L.

L-bit pPC
max qPC

max pMB
max qMB

max

1-bit 0.99000 0.27568 0.87606 0.59303
2-bit 0.99000 0.27568 0.71039 0.96507
3-bit 0.35636 0.09923 0.96451 0.71548
4-bit 0.89406 0.24896 0.71831 0.96417
5-bit 0.27568 0.99000 0.72012 0.96395
6-bit 0.12080 0.43380 0.72137 0.96380

FIG. 7. Transition state diagram for modified Boyd’s ratchet.

We will restrict our discussion to the general case ε 
= 0, in
which all initial distributions pMB

1-bit(0) will converge to

πMB
1-bit(ε) = [2(p + q − pq) − (p + q)ε]−1

⎛
⎜⎝

(1 − p)q
(1 − ε)q
(1 − ε)p
p(1 − q)

⎞
⎟⎠,

(41)
which is the right eigenvector of OMB

1-bit(ε) = MMB
1-bit(ε) in

Eq. (40) with eigenvalue 1, and 〈W 〉, �H → 0 since
MMB

1-bit(ε 
= 0) is regular. Similar to PC ratchet, its eventual
behavior is all dud but the convergence rates differ according
to the eigenvalues of their respective O1-bit, which we will
discuss further subsequently.

In the case of the original ratchet of Boyd et al. with
ε = 0, the ratchet always alternates between states A and
B, possibly leading to an eventual periodic joint probability
distribution. Convergence to a stationary distribution πMB

1-bit is
not guaranteed since OMB

1-bit(ε = 0) is irregular, and similarly
for all OMB

L-bit(ε = 0) with this ratchet design. We will thus not
be exploring this case here because our focus is on ergodic
and regular O in this paper.

B. 2-bit tape

Explicitly, MMB
L-bit can be constructed with Eq. (4) by using

the respective blocks from MMB
1-bit in Eq. (40) and similarly for

OMB
L-bit with Eq. (9). It is instructive now to proceed to the 2-bit

tape (again for ε 
= 0) to reveal how tape-ratchet correlation
can manifest within this system and its implications on the
resulting dynamics, specifically work production.

For OMB
2-bit(ε 
= 0) which is regular here, all initial joint

distributions pMB
2-bit(0) will converge to

πMB
2-bit(ε) = (· · · )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − p)q2ε(2 − p − ε)
q2ε(1 − ε)(2 − p − ε)

pq(1 − ε)[p + q − p(q + ε)]
pqε(1 − ε)(2 − q − ε)
pqε(1 − ε)(2 − p − ε)

pq(1 − ε)[p + q − q(p + ε)]
p2ε(1 − ε)(2 − q − ε)
p2(1 − q)ε(2 − q − ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

054131-9



HE, PRADANA, CHEONG, AND CHEW PHYSICAL REVIEW E 105, 054131 (2022)

FIG. 8. Plot of respective maximal cumulative tape scan work∑
k〈Wt〉k for PC and MB ratchets with 1-bit and 6-bit tapes

separately over 50 tape scans. The maximization is performed
over the corresponding initial joint distributions p(0) and
transition probabilities (p, q) with the additional parameter
ε = 0.9 fixed in MB ratchet. The respective upper bounds
(�Ht )k , the change in Shannon entropy of the corresponding
joint distribution over tape scan k, are presented with the tape
scan work 〈Wt〉k in Figs. 9 and 10 to illustrate their steady-state
behavior which saturates the IPSL in Eq. (19). The tape scan
work 〈Wt〉k is also separately fitted to an exponential model
in Figs. 11 and 12 to determine the respective time constants:
τ̃ PC

1-bit = 0.75445, τ̃MB
1-bit = 10.75732 for L = 1 and τ̃ PC

6-bit =
1.23643, τ̃MB

6-bit = 4.36301 for L = 6.

with normalization

(· · · ) =
{
ε[p2(2 − q − ε)2 + q2(2 − p − ε)2]

+ 2pq(1 − ε)[p + q − pq + ε(2 − p − q − ε)]
}−1

.

