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Dependency between a response variable and the explanatory variables is a relationship of universal concern in
various real-world problems. Multivariate linear regression (MLR) is a well-known method to focus on this issue.
However, it is limited to dealing with stationary variables. In this work, we develop a MLR framework based on
detrending moving average (DMA) analysis to reveal the actual dependency among variables with nonstationary
measures. The DMA-based MLR can generate multiscale regression coefficients, which characterize different
dependent behavior at different timescales. Artificial tests show that the DMA-MLR model can successfully
resist the impact of trends on the studied series and produce more accurate regression coefficients with multiscale.
Furthermore, some scale-dependent statistics are developed to deduce some important relationships in three
typical DMA-based MLR models, which help us to deeply understand the DMA-MLR models in theory. The
application of the proposed DMA-MLR framework to Beijing’s air quality index system demonstrates that fine
particulate matter with diameter �2.5 μm (PM2.5) is the dominant pollutant affecting the air quality of Beijing
in recent years.
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I. INTRODUCTION

The rapid development of multivariate statistical technol-
ogy has provided strong support for data analysis and decision
making in various fields of information science. Modeling
on multivariate nonstationary time series has been a research
hotspot in recent decades [1–3]. An abundance of effective
methods have been proposed to deal with nonstationary mea-
sures. Among them, detrended fluctuation analysis (DFA) [4]
is undoubtedly quite popular since it is capable of exploring
the long-range autocorrelations and multifractal features of
time series in diverse fields [5–15]. As an important vari-
ant of DFA, detrending moving average (DMA) analysis
[16] can also describe the long-term correlation in nonsta-
tionary systems, and it replaces DFA on many occasions.
DMA and its extensions have also been widely used for
various (multi)fractal analyses [17–24]. Synthetic tests have
demonstrated that the two competitive methods have similar
performances, while the DMA algorithm is computationally
less demanding because it does not contain the process of
polynomial fitting [25–28].

Essentially, these two methods dealing with nonstationary
measures are similar. Both analyze the fluctuation charac-
teristics of the residual obtained by splitting the profile and
removing the local trends. That is to say, the scale-dependent
residual is a special product of the detrended method family.

*Corresponding author: popwang619@163.com

Naturally, the scale-dependent residual is translated into the
language of variance and covariance by using its second-order
moment and the second-order mixed moment, respectively,
which makes it possible to realize an idea that connects the
classical linear regression model and the DFA-DMA-based
regression model [29,30]. Based on the ordinary least squares
(OLS) framework and its expression with scale-dependent
variances and covariances, Kristoufek [29,30] constructed
two multiscale univariate linear regression frameworks us-
ing DFA-DMA and the bivariate generalization of detrended
cross-correlation analysis (DXA) [31] as well as detrended
moving average cross-correlation analysis (DMXA) [20].
They can allow us to interpret the dependence between two
variables at different time periods. Hereafter, these methods
have been improved and applied to describe the dependencies
between the response variable and explanatory variables in
various fields [32–40]. For example, Wang et al. [35] and
Fan and Wang [38] extended the univariate DFA and DMA
regression models to the bivariate case, which are applied to
analyze the dependence of the air quality index (AQI) among
three cities and three stock indices at different timescales,
respectively.

With a different approach, namely, time series decompo-
sition, Shen [32] proposed a DFA-based multivariate linear
regression (MLR) model. Based on the proposed DFA-MLR,
the author provided a semipartial correlation coefficient
(SPCC) to assess the unique contribution of meteorological
factors to the air pollution index. Inspired by the experience
of Shen [32], in this work we develop an alternative but
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also complementary DMA-based MLR model. Based on this
DMA-MLR, we further deeply explore the relationship be-
tween several scale-dependent parameters in MLR models.
Specifically, we investigate three models, namely, a p-variable
regression model, a p − 1-variable model established by the
same explanatory variables except one, and a p − 1-variable
model established by the former explanatory variables and
taking one of them as the dependent variable. The rela-
tionships between the scale-dependent parameters (SPCC,
partial correlation coefficient, coefficient of determination,
tolerance of explanatory variables) are discussed for the pro-
posed DMA-MLR. Through rigorous mathematical analyses
and simulation experiments, we find that the relationships also
hold for the multiscale case.

The paper is organized as follows: In Sec. II we first briefly
review the DMA algorithm and then develop the DMA-based
multivariate regression framework. In Sec. III based on the
DMA-MLR model, a scale-dependent SPCC is proposed.
In addition, we show that the three important relationships
are connected by the DMA-based SPCC together with other
scale-dependent statistics. Their derivation is given in the Ap-
pendix. In Sec. IV we launch a series of artificial experiments
around the DMA-MLR. As a real-world application, the de-
pendence between AQI and pollutant concentration series of
Beijing is considered in Sec. V. The paper ends with a brief
summary.

II. METHODOLOGY

A. Detrended moving average and cross-correlation analysis
(DMA and DMXA) methodologies

Being important in the detrending method family for
coping with nonstationary measures, the DMA and DMXA
methodologies can well explore the long-term correlation of
nonstationary series. They are well described in [16,18–20].
Here we briefly outline the variance and covariance procedure.
For a given series {x(t )}, t = 1, 2, . . ., N , we first calculate its
profile series X (t ) = ∑t

k=1 x(k) for t = 1, 2, . . ., N . Then the
moving average function is defined by

X̃ (t ) = 1

s

�(s−1)(1−θ )�∑
k=−�(s−1)θ�

X (t − k), (1)

where s is the window size, �x� denotes the largest integer
not greater than x while �x� represents the smallest integer
not less than x, and θ is the position parameter in the range
of [0,1] (specifically, θ = 0, 0.5, and 1 correspond to forward,
centered, and backward cases, respectively). For the sample
points satisfying s − �(s − 1)θ� � i � N − �(s − 1)θ�, the
residual series ε(i) is obtained by removing the moving av-
erage function X̃ (t ) from the profile X (t ), i.e., ε(i) = X (i) −
X̃ (i). Then we divide ε into Ns = �N/s − 1� disjoint segments
with the equal length s. In the vth interval, the fluctuation
function is defined by

f 2
x (s, v) = 1

s

s∑
i=1

[Xv (i) − X̃v (i)]2. (2)

