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First-principles determination of the solid-liquid-vapor triple point: The noble gases
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We report first-principles calculations of the triple point that allow us to predict the triple point temperature
of atomic fluids to an accuracy that has not been previously possible. This is achieved by proposing a molecular
simulation technique that can be used for solid-liquid equilibria at arbitrarily low pressures. It is demonstrated
that the triple point is significantly influenced by the choice of two-body, three-body and quantum interactions.
An improved theoretical understanding of triple points is important for both science in general, and metrology
in particular, as it links the Boltzmann constant and the Kelvin temperature scale to fundamental constants.
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Apart from the notable exception of helium [1], pure el-
ements and molecules are normally characterized by two
distinct invariant properties, namely the critical and triple
points, which occur at the extreme temperature range of
vapor-liquid coexistence. At the upper temperature end, the
critical point [2] signifies the end of vapor-liquid equilibria
(VLE) and the transition to supercritical fluid behavior. The
triple point [2], at the lower temperature end, is the only
condition at which liquid, solid and vapor phases can coexist
simultaneously.

There is an interesting dichotomy between the experi-
mental measurements and theoretical understanding of these
phenomena. The triple point temperature (Ttp) can be often
measured [3] to mK accuracy, whereas there are very large un-
certainties in critical point measurements. This is particularly
the case for molten metals such as sodium that have estimated
critical temperatures [4] in the thousands of K. However, since
the pioneering work of van der Waals [5], the theoretical basis
of the critical point has been studied extensively. The Ising-
like behavior of the critical point is well-documented [6] and
specialized molecular simulation techniques [7,8] have been
developed that can be used to precisely estimate [9] the critical
point of model systems. In contrast, there are no equivalent
theoretical tools to aid the prediction of the triple point, which
is typically estimated via either the extrapolation of high tem-
perature (T ) data or the intersection of curves obtained for the
corresponding VLE and solid-liquid equilibria (SLE) data.

A good theoretical understanding of the triple point and
the ability to accurately predict Ttp could have profound sci-
entific implications. Until the very recent [10] adoption of
a fixed value for the Boltzmann constant (k = 1.380649 ×
10–23 J K–1), the SI unit for temperature, K, was determined
relative to a fixed Ttp of water of exactly 273.16 K. That is, the
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triple point was used to accurately determine one of the few
fundamental constants in science. The Ttp of several elements
remain essential for the integrity of the temperature scale [3]
used in all scientific fields.

Molecular simulation [11] is arguably the theoretical
method of choice for predicting triple points and other fluid
behavior because models of interparticle interactions can be
evaluated rigorously. The advent of improvements in compu-
tational chemistry [12] means that very accurate descriptions
of at least two-body interaction of noble gases are available
from first-principles. These data can be used to formulate
[13,14] accurate ab initio potentials. Molecular simulation al-
gorithms are available [15–17] for SLE, although their utility
is confined to moderate to high pressures (p), whereas the
triple point usually occurs very close to p = 0. There are two
interdependent goals of this work. First, develop a general
molecular simulation procedure capable of reliably predicting
SLE at low p. Second, determine the Ttp of real systems as
accurately as possible from first-principles.

Highly accurate first-principles data are available [18–24]
for the two-body interactions of the stable noble gases. These
first-principles data can be used to formulate a simplified
ab initio atomic potential (SAAP) [25] that can be used in
molecular simulation to determine both VLE [26,27] and SLE
[28],

u2B(r) = uSAAP(r) =
( a0

r

)
exp(a1r) + a2 exp(a3r) + a4

1 + a5r6
,

(1)

where u(r) denotes the energy of interactions of particles at
a given separation (r), and a0, a1, a2, a3, a4, and a5 are pa-
rameters [25] fitted to the first-principles energy-distance data.
The high quality of the agreement has been extensively evalu-
ated [25]. Although two-body interactions make the dominant
contribution to intermolecular interaction, they are insufficient
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to account for the properties of liquids. In particular, the
effect of three-body interactions must be accounted for. Cur-
rently, three-body ab initio potentials [29] cannot be obtained
to the same accuracy as two-body interactions. However, in
many circumstances, it is well established [25,28–31] that the
Axilrod-Teller-Muto (ATM) potential [32,33] is sufficient for
the noble gases,

u3B(r) = uATM(r) = ν(1 + 3 cos θi cos θ j cos θk )