(43)

Notice the 2 bits are coupled in a sense that their marginal
distributions pMB

BN ⊗RN
are not independent but tied with the

nontrivial ratchet state (unlike in PC ratchet). However, its
eventual behavior will similarly be all dud for such regular
matrices OMB

2-bit(ε 
= 0), whose convergence to πMB
2-bit(ε 
= 0) is

guaranteed from their ergodicity.

VII. COMPARISON OF PC AND MB RATCHETS

We now perform a comparison between the PC and MB
ratchet designs presented earlier in terms of their work pro-
duction in their respective engine regimes. We seek their
respective maximal cumulative tape scan work

∑
k〈Wt〉k to

quantify which design is best leveraged and utilized for work
extraction. Similar to the earlier methodology for PC ratchet,
we maximize this work from operating the MB ratchet over
its respective set of definite-state joint distributions, for a fixed
(p, q) first before optimizing over different (p, q), to facilitate
this comparison and present the effect of NR � 1 (presence
or absence of ratchet memory) on the maximal work. More-
over, we would also need to optimize over the additional ε

FIG. 9. Plot of respective tape scan work 〈Wt〉k (in �) with
corresponding upper bound (�Ht )k (in Y), the change in Shannon
entropy of its joint (tape-ratchet) distribution over tape scan k, for
PC ratchet with 1-bit and 6-bit tapes starting separately in the respec-
tive definite-state joint distribution, which maximizes the cumulative
work in Fig. 8 with the optimal transition probabilities (pmax, qmax)
in Table II.

parameter in the MB ratchet. Because we found that
∑

k〈Wt〉k

approaches a maximum when ε → 1, we fix it at a regime
where it gives large

∑
k〈Wt〉k . Hence we set ε = 0.9.

The respective 〈W 〉max = max(
∑

k〈Wt〉k ) from PC and MB
ratchets with finite tapes of different length L (after 300 tape
scans) is presented in Table I, with the corresponding set

FIG. 10. Plot of respective tape scan work 〈Wt〉k (in �) with
corresponding upper bound (�Ht )k (in Y), the change in Shannon
entropy of its joint (tape-ratchet) distribution over tape scan k, for
MB ratchet (ε = 0.9) with 1-bit and 6-bit tapes starting separately in
the respective definite-state joint distribution, which maximizes the
cumulative work in Fig. 8 with the optimal transition probabilities
(pmax, qmax) in Table II.
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FIG. 11. Semilog plot of magnitude of respective tape scan work
|〈Wt〉k | for PC and MB ratchets with 1-bit tape (optimized in Fig. 8).
The black dotted line is a fitting of |〈Wt〉k | to an exponential function
|〈Wt〉k | = abk , with fitted parameters given in Table III.

of optimized parameters in Table II. This work in general
increases with the length L of finite tape, which is physically
intuitive as more work can potentially be leveraged from more
bits within a longer tape with a larger memory capacity as a
thermodynamic resource. More importantly, we note the ad-
vantage conferred by MB ratchet in terms of 〈W 〉max extracted
for all 1 � L � 6 explored numerically here, which suggests
the MB ratchet design is more suited for the sole purpose of
harnessing the maximal work from a given limited resource
(finite tape). For L = 1 and L = 6, the numerically obtained
cumulative work

∑
k〈Wt〉k for 〈W 〉max is plotted for both PC

and MB ratchets in Fig. 8 to illustrate their convergent be-
haviors and evaluate their sustainability as a thermodynamic
engine. We note the numerical

∑
k〈Wt〉PC

k matches with the
analytic expression in Eq. (35).

It is intriguing that these parameters, which yield the maxi-
mal cumulative tape scan work

∑
k〈Wt〉k , lead to a steady-state

behavior (when the system has converged to its stationary
distribution) in equilibrium with 〈Wt〉k → 0, (�Ht )k → 0 in
Figs. 9 and 10 and the difference in Eqs. (16) and (21) van-
ishes, saturating the IPSL inequality in (19). These stationary
distributions thus satisfy detailed balance given in Eq. (11).
However, a quick comparison between Figs. 9 and 10 reveals
a difference in convergence rates for the PC and MB ratchets,
which we will now analyze further.