The detrending variance can be calculated by averaging
f 2
x (s, v) over all the segments

F 2
x (s) = 1

Ns

Ns∑
v=1

f 2
x (s, v). (3)

F 2
x (s) is a critical product of the well-known DMA method,

which describes the autocorrelation of the series {x(t )}.
In order to assess the long-term cross-correlation between

the bivariate series {x(t )} and {y(t )}, one defines the bivariate
fluctuation function in a similar way as in Eq. (2),

f 2
xy(s, v) = 1

s

s∑
i=1

[Xv (i) − X̃v (i)][Yv (i) − Ỹv (i)].

Then the main outcome of the DMXA method, the detrending
covariance, is determined by

F 2
xy(s) = 1

Ns

Ns∑
v=1

f 2
xy(s, v). (4)

F 2
x (s) and F 2

xy(s) are considered as scale-dependent variance
and covariance, respectively.

Using the above scale-dependent variance and covariance,
a DMA-based cross-correlation coefficient,

ρDMXA(s, x, y) = F 2
xy(s)√

F 2
x (s)F 2

y (s)
, (5)

was proposed to quantitatively characterize the degree of
cross-correlation between the two bivariate series {x(t )} and
{y(t )} [28].

B. Description of the DMA-MLR framework

In this subsection, we extend the DMA-based linear re-
gression model [30,38] to the multivariate case. Suppose
that there are p explanatory variables, x1, x2, . . ., xp, and
one dependent variable y. The same length N samples are
considered, i.e., {x j (k)}, {y(k)} (1 � k � N , 1 � j � p). The
time series may involve unknown trend or nonstationary mea-
sures. For the sake of simplicity, consider a centralized [i.e.,∑N

k=1 x j (k) = 0,
∑N

k=1 y(k) = 0] multivariate linear regres-
sion (MLR) model, whose kth sample is

Model I:y(k) = β1x1(k) + β2x2(k) + · · · + βpxp(k) + ε(k).

(6)

where the parameter β j (1 � j � p) is the regression coef-
ficient and ε = [ε(1), ε(2), . . . , ε(N )]T is the residual series,
which may also contain potential trends.

According to Shen [32], the cumulative sum for Eq. (6)
from 1 to t (1 � t � N) is

t∑
k=1

y(k) = β1

t∑
k=1

x1(k) + β2

t∑
k=1

x2(k)

+ · · · + βp

t∑
k=1

xp(k) +
t∑

k=1

ε(k). (7)
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Denote Y = [
∑1

k=1 y(k),
∑2

k=1 y(k), . . . ,
∑N

k=1 y(k)]T ,
β = [β1, β2, . . . , βp]T , and E = [

∑1
k=1 ε(k),

∑2
k=1 ε(k),

. . . ,
∑N

k=1 ε(k)]T , which are column vectors of N dimension.
Let

X =

⎡
⎢⎢⎢⎢⎢⎣

∑1
k=1 x1(k)

∑1
k=1 x2(k) · · · ∑1

k=1 xp(k)∑2
k=1 x1(k)

∑2
k=1 x2(k) · · · ∑2

k=1 xp(k)
...

...
. . .

...∑N
k=1 x1(k)

∑N
k=1 x2(k) · · · ∑N

k=1 xp(k)

⎤
⎥⎥⎥⎥⎥⎦

N×p

.

Then the matrix form of Eq. (7) is

Y = Xβ + E .

Accordingly, the residuals series can be determined by
E = Y − Xβ. Similar to the idea of OLS, the scale-based
regression coefficients can be determined by minimizing the
fluctuation of residuals for each scale, namely,

min Var(E )

= F 2
ε (s) = 1

Ns

Ns∑
v=1

1

s

s∑
t=1

[Ev (t ) − Ẽv (t )]2

= 1

Ns

Ns∑
v=1

1

s

s∑
t=1

{[Yv (t ) − Xv (t )β] − [ ˜Yv (t )−Xv (t )β]}2

= 1

Ns

Ns∑
v=1

1

s

s∑
t=1

{[Yv (t ) − Ỹv (t )] − [Xv (t ) − X̃v (t )β]}2

= 1

Ns

Ns∑
v=1

1

s

s∑
t=1

[Y ′
v (t ) − X ′

v (t )β]2, (8)

where Ev (t ) and Yv (t ) denote the t th elements of the vectors
E and Y , respectively, in segment v; Xv (t ) is the t th row
of the matrix X in segment v; and Ẽv (t ), Ỹv (t ), and X̃v (t )
are the detrending moving average functions of E (t ), Y (t ),
and X (t ), respectively, in the vth segment, which are calcu-
lated by Eq. (1). Suppose that Y ′ = Y − Ỹ and X ′ = X − X̃ .

In light of OSL and Zhao and Shang [41], ˜Yv (t )−Xv (t )β =
Ỹv (t ) − X̃v (t )β.

