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Exact time-dependent analytical solutions for entropy production rate in a system operating
in a heat bath in which temperature varies linearly in space
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The nonequilibrium thermodynamics feature of a Brownian motor is investigated by obtaining exact time-
dependent solutions. This in turn enables us to investigate not only the long time property (steady state) but also
the short time the behavior of the system. The general expressions for the free energy, entropy production ėp(t )
as well as entropy extraction ḣd (t ) rates are derived for a system that is genuinely driven out of equilibrium
by time-independent force as well as by spatially varying thermal background. We show that for a system that
operates between hot and cold reservoirs, most of the thermodynamics quantities approach a nonequilibrium
steady state in the long time limit. The change in free energy becomes minimal at a steady state. However, for
a system that operates in a heat bath where its temperature varies linearly in space, the entropy production and
extraction rates approach a nonequilibrium steady state while the change in free energy varies linearly in space.
This reveals that unlike systems at equilibrium, when systems are driven out of equilibrium, their free energy may
not be minimized. The thermodynamic properties of a system that operates between the hot and cold baths are
further compared and contrasted with a system that operates in a heat bath where its temperature varies linearly
in space along with the reaction coordinate. We show that the entropy, entropy production, and extraction rates
are considerably larger for the linearly varying temperature case than a system that operates between the hot and
cold baths revealing such systems are inherently irreversible. For both cases, in the presence of load or when
a distinct temperature difference is retained, the entropy S(t ) monotonously increases with time and saturates
to a constant value as t further steps up. The entropy production rate ėp decreases in time and at steady state,
ėp = ḣd > 0, which agrees with the results shown in M. Asfaw’s [Phys. Rev. E 89, 012143 (2014); 92, 032126
(2015)]. Moreover, the velocity, as well as the efficiency of the system that operates between the hot and cold
baths, are also collated and contrasted with a system that operates in a heat bath where its temperature varies
linearly in space along with the reaction coordinate. A system that operates between the hot and cold baths has
significantly lower velocity but a higher efficiency in comparison with a linearly varying temperature case.
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I. INTRODUCTION

Thermodynamics is one of the most studied disciplines
since its applications encompass a variety of topics in science
and engineering. It can be further subdivided into equilibrium
and nonequilibrium disciplines. Equilibrium thermodynam-
ics is well studied but has limited applications since most
systems in nature are far from equilibrium. In this case, its
macroscopic properties can be further verified from a micro-
scopic point of view via equilibrium statistical mechanics. In
contrast, nonequilibrium thermodynamics deals with inhomo-
geneous systems where the system thermodynamic quantities
rely on the reaction rates in a complicated manner. As a result,
getting a universal exact result was unattainable. However, in
the last few decades, several studies have been conducted to
explore the nonequilibrium thermodynamic feature of systems
that are out of equilibrium [1–17]. Some notable works in this
regard include the analytically solvable models depicted in
Refs. [18,19] and the study of thermodynamic features for sys-
tems that operate in the quantum realm [20–22]. Furthermore,
for systems that are genuinely driven out of equilibrium, the
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thermodynamic relations were derived for a Brownian particle
that walks in an overdamped medium [23] and underdamped
medium [24]. The method of calculating entropy production
and extraction rates at the ensemble level by first analyzing
the thermodynamic relation at trajectory level was introduced
in Ref. [6]. Alternatively, many thermodynamic relations were
reconfirmed under time reversal operation [25,26]. Such stud-
ies help to comprehend the thermodynamic properties of
biological systems such as intracellular transport of kinesin
or dynein inside the cell [27–29].

Since real systems operate in a finite time, solving the
model system exactly as a function of time is fundamental
to grasp the thermodynamic features of the systems beyond
a linear response and steady-state regimes. In this work by
obtaining exact time-dependent solutions, we investigate not
only the long time property (steady state) but also the short
time behavior of the system. The general expressions for free
energy, entropy production, as well as entropy production
rates are derived for a system that is genuinely driven out
of equilibrium by time-independent force as well as by spa-
tially varying thermal background. By solving the model as
a function of time, the dependence of these thermodynamic
quantities as a function of time is explored. For a system
that operates between hot and cold reservoirs, most of these
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thermodynamics quantities approach a nonequilibrium steady
state in the long time limit. The change in free energy be-
comes minimal at a steady state. However for a system that
operates in a heat bath where its temperature decreases lin-
early, the entropy production and extraction rates approach
a nonequilibrium steady state while the change in the free
energy decreases linearly. This reveals that unlike systems
at equilibrium, when systems are driven out of equilibrium,
their free energy may keep decreasing as time evolves. In
the absence of load and isothermal cases, we show that the
nonequilibrium state relaxes to equilibrium.