The eigenvalues of the respective tape scan operations OL

govern the decay of the tape scan work 〈Wt〉k from Eqs. (24)
and (25) in the earlier analysis with repeated applications
of OL acting on the joint tape-ratchet distribution p succes-
sively in every tape scan. Regular matrices with dimension d
necessarily have an eigenvalue λ = 1 corresponding to the sta-
tionary distribution (eigenvector) π with the remaining d − 1
eigenvalues having magnitudes |λ| < 1. The largest (in terms
of magnitude) of these d − 1 eigenvalues, λ2nd is responsible
for the asymptotic decay rate of tape scan work 〈Wt〉k as p
converges to π at equilibrium with contributions from the
other eigenvalues (i.e., λ 
= 1 or λ 
= λ2nd) vanishing first.

FIG. 12. Semilog plot of magnitude of respective tape scan work
|〈Wt〉k | for PC and MB ratchets with 6-bit tape (optimized in Fig. 8).
The black dotted line is a fitting of |〈Wt〉k | to an exponential function
|〈Wt〉k | = abk , with fitted parameters given in Table III.

We begin this analysis with the PC ratchet for 1-bit
tape, where the eigenvalues of OPC

1-bit = MPC
1-bit are λPC

1-bit = 1,

1 − p − q; thus the sums in Eqs. (24) and (25) have only one
term and (λPC

1-bit )2nd = 1 − p − q with |(λPC
1-bit )2nd| < 1. From

the tape scan work 〈Wt〉PC
k in Eq. (34) and equivalently bit scan

work since L = 1 in Eq. (27), it indeed has an exponential
decay governed by this (λPC

1-bit )2nd, which we can linearize as

ln
∣∣〈Wt〉PC

k

∣∣ = ln

∣∣∣∣∣
L∑

i=1

Ci(bi )

∣∣∣∣∣ + (k − 1) ln |1 − p − q|, (44)

with slope ln |1 − p − q| < 0 in a logarithmic plot of the mag-
nitude of tape scan work |〈Wt〉PC

k | with tape scan k. In addition,
it can be deduced that λPC

2nd = 1 − p − q ∀ L from Eq. (34).
For L > 1, there are other nondominant eigenvalues (with
magnitudes smaller than λPC

2nd) whose contributions to the de-
cay of 〈Wt〉PC

k vanish at long time. The plots for L = 1 and
L = 6 (on a semilog scale) in Figs. 11 and 12 are consistent
with this analysis as the calculated |λPC

2nd| = |1 − pPC
max − qPC

max|
[by using the optimized (pPC

max, qPC
max) in Table II] matches

with the numerically obtained |λPC
2nd| as the second largest (in

magnitude) eigenvalue of (OPC
L-bit )

L, and also with the fitted

TABLE III. Respective parameters (a, b) obtained from the fit-
ting of tape scan work in Figs. 11 and 12 for PC and MB (with
first 30 tape scans omitted) ratchets with L-bit tape (L = 1, 6) to
an exponential function |〈Wt〉k | = abk . Transition probabilities used
to obtain 〈Wt〉k correspond to 〈W 〉max in Table I and given in Table II.
The fitted parameters have negligible errors from the fitting. Note the
good agreement between the fitted b and the corresponding |λ2nd| in
Table I.

L-bit aPC bPC aMB bMB

1-bit 1.32659 0.26568 0.02917 0.91123
6-bit 2.08043 0.44540 0.34724 0.79517
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parameter bPC from the fitting to the exponential function
|〈Wt〉k| = abk; see Table III.