Since the series Y ′ and the matrix X ′ have removed the
trend components, their variances are not relevant to time t ,
but are relevant to the timescale s. Therefore, for every scale,
the first-order condition can be conducted on Eq. (8) to obtain
the minimum (β1, β2, . . . , βp). The normal equations can be
obtained,

1

Ns

Ns∑
v=1

1

s

s∑
t=1

[Y ′
v (t )X ′

v (t, i) − X ′
v (t, i)X ′

v (t )β] = 0,

where X ′(t, i) is the element of the t th row and ith col-
umn of the matrix X ′(1 � i � p). Note that (1/Ns)

∑Ns
v=1

1
s

∑s
t=1 Y ′

v (t )X ′
v (t, i) is the detrended covariance of the series

{y(t )} and {xi(t )}, and (1/Ns)
∑Ns

v=1
1
s

∑s
t=1 X ′

v (t, j)X ′
v (t, i)

is the detrended covariance of {x j (t )} and {xi(t )} (1 � j,
i � p), which conform with Eqs. (3) and (4). We
record column vectors β(s) = [β1(s), β2(s), . . . , βp(s)]T and

T (s) = [F 2
yx1

(s), F 2
yx2

(s), . . . , F 2
yxp

(s)]T . The detrended covari-
ance matrix is

F (s) =

⎡
⎢⎢⎢⎢⎢⎣

F 2
x1

(s) F 2
x1x2

(s) · · · F 2
x1xp

(s)

F 2
x2x1

(s) F 2
x2

(s) · · · F 2
x2xp

(s)

...
...

. . .
...

F 2
xpx1

(s) F 2
xpx2

(s) · · · F 2
xp

(s)

⎤
⎥⎥⎥⎥⎥⎦

p×p

.

Thereupon, the normal equations of the DMA-based regres-
sion model can be rewritten in matrix form,

F (s)β(s) = T (s). (9)

In the case where F (s) is invertible, the DMA-based regres-
sion coefficient β(s) can be estimated by

β̂(s) = F−1(s)T (s).

Using the DMA-based estimator β̂(s), the estimated scale-
dependent residuals are obtained by

Ê (s) = Y − X β̂(s) − 〈Y − X β̂(s)〉,
where the symbol 〈·〉 represents the average value. By using
the estimated scale-dependent residuals, the variance of β̂(s)
at different scales can be calculated by the diagonal compo-
nent of the matrix 1

N−p−1 F 2
ε (s)F−1(s).

The corresponding scale-specific coefficient of determina-
tion R2(s) is presented for assessing the explanatory ability of
the independent variables to Model I at different timescales,

R2(s) = 1 − F 2
ε (s)

F 2
y (s)

, (10)

where F 2
y (s) and F 2

ε (s) are the detrended variances of the de-
pendent variable y and the residual ε, respectively, computed
by Eq. (3).

III. IN-DEPTH ANALYSIS OF DMA-MLR

In this section, we further explore the statistical property
of the DMA-MLR model. Besides Model I [see Eq. (6)], two
other models of DMA-based MLR are also discussed [see
Eqs. (12) and (15)]. In Sec. III A some critical scale-dependent
statistical measures are developed, which help us to under-
stand the relationship among these models. In Sec. III B we
outline in detail the three important relationships connecting
the three DMA-MLR models.

A. Scale-dependent statistics in the DMA-MLR model

In the MLR model, the dependent variable is always af-
fected by different explanatory variables to varying degrees.
To assess the relative importance of explanatory variables in
determining the dependent variable y, a SPCC [42] is defined
as the Pearson’s correlation coefficient between the residual
of one of the explanatory variables (e.g., xi) on the other
explanatory variables and the dependent variable y. The SPCC
of y and xi is defined as

SPCC(y, xi ) = δT
i y√

δT
i δi

√
yT y

, (11)
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where y = [y(1), y(2), . . . , y(N )]T is an observed value of the
dependent variable y, and δi = [δi(1), δi(2), . . . , δi(N )]T is an
implementation value of the residual δ of the variable xi on
the other explanatory variables, which is determined by the
MLR model (denoted as Model II) below (also centralized for
simplicity),

Model II: xi(k) = α1x1(k) + · · · + αi−1xi−1(k) + αi+1xi+1(k)

+ · · · + αpxp(k) + δi(k), (12)

where k = 1, 2, . . . , N .
The classical SPCC can deal only with stationary

measures. If the dependent variable or explanatory variables
possess trends or long-term correlation, the SPCC will
give the false correlation since the assumption of steady
covariance and variance is violated. What’s more, the
Pearson’s correlation-based calculation makes SPCC not able
to capture the correlation at different timescales. Here, to
overcome these drawbacks, according to the DMA-DMXA
language, we develop a DMA-based scale-dependent SPCC,
which is defined as

ρDMSPCC(s, y, xi ) = F 2
δiy

(s)√
F 2

δi
(s)F 2

y (s)
, (13)

where F 2
δi

(s) and F 2
y (s) are the scale-dependent detrended

variances computed with Eq. (3), and F 2
δiy

(s) is the
scale-dependent detrended covariance computed by Eq (4).
The proposed ρDMSPCC can well assess the correlation at
different scales between the dependent variable and one
explanatory variable regardless of trends.

The semipartial correlation analysis [42] successfully
solved the collinearity problem between explanatory variables
in MLR. On the one hand, the proposed ρDMSPCC(s, y, xi )
reflects the unique contribution of the explanatory variable xi

to the multiple correlation coefficients of the MLR model at
scale s, which is realized by eliminating the influence of the
other explanatory variables. On the other hand, if the influence
of the other explanatory variables on the dependent variable
is also eliminated, then the “pure” relation between the stud-
ied explanatory variables and the dependent variable can be
obtained, which is called the partial correlation coefficient
(PCC). Recently a DMA-based PCC was proposed to assess
the intrinsic correlation between multiple variables [43], de-
noted as ρDMPCC(s). ρDMPCC is defined as the DMA-based
cross-correlation coefficient of two residuals that are obtained
by regression models established separately with two depen-
dent variables affected by the same explanatory variables.
Precisely, ρDMPCC(s) between variables y and xi is defined by

ρDMPCC(s, y, xi ) = F 2
δiηi

(s)√
F 2

δi
(s)F 2

ηi
(s)

, (14)

where δi and ηi[= [ηi(1), ηi(2), . . . , ηi(N )]T ] are,
respectively, the scale-specific residuals of Model II [Eq. (12)]
and Model III (also centralized) below,

Model III: y(k) = γ1x1(k) + · · · + γi−1xi−1(k) + γi+1xi+1(k)

+ · · · + γpxp(k) + ηi(k), (15)

where k = 1, 2, . . . , N . Here, as before, F 2
δ (s) and F 2

η (s) are
computed with Eq. (3) while F 2

δη(s) is computed by Eq. (4).