In this work, we also consider a simple model where the
single-particle walks in one-dimensional discrete ratchet po-
tential with a load. The ratchet potential is also coupled with
a heat bath. The thermodynamic properties of a system that
operates between the hot and cold baths are compared and
contrasted with a system that operates in a heat bath where its
temperature linearly decreases along with the reaction coordi-
nate. We show that the entropy S(t ), the entropy production
ėp(t ), and extraction rates ḣd (t ) are considerably larger for a
linearly decreasing temperature case than a Brownian particle
that operates between the hot and cold baths revealing such
systems are inherently irreversible. For both cases, in the
presence of load or when a distinct temperature difference is
retained, the entropy S(t ) monotonously increases with time
and saturates to a constant value as t further steps up. The
entropy production rate ėp decreases in time and at steady
state, ėp = ḣd > 0 which agrees with the results shown in
Refs. [18,19]. On the contrary, for an isothermal case and in
the absence of load, ėp = ḣd = 0 in a long time limit, which is
a reasonable argument as any system that is in contact with a
uniform temperature should obey the detail balance condition.

Because closed-form expressions for Ṡ(t ), ėp(t ), and ḣd (t )
as a function of t are obtained, the analytic expressions for the
change in entropy production �ep(t ), heat dissipation �hd (t ),
and total entropy �S(t ) can be found. We show that for a
system that operates between hot and cold reservoirs, �hd (t )
and �ep(t ) approach a nonequilibrium steady state in the long
time limit. However, for a system that operates in heat baths
where its temperature decreases linearly, �hd (t ) and �ep(t )
increase linearly as time progresses. In the absence of a load,
potential barrier, and for the isothermal case, for both cases,
�S = ln[3], which reconfirms the well-known relation for
a system under infinitesimal process. In other words, since
the system has three accessible states (three lattices) � =
3, at equilibrium S = ln(�). At equilibrium one also finds,
ėp(t ) = ln[3] and ḣd (t ) = 0. Moreover, the change in free
energy �F decreases in time and saturates to a constant but
minimal value for the system that operates between the hot
and cold baths. On the contrary, for the system that operates
in a linearly decreasing temperature case, the free energy
decreases linearly.

The velocity, as well as the efficiency of the system that
operates between the hot and cold baths, are also compared
and contrasted with a system that operates in a heat bath where
its temperature linearly decreases along with the reaction co-
ordinate. A system that operates between the hot and cold
baths has significantly lower velocity but a higher efficiency in
comparison with a linearly decreasing temperature case. For
a linearly decreasing temperature case, we show that the effi-

ciency of such a Brownian heat engine is far less than Carnot’s
efficiency even at the quasistatic limit. At quasistatic limit,
the efficiency of the heat engine approaches the efficiency of
an endoreversible engine η = 1 − √

Tc/Th [30]. Moreover, the
dependence of the current, as well as the efficiency on the
model parameters, is explored analytically.

The rest of the paper is organized as follows: in Sec. II,
we present the model and derive the expression for various
thermodynamic relations for a Brownian particle walks in
one-dimensional discrete ratchet potential with a load. In
Sec. III, the role of time on entropy and free energy is ex-
plored. In Sec. IV, the dependence of efficiency and velocity
on model parameters is explored. Section V deals with the
summary and conclusion.

II. THE MODEL AND DERIVATION OF FREE ENERGY

In this section, we derive the general expression for free
energy, entropy production, as well as entropy production
rates for a system that is driven out of equilibrium by time-
independent force as well as a spatially varying thermal
background. By solving the model as a function of time, we
explore the dependence of these thermodynamic quantities as
a function of time. Let us now consider a Brownian particle
that moves in a discrete lattice where its dynamics is governed
by the master equation [18]

dPn

dt
=

∑
n �=n′

(Pnn′ pn′ − Pn′n pn), n, n′ = 1, 2, 3. (1)

Here Pn′n is the transition probability rate at which the system,
originally in state n, makes a transition to state n′. Pn′n is given
by the Metropolis rule [18]. Next, the relation for the entropy
production rate as well as the free energy will be explored
as a function of time by considering a Brownian particle that
moves along the one- dimensional discrete ratchet potential.