Similarly for the MB ratchet, we pursue a similar approach
and conjecture that its 〈Wt〉MB

k also follows an exponential
decay governed by its eigenvalues {λMB

L-bit 
= 1} of (OMB
L-bit )

L. We
present similar plots in Figs. 11 and 12, and we omit the first
30 tape scans in the fitting of 〈Wt〉MB

k to obtain a more accurate
estimate of |λMB

2nd | with bMB given in Table III. The reason is
that, with dim(OMB

1-bit ) = 4, there are three eigenvalues respon-
sible for the decay of 〈Wt〉MB

k . The initial transients at small
k are a manifestation of the other nondominant eigenvalues,
specifically the smallest two (in magnitude) which do not con-
tribute to the long term decay of the tape scan work 〈Wt〉MB

k .
We can quantify the convergence of 〈Wt〉k with its λ2nd by

calculating the respective time constant τ̃ from the exponen-
tial function recasted as

|〈Wt〉k| = abk = a exp

[
− k

−(ln b)−1

]
= a e−k/τ̃ , (45)

and noting b = |λ2nd| so τ̃ can be found either from
τ̃ = −(ln |λ2nd|)−1 using λ2nd, the second largest (in magni-
tude) eigenvalue of OL in Table I, or τ̃ = −(ln b)−1 using
the fitted b in Table II. Since our earlier results showed
good agreement between the fitted b and the corresponding
λ2nd, either method will give us the time constant: τ̃ PC

L-bit, τ̃MB
L-bit

for L = 1 and L = 6 in Fig. 8 explicitly. It is apparent that
τ̃MB > τ̃ PC for 0 � L � 6 and the MB ratchet has a prolonged
utility as an engine over the PC ratchet from our numerical
investigation.

Thus we surmize that the MB ratchet fares better than the
PC ratchet both in terms of total cumulative work extraction
and sustainability as a thermodynamic engine, where it has
a longer time constant and hence a slower convergence rate,
towards equilibrium.

VIII. CONCLUSION

In conclusion, we have established an information process-
ing second law (IPSL) for a finite-tape information ratchet as
follows:

〈W 〉 � kBT ln 2(H[p′] − H[p]). (46)

It is analogous to the original IPSL introduced by Boyd et al.
[30] for an infinite sequence of bits:

〈W 〉 � kBT ln 2 (h′
μ − hμ), (47)

where the time-averaged work production rate 〈W 〉 of the
ratchet in its steady-state behavior is bounded above by the
change in entropy rate �hμ = h′

μ − hμ. Unlike the infinite
tape version, our finite tape-ratchet system takes the per-
spective of an ensemble of information ratchets operating on
their respective finite tapes, where we study and explore their
collective or ensemble-averaged behavior. Each member of
the information ratchet ensemble is identical (in terms of its
design, e.g., number of ratchet states, permissible state tran-
sitions with respective transition probabilities) and operates
on its finite tape (all of the same length) within this ensem-
ble, and as such could be perceived as a random machine.
Hence Eq. (46) is to be interpreted as the ensemble-averaged

(expected) work 〈W 〉 being bounded by the change in Shan-
non entropy between the resulting p′ and preceding p joint
distributions over the tape-ratchet configurations over an arbi-
trary time step (1 bit scan), irrespective of whether the initial
transients have passed or eventual convergence to a stationary
distribution. This is a fundamental difference between the
infinite-tape IPSL and the finite-tape IPSL with the latter’s
applicability at all times, resulting in a different interpretation
for the work term in the respective inequalities: a steady-
state, time-averaged work production rate in Eq. (47) and an
ensemble-averaged (expected) work extracted for a particular
bit scan in Eq. (46). We note that information now manifests
within the joint distribution of the configuration (joint states)
of the tape-ratchet system at a specific time, in stark contrast
with Boyd et al.’s model where the explicit (input and output)
bit sequences are the stores of information.

We studied the potential of this finite-tape information
ratchet in fulfilling the thermodynamic role of supporting a
variety of ratchet operations with two ratchet designs in this
paper: a single-state, perturbed coin ratchet and double-state,
modified Boyd’s ratchet. We found that the finiteness of the
tape renders the useful operation of engine or eraser unsus-
tainable in time as the system equilibrates under the action
of regular O matrices with no useful (i.e., positive) expected
work to be extracted or expended further after prolonged oper-
ation. Nonetheless, the ratchet is still able to realize its utility
as either an engine (positive work extracted at the expense
of writing information to the joint tape-ratchet distribution)
or eraser (work expended for information erasure within this
joint distribution), respectively, under different sets of pa-
rameters in its transient phase before equilibrium has been
attained. Specifically, knowledge of the phase plots such as
Fig. 4 will equip a user operating this random machine with
the corresponding (p, q) parameters to leverage its expected
behavior (either as an engine or eraser) to complete the desired
physical tasks of generating and extracting work or informa-
tion erasure.