(ri jrikr jk )3 , (2)

where ν is the nonadditive coefficient [34,35]; θi, θ j , and θk are
inside angles of the triangle formed by three atoms denoted
by i, j, and k; and ri j , rik , and r jk are the three side lengths
of the triangle. In addition, the properties of neon and argon
at low T are affected by quantum interactions, which can be
evaluated by combining the first- and second-order Feynman-
Hibbs (FH-1-2) terms [36]:

uFH-1-2 = u2B + β h̄2

12m

[
u′′

2B + 2u′
2B

r

]

+ β2 h̄4

288m2

[
15u′

2B

r3
+ 4u′′′

2B

r
+ u′′′′

2B

]
, (3)

In Eq. (3), the prime symbol denotes successive derivatives
with respect to r, β = 1/kT, m is the mass of the individual
particle, and h̄ is Planck’s constant divided by 2π . Using
Eq. (1) to evaluate Eq. (3) means that first-principles data are
also reflected in the quantum contribution.

The determination of the triple point requires a molecular
simulation approach that determines SLE. The available algo-
rithms [15–17] work reasonably well for moderate to high p
but they are less accurate for very low p. This deficiency in
existing methods is exemplified by the considerable variation
in the triple point temperature reported in the literature [37,38]
for the widely used Lennard-Jones (LJ) potential [39]. To
obtain accurate values of the triple point, we developed an
entropy correlation method. In this work, we will focus on
the salient features, and the complete details will be given
elsewhere [40].

During a canonical Monte Carlo (MC) simulation [11] the
particles of the simulation ensemble are repeatedly displaced

by random amounts, i.e., the location vector of particle i is
changed according to ri ← ri + λu, where u is a unit vector
with a random orientation. The displacement is rejected if it
increases the internal energy of the ensemble too much, and
accepted otherwise. λ is the maximum displacement width,
which is typically adjusted during the simulation to achieve
a fixed acceptance ratio α. Therefore, λα denotes the mean
value of displacement parameter for α. The entropy corre-
lation method for determining either SLE or more generally
solid-fluid equilibria, is based on the observation [41] that the
residual entropy for dense phases is a function of 1/λα . At low
pressures this means [40],

Sr � −Nk

(
c1

λα

(1 + c3e−c2/λα ) + c0

)
, (4)

where N is the number of particles; c0 c1, c2, and c3 are
coefficients that depend on the intermolecular potential, and
c0 also depends on α. It is easy to show [40] that the change
in Sr along an isothermal compression from the molar density
ρ0 to ρ1 can be obtained from

	Sr
m = Sr

m(ρ1) − Sr
m(ρ0)

= H r
m(ρ1) − H r

m(ρ0)

T

− R

(∫ ρ1

ρ0

Z − 1

ρ
dρ + Z (ρ1) − Z (ρ0)

)
, (5)

where the m subscript denotes a molar quantity and H , Z ,
and R are the enthalpy, compressibility factor and universal
gas constant, respectively. Using Eq. (4), the left-hand side of
Eq. (5) is simply

	Sr
m = Sr

m(ρ1) − Sr
m(ρ0)

= −Rc1

(
1 + c3e−c2/λα (ρ1 )

λα (ρ1)
− 1 + c3e−c2/λα (ρ0 )

λα (ρ0)

)
. (6)

The difference in the residual chemical potentials between
the fluid (f) and solid (s) phases is [40],

	μr = H r,f
m − H r,s

m + RT

[
c1

(
1 + c3e−c2/λ

f
α

λf
α

− 1 + c3e−c2/λ
s
α

λs
α

)
− ln

(
V f

V s

)
− 1

]
, (7)

where V denotes the volume.