Case 1: Brownian particle operating between hot and
cold reservoirs. Before considering a linearly decreasing tem-
perature profile, for clarity let us first rederive the entropy
production rate for a Brownian particle that moves in the
one-dimensional discrete ratchet potential Ui [18]

Ui = E [i(mod)3 − 1] + i f d. (2)

The ratchet potential is coupled with the temperature

Ti =
{

Th, if E [i(mod)3 − 1] = 0;
Tc, otherwise; (3)

as shown in Fig. 1. The potential E > 0, f denotes the load
and i is an integer that runs from −∞ to ∞. Th and Tc

designate the temperature for the hot and cold reservoirs,
respectively. Moreover, d denotes the lattice spacing d and
in one cycle, the particle walks a net displacement of three
lattice sites as shown in Fig. 1. The jump probability from
site i to i + 1 is given by �e−�E/kBTi where �E = Ui+1 − Ui

and � is the probability attempting a jump per unit time. kB

designates the Boltzmann constant and hereafter kB, � and d
are considered to be a unity. Obeying the metropolis algorithm
when �E � 0, the jump definitely takes place while �E > 0
the jump takes place with probability exp(−�E/Ti ) [14].
Substituting the probability rates [see Eq. (6)] into Eq. (1)
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FIG. 1. Schematic diagram for a Brownian particle walking in a
discrete ratchet potential with load. Sites with red circles are coupled
to the hot reservoir (Th) while sites with blue circles are coupled to
the cold reservoir (Tc). Site 1 is labeled explicitly and d is the lattice
spacing.

yields

d �p
dt

= P �p, (4)

where �p = (p1, p2, p3)T . P is a 3 by 3 matrix which is given
by

P =

⎛
⎜⎜⎝

−μa2−μ2

2a
1
2

1
2

μa
2

−1−νb
2

1
2

μ2

2a
νb
2 −1

⎞
⎟⎟⎠, (5)

as long as 0 < f < 2E . Here μ = e−E/Tc , ν = e−E/Th ,
a = e− f /Tc and b = e− f /Th . It is important to note that via
the expressions p1(t ), p2(t ) and p3(t ) that are shown in Ap-
pendix A and using the rates

P21 = 1
2 e−(E+ f )/Tc , P12 = 1

2 , P32 = 1
2 e−(E+ f )/Th

P23 = 1
2 , P13 = 1

2 , P31 = 1
2 e−(2E− f )/Tc , (6)

the thermodynamic quantities that are under investigation can
be evaluated.

The net velocity V (t ) at any time t is the difference be-
tween the forward V +

i (t ) and backward V −
i (t ) velocities at

each site i

V (t ) =
3∑

i=1

(V +
i (t ) − V −

i (t ))

= (p1P21 − p2P12) + (p2P32 − p3P23)

+ (p3P13 − p1P31). (7)

At stall force

f = E
( Th

Tc
− 1

)
( 2Th

Tc
+ 1

) , (8)

the velocity approaches zero.
Let us next derive the fundamental entropy relation

S[pi(t )] = −
3∑

i=1

pi ln pi, (9)

for the system that is far from equilibrium. Since the hot heat
bath located at i = 2 loses (E + f ) amount of heat to the
lattice i = 3 and at the same time gains (E + f ) amount of
heat from the lattice i = 3, one can write the heat per unit
time taken from the hot reservoir is given as

Q̇h(t ) = (E + f )(p2P32 − p3P23)

= Th(p2P32 − p3P23) ln

(
P32

P23

)
, (10)

as shown in Ref. [19]. Note that ln( P32
P23

) = (E + f )/Th. On the
other hand, the heat per unit time given to cold reservoir is
given by

Q̇c(t ) = (E + f )(p2P12 − p1P21)

+ (2E − f )(p3P13 − p1P31)

= Tc(p2P12 − p1P21) ln

(
P12

P21

)

+ Tc(p3P13 − p1P31) ln

(
P13

P31

)
. (11)

Let us write the entropy extraction (heat dissipation) rate

ḣd (t ) = −Q̇h(t )