B. Important relationships in DMA-MLR models

In the MLR model, both SPCC and PCC are used to
eliminate multicollinearity and assess the true correlation of
explanatory variables and the dependent variable. In contrast,
since SPCC reflects the unique contribution of explanatory
variables to the multiple correlation coefficient, it is often used
to screen the explanatory variables that have no significant
impact on the dependent variable. In typical MLR models,
SPCC is a bridge connecting the coefficient of determination
of Model I [Eq. (6)] and that of Model III [Eq. (15)]. We find
that the relationship also holds for the DMA-based regression
framework, which is

R2(s) = R2
yi(s) + ρ2

DMSPCC(s, y, xi ). (16)

Here the coefficient of determination R2(s) [Eq. (10)] and
R2

yi(s) [= 1 − F 2
ηi

(s)/F 2
y (s)] measures the explanatory ability

of all independent variables and the variables excluding xi to
Model I and Model III at scale s, respectively. Accordingly,
for the calculated R2(s), if |ρDMSPCC(s, y, xi )| is large, then
R2

yi(s) is small, which indicates that the influence of removing
xi on R2(s) is great. This is explained as that the explanatory
variable xi is important for the dependent variable y. On the
contrary, the larger R2

yi(s) is, the less significant the contribu-
tion of xi to y is. Moreover, the DMA-based PCC of y and
xi can be connected with the DMA-based SPCC at different
scales by R2

yi(s) through

ρDMPCC(s, y, xi ) = ρDMSPCC(s, y, xi )√
1 − R2

yi(s)
. (17)

According to Eq. (17), it is clear that ρDMPCC is not less
than ρDMSPCC at any timescale. For the case where R2

yi(s) = 0,
that is, there is no relationship between the other explanatory
variables and the dependent variable y at the given scale s,
ρDMPCC(s, y, xi ) is equal to ρDMSPCC(s, y, xi ) as expected.

In addition to connecting the DMA-MLR Models I and III,
the DMA-based SPCC is also a bridge connecting Model I and
Model II [Eq. (12)]. Noting that R2

xi
(s) [= 1 − F 2

δi
(s)/F 2

xi
(s)] is

the scale-dependent coefficient of determination of Model II,
we see that the SPCC between the variables xi and y can also
be calculated by

ρDMSPCC(s, y, xi ) = β∗
i (s)

√
1 − R2

xi
(s), (18)

where β∗
i (s) = βi(s)

√
F 2

xi
(s)/F 2

y (s) is the standard DMA-
based regression coefficient of Model I and TOLi(s) = 1 −
R2

xi
(s) is the tolerance of the explanatory variable xi at the

scale s. Obviously the smaller TOLi(s) is, the more serious the
collinearity of variable xi by the other explanatory variables
will be expected.

To sum up, Eq. (16) provides a quantitative description of
the explanatory ability to the model by one of the explana-
tory variables; Eq. (17) shows the relationship between the
DMA-based PCC and SPCC; Eq. (18) allows us to investigate
the relationship between the partial regression coefficient and
SPCC. These three important relationships help us to have
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FIG. 1. PDFs of regression coefficients of the quaternary linear
regression model (y = −x1 − 0.5x2 + 0.5x3 + x4 + ε) based on the
DMA method and the traditional method. The four subplots are for
the four regression coefficients in order. In each case, three scales s =
10, 40, and 70 are considered for the DMA-based regression model.

a deeper understanding of the DMA-based MLR models in
theory. Meanwhile, they provide an easy way to calculate
scale-dependent statistical measures in practical applications
of DMA-MLR models. The proof is given in the Appendix.

IV. TEST AND DISCUSSION

A. Performance of DMA-based MLR

The DMA-DMXA is a method family having the ability to
deal with nonstationary measures as the DFA-DCCA method
family does, but the former is more efficient than the latter.
However, research shows that there is a slight deviation in the
results for different position types of moving average (as men-
tioned above, forward, centered, and backward correspond to
θ = 0, θ = 0.5, and θ = 1, respectively). The empirical result
indicates that the best performance comes from the case of a
centered moving average [18,19]. For the DMA-based binary
regression model, Fan and Wang [38] compared the error re-
sults of different moving average schemes on two simulations
and demonstrated that the centered case has the best result (see
Fig. 1 there). Therefore, to avoid repetitive work, we utilize
θ = 0.5 to do our test. In this subsection, we first test the
validity of the proposed DMA-based multivariate regression
framework and then examine the three relationships shown in
Sec. III B.

We consider a quaternary linear regression model
as y = β1x1 + β2x2 + β3xx + β4x4 + ε. The four ex-
planatory variables xi(i = 1, 2, 3, 4) are generated
by four independent ARFIMA(0, d, 0) processes [44],
xi(t ) = ∑∞

n=1 αn(di )ξi(t − n), where di is a fractional
integration parameter with the range (−0.5, 0.5),
αn(di ) = �(n − di )/[�(−di )�(n + 1)], �(·) denotes the
Gamma function, and ξi is an independent Gaussian noise.
The residual ε is the Gaussian white noise series. First, we
investigate the distribution of the DMA-based regression
coefficients. Suppose β1 = −1, β2 = −0.5, β3 = 0.5, and
β4 = 1. The four ARFIMA series have the same fractional
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FIG. 2. Effect of the four types of trends on regression estima-
tors. The left panel is for {xi(t )} (i = 1, 2, 3, 4) adding linear trend (a),
quadratic trend (c), cubic trend (e), and sinusoidal trend (g) with the
other variables unchanged. The right panel is for the corresponding
β̂i estimated by DMA-based (solid line) and traditional OSL-based
(dashed line) methods. Dotted line locates the expected result,
βi = 1. It demonstrates that the DMA-based estimators are close
to the true values, but the estimations of the traditional OLS-based
method deviate seriously.