The calculation of solid-fluid equilibrium states with the
entropy correlation method involved six steps:

(1) NpT MC simulations were performed for the temper-
ature of interest and a series of p (in this work: 1–80 MPa).
These simulations must be started from a gas or liquid state.

(2) The compression factors obtained from these simu-
lations are interpolated with a polynomial to facilitate the
integration. For this work we found a quadratic polynomial
to be sufficient.

(3) Equation (6) was evaluated to obtain 	Sr
m. A plot of

	Sr
m versus 1/λa should almost be a straight line.

(4) The residual enthalpies, molar volumes, and mean
displacement parameters of the tentative solid phases were
obtained from a series of NpT MC simulations at the
same values of p but starting from face centered cubic
lattices.

(5) The simulation results for the liquid and solid phases
were used to obtain 	μr from Eq. (7). We recommend
fitting a second- or third-order polynomial to these dif-
ferences as a function of p. The nearest root of this
polynomial represents the equilibrium pressure at the given
temperature.
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TABLE I. Comparison of triple point temperatures (in K) obtained in this work with experimental values [3,43], other literature sources
[44–46], and the LJ potential using revised [53] and conventional [52] ε values.

Atom Expt SAAP + ATM + FH-1-2a SAAPb ELJ + ATM + FH-1c LJd

Ne 24.541 25.09 (25.3) 27.94 (27.56) 26.9 24.25 (32.64)
Ar 83.798 83.90 (83.2) 93.41 (92.80) 90.6 83.57 (83.21)
Kr 115.775 115.09e (114.2e) 129.94 (129.85) 110.94, 113.73 122.49 (113.91)
Xe 161.405 156.59f 179.09 (180.02) 156.07, 160.78 157.32 (154.33)

aExcept for the case of Ne, which was reported in Ref. [28], values in brackets are our previously unpublished GDI estimates.
bValues in brackets are from Ref. [46].
cNe and Ar values are from Ref. [44] and Kr and Xe values, which exclude FH-1 and use EATM, are from Ref. [45].
dValues in brackets are from the conventional ε data.
eExcludes FH-1-2, N = 864.
fExcludes FH-1-2, N = 500.

(6) Once the equilibrium p is known, the orthobaric mo-
lar volumes can be obtained by interpolating the simulation
results for both the solid and the liquid phases.

The NpT MC simulations were conducted [42] in a cu-
bic simulation box usually containing 1372 particles with a
cutoff distance (rc) of 5.5σ , where σ is the separation at
which u2 = 0. For calculations involving the SAAP, we did
not observe [40] any statistically significant difference in the
results for N > 1372. The conventional procedure [11] was
used to obtain the long-range corrections for the two-body
potentials. As discussed elsewhere [40], some care needs to
be taken when applying long-range corrections for the solid
because the condition that the radial distribution function is
equal to one may not apply. For simulations involving the
ATM potential, the contribution to the energy was obtained by
summation over all triangles for which all side lengths < rc

and the product of all side lengths < r3
c . An approximate tail

correction was added [40]. The contribution of the ATM po-
tential was only computed after a change in volume because
its contribution to the total energy does not depend strongly on
the configuration. The simulations were allowed to equilibrate
for 1 × 105 cycles, with a cycle consisting of N attempts to
move a particle and one attempt to change the box size. After
equilibration, the program forked into four production threads,
each having 1.5 × 105 cycles.

The Ttp determined at p = 0 for neon, argon, krypton,
and xenon are summarized in Table I, which also provides a
comparison with both experimental data [3,43] and previous
theoretical evaluations [44–46] in the literature. The experi-
mental data used in the comparison are accurate to 1 mK and
are used as reference values for the temperature scale [43].
Our calculations of the triple point temperature are accurate
to ± 0.1 K. Alternative measurements [47,48] are within a
very narrow range of the reference values. The actual triple
point p is greater than 0 but its value is so low that the error
introduced by this approximation is merely a few mK.