Th
+ Q̇c(t )

Tc
. (12)

Substituting Eqs. (10) and (11) into Eq. (12) leads to

ḣd (t ) = −Q̇h(t )

Th
+ Q̇c(t )

Tc

=
∑
i> j

(piPji − p jPi j ) ln

(
Pji

Pi j

)

=
∑
i> j

(piPji − p jPi j ) ln

(
piPji

p jPi j

)

−
∑
i> j

(piPji − p jPi j ) ln

(
pi

p j

)

= ėp(t ) − Ṡ(t ), (13)

where

ėp(t ) =
∑
i> j

(piPji − p jPi j ) ln

(
piPji

p jPi j

)
(14)

and

Ṡ(t ) =
∑
i> j

(piPji − p jPi j ) ln

(
pi

p j

)
. (15)

Here ėp(t ) and Ṡ(t ) denote the internal entropy production
rate and the change in the entropy. From Eq. (15), one derives
S[pi(t )] = −∑3

i=1 pi ln pi which implies the fundamental en-
tropy equation is still valid for the systems that are driven out
of equilibrium.

Case 2: Linearly decreasing temperature. Let us now
consider a single Brownian particle that hops along the one-
dimensional discrete ratchet potential [see Eq. (2)] with a load
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FIG. 2. The schematic diagram for a Brownian particle that
walks in a discrete ratchet potential coupled with a linearly decreas-
ing temperature profile. The temperature for the heat baths decreases
from Th to Tc according to Eq. (16).

that coupled with a linearly decreasing temperature [14]

Ti = Th + (i − 1)(Tc − Th)

3
, (16)

as shown in Fig. 2. The indexes i = 1 · · · 3. Once again,
the rate equation for the model is given by d �p

dt = P �p where
�p = (p1, p2, p3)T . P is a 3 by 3 matrix which is given by

P =

⎛
⎜⎜⎜⎝

− aμ1

2 − μ2
2

2a2

1
2

1
2

aμ1

2
1
2 (−1 − ν) 1

2

μ2
2

2a2

ν
2 −1

⎞
⎟⎟⎟⎠, (17)

as long as 0 < f < 2E . Here μ1 = e−E/T1 , ν = e−(E+ f )/T2 ,
a1 = e− f /T1 , μ2 = e−E/T4 and a2 = e− f /T4 . Since the tem-
perature linearly decreases, the parameter T1 = Th, T2 = Th +
(Tc − Th)/3, T3 = Th + 2(Tc − Th)/3 and T4 = Tc. The sum
of each column of the matrix P is zero,

∑
m Pmn = 0 which

reveals that the total probability is conserved: (d/dt )
∑

n pn =
d/dt (1T · p) = 1T · (P �p) = 0. It is important to note that via
the expressions p1(t ), p2(t ), and p3(t ) that are shown in Ap-
pendix B and using the rates

P21 = 1
2 e−(E+ f )/T1 P12 = 1

2 , P32 = 1
2 e−(E+ f )/T2

P23 = 1
2 , P13 = 1

2 , P31 = 1
2 e−(2E− f )/T4 , (18)

the thermodynamic quantities which are under investigation
can be evaluated.

Once again, the velocity V (t ) at any time t is the difference
between the forward V +

i (t ) and backward V −
i (t ) velocities at

each site i

V (t ) =
3∑

i=1

(V +
i (t ) − V −

i (t ))

= (p1P21 − p2P12) + (p2P32 − p3P23)

+ (p3P13 − p1P31). (19)

At stall force

f = E (Th − Tc)(4Th + Tc)

(2T 2
h + T 2

c + 6TcTh)
, (20)

the velocity approaches zero.

The previously derived relation for the entropy production
rate

ėp(t ) =
∑
i> j

(piPji − p jPi j ) ln

(
piPji

p jPi j

)
, (21)

the entropy extraction rate

ḣd (t ) =
∑
i> j

(piPji − p jPi j ) ln

(
Pji

Pi j

)
, (22)

and the rate of total entropy

Ṡ(t ) =
∑
i> j

(piPji − p jPi j ) ln

(
pi

p j

)
(23)

are still valid regardless of any parameter choice. For both
cases, as steady state ėp(t ) = ḣd (t ). In the absence of load
f and in the limit Th → Tc (when the system relaxes to its
equilibirum state), for both cases, one finds

ḣd (t ) = 0 (24)

and

ėp(t ) = Ṡ(t ) = −e
−3t

2 ln

[−1 + e
3t
2

2 + e
3t
2

]
(25)

as long as E = 0. At stationary state (at equilibirium) t → ∞,
ėp(t ) = ḣd (t ) = Ṡ(t ) = 0.