integration parameter of di = 0.1 but independently. The
four explanatory variables’ series {xi(t )} have N = 10 000
sample points. We conduct 1000 independent simulations to
estimate the regression coefficients. The probability density
distribution function (PDF) of the four regression coefficient
estimators β̂1(s)-β̂4(s) is shown in Figs. 1(a)–(d), respectively.
Three timescales are selected for our consideration. As a
comparison, the PDF obtained from the traditional MLR
estimation (denoted as OLS) is also shown in the figure.
There is no doubt that the PDFs are normal shape and are
centered at the four designed coefficients −1, −0.5, 0.5, and
1, for both methods. We find that the standard deviation of the
DMA-based β̂(s) increases with the increasing of the scale s.
That the mean values of the simulations are centered at the
true regression coefficients illustrates that the DMA-based
regression estimators reflect the correct dependencies. Next,
we wish to demonstrate the satisfactory trend resistance of
the DMA-MLR. To do so, the above quaternary regression
model is still employed. For comparison, this time, we set
an identical coefficient βi = 1 (i = 1, 2, 3, 4). The other
settings are the same as those for the first test. Then we
add four types of trends [denoted as Tr(t )] to one of the
explanatory variables [x′

i (t ) = xi(t ) + Tri(t )] and keep the
others unchanged, namely, Tr1(t ) = 0.02t , Tr2(t ) = 0.0003t2,
Tr3(t ) = 0.000005t3, and Tr4(t ) = sin(0.5t ), where
t = i/100, i = 0, 1, 2, . . ., N − 1. The four ARFIMA
series embodied trends are shown in the left panels of Fig. 2.

As a comparison, we also show the traditional OLS-based
regression estimators. Unfortunately, they deviate from the
true values to varying degrees (see the dotted lines). This can
be interpreted as that the traditional OLS-based regression
estimators are greatly disturbed by the trends. However, owing
to the fact that the DMA/DMXA has a strong ability to deal
with nonstationary measures, the DMA-based β̂(s) (the solid
lines) is stably situated near 1 for available scales s regardless
of the types of trends.
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FIG. 3. Estimated DMA-based and OLS-based regression co-
efficients for the quaternary regression model y = 0.8x1 + 0.3x2 −
0.2x3 − 0.7x4 + ε. Error bars indicate the standard deviations cal-
culated from 100 independent realizations of the corresponding
processes.

We now show the merit that DMA estimators can capture
the scaling behavior of dependence at different timescales.
The quaternary regression model y = β1x1 + β2x2 + β3x3 +
β4x4 + ε is also considered here. We set β1 = 0.8, β2 =
0.3, β3 = −0.2, and β4 = −0.7 this time. The explanatory
variable x1 is generated by a binomial multifractal se-
ries (BMFs) as x1 = pn−n[k−1](1 − p)n[k−1], k = 1, 2, . . . , 2n,
where the parameter p ∈ (0, 0.5), n[k] denotes the number
of digit 1 in the binary representation of the index k. Here
we took p = 0.2. The x2, x3, x4 are independent Gaussian
variables with 0 mean and 0.001 standard deviation. The er-
ror term ε is also Gaussian noise with the same strength as
x2 ∼ x4. All the series are of length N = 213. Then we remove
the values less than 0.000001 of the BMFs x1 so that only
a few of the biggest values are left, and substitute Gaussian
random numbers with 0 mean and 0.001 standard deviation in
their places. Hence, we obtain a binomial cascade series em-
bedded in random noise. Analysis of the dependence between
the explained variable y and the four explanatory variables
indicates that the estimated β̂2 ∼ β̂4 are unbaised at 0.3,−0.2,
and −0.7, respectively, with a desirable errorbar for every
timescale without suspense, as shown in Fig. 3. However,
the performance of β̂1 has changed significantly. The depen-
dence between y and x1 is obviously less than the given value
(β1 = 0.8) at the smaller scales contrary to the larger one.
This is because in smaller scales, the dependency has been
destroyed by the random noise while it remains unchanged in
larger scales. But the traditional OLS-based estimators cannot
capture this (see the black dashed line in Fig. 3).

B. Test of DMA-based SPCC

In this subsection, we focus on testing the perfor-
mance of the DMA-based SPCC. The remarkable benefit
of the proposed ρDMSPCC is that it can uncover the correct
semipartial correlation regardless of trends. To verify this,
the ARFIMA series are employed again. This time, three
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FIG. 4. The performance of semipartial cross-correlation coeffi-
cient for ARFIMA series involving trends. (a) The multiscale SPCC
obtained by DMA (blue squares) and DFA (violet triangles). The
red dashed line denotes the traditional SPCC. (b) More cases with
higher-order trends are shown. We take second-order polynomial
fitting for the DFA method. The coefficient of each case is actually
averaged over all the timescales in (a).

independent ARFIMA processes with identical d = 0.1 are
set as the explanatory variables x1, x2, and x3. x4 = x1 + x2 +
x3 + δ, where δ is Gaussian white noise. In this way, x4 will
be explained well by the variables x1, x2, and x3. Meanwhile,
assume that y is another independent ARFIMA process with
d = 0.4. Therefore, y and the residual of x4 on x1, x2, and x3

are unrelated in theory. Indeed, the simulation value of the
SPCC calculated by Eq. (11) is 0.0028. However, if y and
x4 are disturbed by trends, then the traditional SPCC won’t
work. To show this, we add quadratic trend (as in Sec. IV A)
to x4 and y. As expected, SPCC(y, x4) = 0.3921. The reason
is obvious. This is because the series {y(t )} and {x4(t )} are
nonstationary and the traditional SPCC fails to deal with
nonstationary measures. Fortunately, the DMA-based SPCC
does this job well. Figure 4(a) illustrates that ρDMSPCC(y, x4)
always fluctuates slightly around 0 at every timescale. In this
regard, ρDMSPCC can uncover the essential correlation between
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TABLE I. Average coefficient of determination, SPCC, and PCC
of the DMA-MLR framework over the given scales.