The calculations for neon, argon, krypton, and xenon in-
volved various combinations of SAAP, ATM, and FH-1-2
contributions. Results for xenon are included to complete the
analysis of the stable noble gases. However, as discussed
below, the best available [24] first-principles data for xenon
are not of the same high quality probably due to significant
relativistic effects. This means it is currently unrealistic to
expect results of similar quality for xenon as for neon, argon,

and krypton. In Table I, the calculations involving the SAAP,
ATM and FH-1-2 potentials are genuine predictions from
theory without any input from either empirical parameters or
other attempts to optimize the agreement with experiment.

For neon, argon and krypton, the Ttp determined using only
the SAAP is at best 10% higher than the experimental value
(Table I). In view of the accuracy of the SAAP in reproducing
two-body interactions, this confirms the important contribu-
tions of other interactions. A comparison is also given with Ttp

for SAAP reported previously by Singh et al. [46]. Although
there is good agreement between the two sets of values, the
relatively small discrepancies nonetheless highlight the influ-
ence of different simulation methods. The entropy correlation
method reported here was specifically designed to be reliable
for low p.

Previous work [28] for the VLE and SLE properties of
neon indicated that both ATM and FH-1-2 interactions are
important. It is apparent from the comparison given in Table I
that the combination of SAAP + ATM + FH-1-2 interactions
allows the determination of the Ttp of neon to ≈ 0.5 K of
the experimental value. In contrast, the discrepancy using
only SAAP is ≈ 3 K. Pahl et al. [44] reported calculations
for neon using two-body interactions modeled by an ex-
tended Lennard-Jones (ELJ potential) with both the ATM
potential and first order (FH-1) interactions. Their value of
Ttp = 26.9 K is closer to the SAAP only value (27.94 K)
than the SAAP + ATM + FH-1-2 (25.09 K) value. This can
probably be attributed to the inaccuracy of the ELJ potential,
which affects the contributions of both two-body and FH-1
interactions. The absence of a second-order Feynman-Hibbs
term also contributes to the reduced accuracy reported by
Pahl et al. [44].

The Ttp of argon occurs at temperatures at with quan-
tum influences are still likely to be significant. Therefore,
we performed simulations involving SAAP + ATM + FH-1-2
interactions, which resulted (Table I) in a predicted Ttp that is
only ≈ 0.1 K higher than the experimental value. This high
level of accuracy, which is very close to the best available
experimental data, reflects the reduced uncertainty due to
quantum influences; the accuracy of the potential; and the
accuracy of the simulation method. In contrast, the value using
ELJ + ATM + FH-1 interactions for argon reported by Pahl
et al. [44] (Table I) is ≈ 7 K above the experimental value.
In common with their neon results, it is closer (≈ 3 K below)
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to the SAAP only value than to the experimental value. The
reasons for this inaccuracy are the same as identified above
for neon.

Quantum influences were omitted from our calculations for
both krypton and xenon, as they are likely to be negligible.
The Ttp for krypton calculated using SAAP + ATM inter-
actions underestimates the experimental value by ≈ 0.7 K.
This is a slightly larger discrepancy than observed for either
neon or argon, which reflects the challenges in accurately
modeling the properties of larger atoms. We note that some
inconsistencies in the thermodynamic behavior of krypton
have been reported [49] previously. These challenges are also
reflected in the estimated Ttp reported by Smits et al. [45]
who reported two significantly different values (110.94 K and
113.73 K) when using the ELJ + extended ATM (EATM) [50]
potentials, which are both less accurate than our calculations.
The differences in the values reported by Smits et al. [45]
are the outcome of using two different calculation methods.
This again highlights the importance of the careful choice of
calculation methods at low p.