Because closed-form expressions for Ṡ(t ), ėp(t ), and ḣd (t )
as a function of t are obtained, the analytic expressions for
the change in entropy production, heat dissipation, and total
entropy can be found analytically via

�hd (t ) =
∫ t

t0

(
ḣd (t )

)
dt, (26)

�ep(t ) =
∫ t

t0

(ėp(t ))dt, (27)

and

�S(t ) =
∫ t

t0

(Ṡ(t ))dt, (28)

where �S(t ) = �ep(t ) − �hd (t ) and the indexes i = 1 · · · 3
and j = 1 · · · 3. Once again, in the absence of load f , in the
limit Th → Tc and when E = 0, for both cases, one finds

�hd (t ) = 0, (29)

�S(t ) = �ep(t ) = −1

6
(−9t − 6 ln[3] + 4 ln[−1 + e3t/2])

− 1

6

(
+2 ln[2+e3t/2]−4e−3t/2 ln

[
1− 3

2+e3t/2

])
.

(30)

As expected, in the limit t → ∞, the system approaches equi-
libirum state and Eq. (30) converges to

�S = �ep(t ) = ln[3], (31)

which reconfirm the the well-known relation for system under
infinitesimal process. In other words, the system has three
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accessible states (three lattices) � = 3 and at equilibirium
S = ln(�).

Furthermore, for linearly decreasing temperature case, the
heat dissipation rate is rewritten as

Ḣd (t ) =
∑
i> j

Tj (piPji − p jPi j ) ln

(
Pji

Pi j

)

=
∑
i> j

Tj (piPji − p jPi j ) ln

(
piPji

p jPi j

)

−
∑
i> j

Tj (piPji − p jPi j ) ln

(
pi

p j

)

= Ėp(t ) − ṠT (t ), (32)

where

Ėp(t ) =
∑
i> j

Tj (piPji − p jPi j ) ln

(
piPji

p jPi j

)
(33)

and

ṠT (t ) =
∑
i> j

Tj (piPji − p jPi j ) ln

(
pi

p j

)
. (34)

Here the indexes i = 1 · · · 3 and j = 1 · · · 3. Our next objec-
tive is to write the expression for the free energy in terms of
Ėp(t ) and Ḣd (t ) where Ėp(t ) and Ḣd (t ) are the terms that
are associated with ėp(t ) and ḣd (t ) except the temperature
Tj . Now we have entropy balance equation ṠT (t ) = Ėp(t ) −
Ḣd (t ) for our model system. For isothermal case and in the
absence of load, the system relaxes to its equilibirium. For the
case E = 0, one finds Ḣp(t ) = 0 and

Ėp(t ) = ṠT (t ) = Tce
−3t

2 ln

[−1 + e
3t
2

2 + e
3t
2

]
. (35)

In the limit t → 0, Ėp(t ) = ṠT (t ) = 0.
The second law of thermodynamics can be written

as �ST (t ) = �Ep(t ) − �Hd (t ) where �ST (t ), �Ep(t ) and
�Hd (t ) are very lengthy expressions that can be evaluated via

�Hd =
∫ t

t0

(Ḣd (t ))dt, (36)

�Ep(t ) =
∫ t

t0

(Ėp(t ))dt, (37)

and

�ST (t ) =
∫ t

t0

(ṠT (t ))dt . (38)

When f = 0, Th → Tc and E = 0 (system approaching
equilibirium), �Hd = 0 for any time t while

�ST (t ) = �Ep(t )

= −Tc
1

6
(−9t − 6 ln[3] + 4 ln[−1 + e3t/2])

− Tc
1

6

(
+2 ln[2+e3t/2]−4e−3t/2 ln

[
1− 3

2+e3t/2

])
.

(39)

In long time limit (at equilibirium), �S(t ) = �ep(t ) =
Tc ln[3].