R2
yi ρDMSPCC ρDMPCC

x1 0.9939 −0.0596 −0.8542
x2 0.9907 0.0805 0.9104
x3 0.9817 −0.1209 −0.9565
x4 0.9283 0.2521 0.9893

two variables impacted by quadratic trends. As a matter of
fact, it is immune to any trends. Figure 4(b) supports this,
where the other three trends, namely, linear, cubic, and sinu-
soidal trends (set as in Sec. IV A), are used. As comparison,
the traditional SPCC (the red dashed line) and DFA-based
SPCC (denoted as ρDFSPCC, proposed by Shen [32]) are also
shown in Fig. 4(b), where ρDMSPCC and ρDFSPCC are averaged
over all the considered timescales. Compared with the un-
satisfactory traditional SPCC, the fact that they are almost 0
demonstrates that both DMA-based and DFA-based SPCCs
can well express the accurate result, and the performance of
ρDMSPCC is slightly superior to that of ρDFSPCC due to the
smaller fluctuations. It is worth noting that, in this test, we
added the same trends to both series {y(t )} and {x4(t )}. In
fact, even if they are affected by different trends, ρDMSPCC is
still satisfactory, which benefits from the merit of the DMA-
DMXA method. Although it seems that both methods are
slightly worse in removing the interference of sinusoidal trend
[Fig. 4(b)], the immunity to trends is in general satisfactory.

Let us further study the DMA-based SPCC and its use
in the DMA-MLR framework. SPCC is always used to
evaluate the contribution of explanatory variables by elimi-
nating collinearity in MLR. In this spirit, here a quaternary
regression model with multicollinearity of explanatory vari-
ables is established. The four explanatory variables xi (i =
1, 2, 3, 4) and the dependent variable y are generated
by binomial multifractal series (BMFs) with the parameter
p = 0.1, 0.2, 0.3, 0.4 and 0.48, respectively. All the series
have length N = 213. Figure 5(a) shows the DMXA coeffi-
cients [calculated by Eq. (5)] between every two explanatory
variables. The big ρDMXA(s, xi, x j ) value implies that there
is a strong multicollinearity. The smaller �p = |pxi − pxj | is,
the stronger the collinearity is. By eliminating the collinearity
effect, ρDMSPCC’s between y and xi (i = 1, 2, 3, 4) are shown
in Fig. 5(b). As expected, the differences of the correlations
between y and the four explanatory variables are significant.
The explanatory x2 and x4 are positively correlated with y
while x1 and x3 are negatively correlated with y. In contrast,
the intrinsic correlation between y and x4 is the most sig-
nificant due to the smallest �p. This can also be confirmed
by ρDMPCC(s, y, xi ) and R2

yi(s) obtained from a ternary regres-
sion model (see Model III, by excluding xi). Table I lists the
average R2

yi, ρDMPCC, and ρDMSPCC over scales s from 10 to
800. As expected, R2

y4 is the smallest, which implies that the
model explanatory ability is greatly reduced by eliminating
x4 (relative to the other variables). This is consistent with the
fact that the values of ρDMSPCC(y, x4) and ρDMPCC(y, x4) are
the largest.
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FIG. 5. DMA-MLR modeling for four explanatory variables
{xi(t )} (i = 1, 2, 3, 4) and an explained variable {y(t )} generated by
BMFs model. (a) DMXA coefficient of every two {xi(t )}. (b) The
DMA-based SPCC between series {y(t )} and each {xi(t )}. The black
dashed line represents zero.

In the above tests, although the Gaussian noise is used as
residual in Models I–III, we should note that our model is also
suitable for other distributed residuals.

C. Examination of the important relationships

Now we would like to verify the three important relation-
ships in DMA-based MLR models. To this end, the above
BMFs are employed. Besides the above quaternary regres-
sion model (denoted as Model A, a specific realization of
Model I), two other kinds of MLRs are established. One is
the ternary regression model family by using one of {xi(t )}
as the dependent variable and the other three as explanatory
variables (denoted as Model B, a specific realization of Model
II). The other is also the ternary regression model family but
by using {y(t )} as the dependent variable and three of {xi(t )}
as explanatory variables (denoted as Model C, a specific
realization of Model III). Figures 6–8 show the simulation
results. In Fig. 6 R2(s) (the black dashed line) is the coefficient
of determination of Model A and R2

yi(s) is obtained from
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FIG. 6. Examination of the relationship between R2(s) and
R2

yi(s), which is the coefficient of determination of the quaternary
and ternary linear regression models based on the DMA framework.
Subplots (a), (b), (c), and (d) are for Model C established by three xi

with the exclusion of x1, x2, x3, and x4, respectively. The dashed line
in the four subplots is R2(s) of Model A (all of them are identical).
The hollow symbols denote the quantities determined by the right
side of Eq. (16). The perfect agreement suggests that the relationship
(16) holds.

Model C. In each subplot, the colored hollow symbol denotes
the sum of R2

yi(s) and the corresponding ρ2
DMSPCC(s, y, xi ).