Finally, we show how correlation can be harnessed to
extract additional cumulative work. Through our design, we
illustrate that an information ratchet with memory draws more
cumulative work relative to another without by exploiting cor-
relations between ratchet state and bit state in view of the pres-
ence of ratchet memory. Moreover, the effect of tape-ratchet
correlations when NR > 1 can bias a ratchet with memory
away from equilibrium such that its asymptotic tape scan work
〈Wt〉∞ is nonvanishing. We have uncovered this phenomenon
for the MB ratchet for L > 1 at specific (p, q) values where
the steady state 〈Wt〉MB

∞ is observed to exhibit a negative value.
With the system having converged to its stationary distribution
p → π, the change in Shannon entropy of its joint distribution
(over a bit scan and thus a tape scan) vanishes, i.e., (�Ht )∞ =
0. In accordance with the IPSL in Eq. (46) and taking into
account the negative work in this steady state, we observe that
(�Ht )∞ − 〈Wt〉∞ > 0. This exemplifies the situation where
the nonsaturation of the IPSL inequality persists in the steady
state when the system is not in equilibrium. To understand
these results, further investigation on the underlying mecha-
nism behind how the ratchet leverage and exploit correlated
joint tape-ratchet distributions to maximize the extracted work
from its continued operation is necessary. We believe such

054131-12



INFORMATION PROCESSING SECOND LAW FOR AN … PHYSICAL REVIEW E 105, 054131 (2022)

exploration in our future work would lead us to the design
of finite-tape information ratchets that realize exotic or self-
sustaining thermodynamic functionalities.

APPENDIX: WORK AND MARGINAL PROBABILITY
DISTRIBUTION

Here we show that the average work 〈W 〉 for the L >1-bit
tape can be expressed in terms of the marginal interacting
bit-ratchet distribution. In order to do this, some new index-
ing notations will be introduced, starting from the 1-bit tape
operation first and then the general L-bit tape operation.

1. 1-bit tape

The thermal transition operator for the 1-bit tape is given
by Eq. (1) where E , F , G, and H are submatrices of M1-bit

with size NR × NR. To ease the notation later, here we refer
to M1-bit as M (1). We refer to the entry or element of M (1) as
M (1)

i, j .
Let us now define new variables r, s, u, and v, where

r, s ∈ {0, 1} and u, v ∈ {1, 2, . . . , NR}. The indices i and j can
then be defined as

i(r, u) = rNR + u, (A1)

j(s, v) = sNR + v. (A2)

The variables r and s determine which submatrix the indices
are referring to, i.e.,

E → r = 0, s = 0,

F → r = 0, s = 1,

G → r = 1, s = 0,

H → r = 1, s = 1,

(A3)

and the variables u and v refer to the row and column of the
particular submatrix, respectively.

Following Eq. (13), the average work can be written in
terms of r, s, u, and v as

〈W 〉 =
∑
i, j

M (1)
j,i pi ln

(
M (1)

i, j

M (1)
j,i

)

=
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

M (1)
(sNR+v, rNR+u) p(rNR+u)

× ln

[
M (1)

(rNR+u, sNR+v)

M (1)
(sNR+v, rNR+u)

]
. (A4)

As for the probability distribution pi = p(rNR+u), Table IV
gives the relationship among the variables r and u, index i,
and the corresponding tape-ratchet configurations for NR = 2.

2. L-bit tape

The thermal transition operator for the L-bit tape M (L) is
given by Eq. (4). Each of the submatrices E , F , G, and H in
M (L) is repeated 2L−1 times. Outside of these submatrices, all
other elements of M (L) are zero.