Table I includes a comparison of Ttp obtained from
SAAP + ATM + FH-1-2 using the current method with sim-
ulations extrapolating Gibbs-Duhem integration (GDI) [16]
as reported elsewhere [28]. The accuracy of GDI simulation
relies heavily on obtaining accurate starting points as the inte-
gration procedure quickly propagates initial errors. For neon,
an isochoric melting method (which is good at high pressures
only) was used to generate an initial state, which allowed
subsequent calculations to much lower p and a reasonable
extrapolation to the triple point. In contrast, GDI simulations
for both argon and krypton could not be reliably extended to
very low p, which affected the accuracy of the extrapolated
Ttp. It is apparent from the comparison in Table I that the
method reported here improves the accuracy of Ttp in all
cases.

In contrast to the very good results obtained for the other
noble gas atoms, Ttp of xenon is underestimated by approxi-
mately 5 K. The primary reason for this discrepancy is that the
best available first-principles two-body potentials for xenon
underestimate the attractive contributions. This is clearly evi-
dent from a comparison with experiment for the second virial
coefficient (B2), which is a genuine two-body property. For ex-
ample, using the procedure detailed elsewhere [27], at 200 K
the xenon two-body potential yields B2 = −274.5 cm3 mol–1,
which is substantially above the experimental value [51] of
−279.7 ± 3 cm3 mol–1. In contrast, the first-principles two-
body potentials of the other noble gases yield near-perfect
agreement with experimental B2 values. Smits et al. [45]
reported two very different values of Ttp, which in common
with their different values for krypton, reflect uncertainties in
their calculation procedures.

Table I also provides a comparison with the widely used
LJ potential [39]. Recently, Schultz and Kofke [37] pro-
vided a very precise estimate of the triple point temperature
of the LJ potential that differed significantly from earlier
estimates [38], i.e., Ttp = 0.69455 ε/k. Calculating the LJ
Ttp for real fluids requires empirically determined values of
ε. In Table I, we compare Ttp using both the commonly
accepted literature [52] values (εNe/k = 47.0 K, εAr/k =
119.8 K, εKr/k = 164.0 K, εXe/k = 222.2 K) and recently
revised [53] values (εNe/k = 34.91 K, εAr/k = 120.32 K,
εKr/k = 176.34 K, εXe/k = 226.51 K). It is apparent from
Table I that the revised ε values yield the best agreement with
experiment for neon, argon, and xenon whereas the conven-
tional ε value is better for the Ttp of krypton. However, if
the lower LJ estimates (Ttp = 0.661 ε/k to 0.698 ε/k) sum-
marized elsewhere [38] were used, Ttp would be mostly well
below the experimental values. An exception is that accuracy
of the Ttp for krypton would be improved when using the
revised ε value. The quality of the agreement obtained with
the LJ potential depends entirely on the fortuitous choice of ε

rather than any theoretically based insights.
The correlation procedure between MC displacement and

Sr, which is at the heart of our method reported here, is not
confined to atoms. In particular, it has been demonstrated to
work for both rigid two- and three-centered molecules [41]
and mixtures of molecules [54]. Therefore, in principle, the
method could be used to obtain Ttp for both molecular systems
and mixtures. In contrast, alternative SLE simulation methods
are: not easily extended to molecules [15,55]; rely on the
accuracy of the evaluation [15] of chemical potentials that
may result in unreliable melting pressures; involve undesir-
able surface effects [46]; and cannot be feasibly used [15,37]
for either ab initio or nonadditive potentials because of the
increased computational cost.

In summary, first-principles calculations are narrowing the
gap on the accurate determination of Ttp for real fluids. The Ttp

is affected by two-body, three-body, and quantum influences.
Apart from the phenomenological insights this provides for
SLE, this is significant because knowledge Ttp affects both
the temperature scale and determination of the Boltzmann
constant that are of fundamental importance in science. To
achieve this enhanced level of accuracy, improved molecular
simulation techniques, such as the entropy correlation sim-
ulation technique reported here, are required for low values
of p.
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