Figure 7 shows the DMA-based PCC between y and xi, which
is calculated by Eq. (14) (hollow symbols) and Eq. (17)
(dashed lines). The examination of the relationship between
the DMA-based SPCC and DMA-based regression coefficient
of Model A is shown in Fig. 8. The hollow symbol stands
for ρDMSPCC(s, y, xi ) calculated by Eq. (13), and the dashed
line represents that determined by Eq. (18). Seen from these
figures, the perfect agreement demonstrates clearly that the
proposed relationships hold for the DMA-based MLR.
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FIG. 7. Examination of the relationship between the DMA-based
PCC and SPCC. The four subplots correspond to DMA-based PCCs
between the series {y(t )} and one of {xi(t )}. The hollow symbols and
the dashed line are the quantities determined by the left-hand side
and right-hand side of Eq. (17), respectively. The perfect agreement
suggests that the relationship (17) holds.
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FIG. 8. Examination of the relationship between the DMA-based
SPCC and DMA-based regression coefficient. The four subplots are
the DMA-based SPCC between series {y(t )} and one of {xi(t )}. The
hollow symbols and the dashed line are the quantities determined by
the left-hand side and right-hand side of Eq. (18), respectively. The
perfect coincidence suggests that the relationship (18) holds.

V. APPLICATION TO BEIJING’S AIR QUALITY
INDEX SYSTEM

Nowadays, air pollution has become a global problem re-
lated to public health [45], especially in cities and regions
with rapid industrialization. In our previous studies, we have
investigated the interactions of air pollution in adjacent cities
[35,46], the difference in dynamic structures of AQI between
cities in northern and southern China [47], and correlation
between major air pollutants in Beijing [14,15]. In this work,
we focus on the impact of the four typical air pollutants on
AQI of Beijing using the proposed DMA-based MLR frame-
work. From the six factors involved in the AQI system, we
select the four most serious factors affecting the air quality
in Beijing, namely, two particulate matters (with diameter
�2.5 μm denoted as PM2.5 and diameter �10 μm denoted as
PM10) and the two conventional pollutants [carbon monoxide
(CO) and nitrogen dioxide (NO2)]. The concentrations of the
four pollutants are regarded as the explanatory variables and
AQI is regarded as the dependent variable, where a quaternary
linear regression model is established. The AQI series and the
four series of concentrations of pollutants were recorded daily
from January 1, 2014, to December 31, 2019. We first central-
ize and standardize these series to remove their dimensions.
Then we investigate the dependency between Beijing’s AQI
and the four pollutants at different timescales. For the whole
daily data of 2014–2019 (there are 2191 observations for each
series), we set timescale s from 7 days to 364 days with
step size 7 days. The estimated scale-dependent regression
coefficient together with the SPCC are shown in Fig. 9. Since
the data are standardized, the regression coefficient provides
the information that can be used to compare the dependence
of AQI on the four explanatory variables. Obviously, the two
particulate matters, especially PM2.5, have a great impact on
AQI at all the timescales. Meanwhile CO has almost no effect
on AQI due to the fact that its corresponding β̂(s) is close
to 0. In addition, with the increase of timescale, NO2 has
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FIG. 9. The quaternary linear regression model of Beijing’s AQI
for the years 2014–2019. Panels (a) and (b) are the estimated
scale-dependent regression coefficient and scale-dependent SPCC
based on the DMA-MLR framework, respectively. The shaded zones
around β̂(s) denote the 95% confidence intervals.

a reverse effect on AQI. The above outcomes can also be
confirmed by ρDMSPCC(s) shown in Fig. 9(b). The ρDMSPCC(s)
between PM2.5 and AQI is undoubtedly significantly greater
than those of the other three. Its contribution to AQI gradually
strengthens with the increasing timescale until about 120 days
and then gradually weakens. The fact that β̂(s) together with
ρDMSPCC(s) presents changeable values at different timescales
manifests that the scale-dependent regression model provides
richer information on the dependency between those studied
variables.

To further investigate whether the particulate matters are
the dominant air pollutants in Beijing in recent years, we will
assess the changes of the impact of the four pollutants on AQI
in these six natural years. To do so, we average the model
parameters over the timescales from 7 days to 56 days, which
is shown in Fig. 10, where the changes in the six years can be
easily obtained from the bar plots. Figures 10(a) and 10(b)
show the two coefficients of SPCC and PCC based on the
DMA-based MLR framework, respectively. It is easily ob-
served that the two coefficients of AQI and the two particulate
matters are positive for the years 2014–2019, while the other
two pollutants are negatively correlated with AQI in most of
the years. ρDMSPCC and ρDMPCC also illustrate that the intrinsic
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FIG. 10. Annual indicators of the quaternary linear regression
model of Beijing’s AQI. (a–d) The averaged SPCC, averaged PCC,
averaged coefficient of determination, and averaged tolerance over
timescales of 7 to 56 days based on the DMA-MLR framework,
respectively.

correlation between AQI and PM2.5 is the most significant
one, which indicates that PM2.5 is the main pollutant affecting
Beijing’s air quality. It was the most serious one in 2015.
Besides the two correlation coefficients, the bars of coefficient
of determination (R2

yi) and tolerance of each pollutants (TOLi)
in the six years are also shown in Fig. 10. The large R2

yi of the
pollutants PM10, CO, and NO2 confirm that relative to PM2.5,
the three pollutants are less significant in the contribution to
Beijing’s AQI. However, in 2019 the contributions of these
four pollutants to AQI were becoming more balanced. The
indicator TOLi shown in Fig. 10(d) exhibits the degree of
multicollinearity among the series of concentrations of the
four pollutants. The TOLi of PM2.5 to the other pollutants is
the smallest in the six years, which implies that the collinearity
between PM2.5 and other three pollutants is always the most
serious one. PM10 and NO2 express relatively weak collinear-
ity to the other factors in 2017–2019. The findings uncover
that the AQI of Beijing can be mainly reflected by PM2.5 as
PM2.5 is closely related to the other pollutants.