TABLE IV. Relationship among the variables r and u, index i,
and the tape-ratchet configuration for NR = 2.

r u i Tape-ratchet configuration

0 1 1 0 ⊗ A
0 2 2 0 ⊗ B
1 1 3 1 ⊗ A
1 2 4 1 ⊗ B

Since there are repeating elements of submatrices E , F , G,
and H in M (L), variables r, s, u, and v introduced before can
be used again here to refer to the elements of these subma-
trices. Let us now define new variables k, α, and β, where
k ∈ {0, 1, . . . , 2L−1 − 1} and

α(r, u, k) = rNR2L−1 + kNR + u, (A5)

β(s, v, k) = sNR2L−1 + kNR + v. (A6)

It can be checked that M (L)
α,β = M (1)

i, j (and M (L)
β,α = M (1)

j,i ) for any
k. The variables r and s can be thought of pointing to the
region of the matrix M (L), as shown below:

M (L) =
(

r = 0, s = 0 r = 0, s = 1
r = 1, s = 0 r = 1, s = 1

)
. (A7)

Additionally, the variables r and s also determine which sub-
matrix the indices are referring to, as given in Eq. (A3).
Variable k points to the (k + 1)th copy of the submatrix,
counting from top to bottom (or left to right). Since k can
take 2L−1 different values, it indicates that the repetition of
the elements occurs 2L−1 times. The variables u and v refer to
the row and column of the particular submatrix, respectively.

The elements of M (L) outside of indices α and β defined
above are all zero. Therefore, the average work as expressed
in Eq. (13) can be calculated by summing over the indices α

and β, i.e.,

〈W 〉 =
∑
α,β

M (L)
β,α pα ln

(
M (L)

α,β

M (L)
β,α

)

=
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

2L−1−1∑
k=0

M (L)
(sNR2L−1+kNR+v, rNR2L−1+kNR+u)

× p(rNR2L−1+kNR+u)

× ln

[
M (L)

(rNR2L−1+kNR+u, sNR2L−1+kNR+v)

M (L)
(sNR2L−1+kNR+v, rNR2L−1+kNR+u)

]
. (A8)

Since M (L)
α,β = M (1)

i, j and M (L)
β,α = M (1)

j,i , then

M (L)
(rNR2L−1+kNR+u, sNR2L−1+kNR+v) = M (1)

(rNR+u, sNR+v) and

M (L)
(sNR2L−1+kNR+v, rNR2L−1+kNR+u) = M (1)

(sNR+v, rNR+u). Therefore,

〈W 〉 =
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

M (1)
(sNR+v, rNR+u)

×
[

2L−1−1∑
k=0

p(rNR2L−1+kNR+u)

]
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TABLE V. Relationship among the variables r, u, k, the indices i
and α, and the tape-ratchet configuration for NR = 2 and L = 2.

r k u α Tape-ratchet configuration i

0 0 1 1 00 ⊗ A 1
0 0 2 2 00 ⊗ B 2
0 1 1 3 01 ⊗ A 1
0 1 2 4 01 ⊗ B 2
1 0 1 5 10 ⊗ A 3
1 0 2 6 10 ⊗ B 4
1 1 1 7 11 ⊗ A 3
1 1 2 8 11 ⊗ B 4

× ln

[
M (1)

(rNR+u, sNR+v)

M (1)
(sNR+v, rNR+u)

]

=
∑
i, j

M (1)
j,i p(BN ⊗RN )

i(r,u) ln

(
M (1)

i, j

M (1)
j,i

)
, (A9)

where p(BN ⊗RN )
i(r,u) is the marginal probability defined as

p(BN ⊗RN )
i(r,u) =

2L−1−1∑
k=0

p(rNR2L−1+kNR+u). (A10)

So Eq. (A9) shows that the average work can be calculated
from the marginals following the exact same formulation as
the 1-bit tape’s average work.

Table V gives the relationship among the variables r, u,
k, the indices i and α, and the corresponding tape-ratchet
configurations for NR = 2 and L = 2. The list of the marginals
in this example is given by

p(0⊗A) = p1 + p3 = p(00⊗A) + p(01⊗A),

p(0⊗B) = p2 + p4 = p(00⊗B) + p(01⊗B),

p(1⊗A) = p5 + p7 = p(10⊗A) + p(11⊗A),

p(1⊗B) = p6 + p8 = p(10⊗B) + p(11⊗B).
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