VI. CONCLUSION

In this work, on the one hand, we extend the DMA-based
linear regression model [30,38] to the multivariable case. Ar-
tificial tests show that DMA-MLR can not only accurately
estimate the regression coefficients but also successfully resist
the influence of trends on the variables while the traditional
MLR can not. Furthermore, the generated multiscale statistics
such as regression coefficient, coefficient of determination,
and SPCC can provide richer information than the traditional
linear regression analysis can. On the other hand, based on
DMA-MLR, we develop a SPCC (denoted as ρDMSPCC), which
can well assess the contribution of explanatory variables to
the dependent variable at different scales. Revolving around
ρDMSPCC, three important relationships in the DMA-MLR
framework are deduced, which help us better understand the
relationships among the three typical DMA-MLR models.
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The findings from applying these scale-dependent statistics
to Beijing’s AQI system provide evidence of the primary
contribution of PM2.5 to Beijing’s air pollution in recent years.
Finally, an important point we should note is that in most
fields, it is necessary to probe the scaling dependence behavior
between the multiple data at different fluctuations. Hence,
the q-order fluctuations [5,18,19] may be considered in our
proposed DMA-based MLR framework.
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APPENDIX: PROOF OF THE THREE RELATIONSHIPS

The goal here is to deduce the three important relation-
ships, Eqs. (16)–(18), for the DMA-based MLR.

For Models II and III, we take xi = x1 as an example and
repeat the process of calculating the regression coefficient as
in Model I. The matrix form of the cumulative Models I–III is⎧⎨

⎩
Y = Xβ + E ,

X1 = X2α + �,

Y = X2γ + H,

where E = [
∑1

k=1 ε(k),
∑2

k=1 ε(k), . . . ,
∑N

k=1 ε(k)]T ,
� = [

∑1
k=1 δ1(k),

∑2
k=1 δ1(k), . . . ,

∑N
k=1 δ1(k)]T , and

H = [
∑1

k=1 η1(k),
∑2

k=1 η1(k), . . . ,
∑N

k=1 η1(k)]T . Set
X = [X1, X2], where X1 is the first column of the matrix
X with N elements and X2 is the last p − 1 columns of X with
size N × (p − 1). Decompose T (s) into [T1(s), T2(s)]T , where
T1(s) = F 2

yx1
(s) and T2(s) = [F 2

yx2
(s), F 2

yx3
(s), . . . , F 2

yxp
(s)]T

with size (p − 1) × 1. Partition the matrix F (s) into

F (s) =
[

F1(s) F12(s)T

F12(s) F22(s)

]
,

where F1(s)=F 2
x1

(s), F12(s)=[F 2
x1x2

(s), F 2
x1x3

(s), . . . , F 2
x1xp

(s)]T

with size (p − 1) × 1, and F22(s) is a symmetric matrix with
size (p − 1) × (p − 1) obtained by deleting first row and first
column from the matrix F (s). Let

β22(s) =

⎡
⎢⎢⎣

β2(s)
β3(s)

...

βp(s)

⎤
⎥⎥⎦, α(s) =

⎡
⎢⎢⎣

α2(s)
α3(s)

...

αp(s)

⎤
⎥⎥⎦, γ (s) =

⎡
⎢⎢⎣

γ2(s)
γ3(s)

...

γp(s)

⎤
⎥⎥⎦.

Then β(s) = [β1(s), β22(s)]T . One can easily obtain the rela-
tionship among these regression coefficients as

α(s) = − 1

β1(s)
[β22(s) − γ (s)]. (A1)

With the partitions of F (s) and T (s), the normal equa-
tion (9) can be rewritten as{

F1(s)β1(s) + F12(s)T β22(s) = T1(s),
F12(s)β1(s) + F22(s)β22(s) = T2(s).

(A2)

The similar normal equations are obtained for Models II
and III:

F22(s)α(s) = F12(s), F22(s)γ (s) = T2(s). (A3)

Using Eqs. (A2) and (A3), we can simplify F 2
ε (s), F 2

δ (s), and
F 2

η (s) into⎧⎨
⎩

F 2
ε (s) = F 2

y (s) − β1(s)T1(s) − β22(s)T T2(s),
F 2

δ (s) = F1(s) − α(s)T F12(s),
F 2

η (s) = F 2
y (s) − γ (s)T T2(s).

Similarly, the covariances F 2
δy(s) and F 2

δη(s) can be calculated
by {

F 2
δy(s) = T1(s) − α(s)T T2(s),

F 2
δη(s) = T1(s) − γ (s)T F12(s) = F 2

δy(s).
(A4)

Now we are ready to deduce the three relationships. With
Eq. (A2), for given s, F 2

δy(s) can be further transformed into
(for simplicity, in the sequel, we omit s)

F 2
δy = β1F1 + βT

22F12 − β1α
T F12 − β22F22α

= β1(F1 − αT F12) + βT
22(F12 − F22α)

= β1(F1 − αT F12) = β1F 2
δ .

According to Eqs. (A1), (A2), and (A3), we have

R2 − R2
y1 =

(
1 − F 2

ε

F 2
y

)
−

(
1 − F 2

η

F 2
y

)

= 1

F 2
y

(
F 2

η − F 2
ε

)

= 1

F 2
y

[
β1T1 + (

βT
22 − γ T

)
T2

]

= β1

F 2
y

(T1 − αT T2) = β2
1

F 2
y

(F1 − αT F12)

= β2
1 F 2

δ

F 2
y

=
(
F 2

δy

)2

F 2
δ F 2

y

= ρ2
DMSPCC(y, x1).

Therefore, Eq. (16) holds. In addition, according to Eq. (A4),

ρDMSPCC(y, x1)

ρDMPCC(y, x1)
= F 2

δy√
F 2

δ F 2
y

√
F 2

δ F 2
η

F 2
δη

=
F 2

δy

√
F 2

η

F 2
δη

√
F 2

y

=
√

1 − R2
y1

and

ρDMSPCC(y, x1)

β∗
1

= F 2
δy√

F 2
δ F 2

y

√
F 2

y

β1

√
F 2

x1

=
√

F 2
δ√

F 2
x1

=
√

1 − R2
x1
.

Therefore, Eqs. (17) and (18) hold.
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