On the other hand, the total internal energy U (t ) is the sum
of the internal energies

U [pi(t )] =
3∑

i=1

piui

= p1(t )(−E ) + p3(t )(E ), (40)

while the change in the internal energy is given by

�U (t ) = U [pi(t )] − U [pi(0)]

= E (p3(t ) − p3(0) + p1(0) − p1(t )). (41)

We also verify the first law of thermodynamics

U̇ [Pi(t )] = −
∑
i> j

(piPji − p jPi j )(ui − u j )

= −(Ḣd (t ) + f V (t )). (42)

Next let us find the expression for the free energy dis-
sipation rate Ḟ . For the isothermal case, the free energy is
given by F = U − T S and next we adapt this relationship to
nonisothermal case to write

Ḟ (t ) = U̇ − ṠT (t ). (43)

Substituting Eqs. (32) and (42) in Eq. (43) leads to

Ḟ (t ) + Ėp(t ) = U̇ (t ) + Ḣd (t ) = − f V (t ), (44)

which is the second law of thermodynamics. Note that
in the absence of load, U̇ (t ) = −Ḣd (t ) and consequently
Ėp(t ) = −Ḟ (t ). The change in the free energy can be written
as

�F (t ) = −
∫ t

t0

( f V (t ) + Ėp(t ))dt

=
∫ t

t0

(U̇ (t ) + Ḣd (t ) − Ėp(t ))dt

= �U + �Hd − �Ep. (45)

As expected, at the quasistatic limit where the velocity ap-
proaches zero V (t ) = 0, Ėp(t ) = 0 and Ḣd (t ) = 0 and far
from quasistatic limit Ep > 0, which is expected as the en-
gine operates irreversibly. Far from stall force, Ėp(t ) �= Ḣd (t ),
as long as a distinct temperature difference between the hot
reservoirs is retained.

For isothermal case, in the absence of potential barrier
and load, �U = �Hd = 0 and �F (t ) = −�Ep. At equilib-
rium (t → ∞), we get �F = −Tc ln(3). We can recheck this
relation via the statistical mechanics approach. In the limit,
t → ∞, the probability distributions that are shown in Ap-
pendices A and B, converge

P1 = 1

1 + e− E
Tc + e− 2E

Tc

,

P2 = e− E
Tc

1 + e− E
Tc + e− 2E

Tc

,

P3 = e− 2E
Tc

1 + e− E
Tc + e− 2E

Tc

. (46)
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FIG. 3. The entropy S(t ) as a function of t evaluated analytically
via Eq. (9) for a given ε = 4.0, f = 0.0 and τ = 2.0. The dashed
line indicates the plot for a heat bath where its temperature linearly
decreases along with the reaction coordinate while the solid line is
plotted by considering a Brownian particle that operates between the
hot and cold baths.

Accordingly, the partition function is given by

Z =
3∑

i=1

e− Ei
Tc

= 1 + e− E
Tc + e− 2E

Tc . (47)

The free energy as well the entropy can be calculated as
F = −Tc ln(Z ) and S = ln(z) + Ēβ. When E → 0, the
free energy converges to F = −Tc ln(3) while the entropy
approaches S = ln(3).

III. ENTROPY PRODUCTION RATE AND FREE ENERGY

Hereafter, whenever we plot the figures, we use dimen-
sionless quantities ε = E/Tc, λ = f /Tc and τ = Th

Tc
. We also

introduce dimensionless time t̄ = �t and after this the bar will
be dropped.

Entropy. The dependence of entropy on the model pa-
rameters can be explored via Eq. (9). As shown in Fig. 3,
the entropy of the system exhibits an intriguing parameter
dependence.

As shown in the figure, for t �= 0, S > 0 which indi-
cates that in the presence of symmetry-breaking fields such
as nonuniform temperature or external force, the system is
driven out of equilibrium. S(t ) is also considerably larger
for the linearly decreasing temperature case than the entropy
for Brownian particle that operates between the hot and cold
baths. This suggests that that the entropy production is higher
for the system that operates in a heat bath where its temper-
ature decreases linearly along with the reaction coordinate.
For isothermal case Th = Tc as well as in the absence of
both external load and bistable potential U0 = 0, the particle
undergoes a random walk on a lattice. For both cases, S(t )
converges to S(t ) → ln[3] in the limit t → ∞.

Entropy production rate. Next let us explore the depen-
dence for the rate of entropy production ėp(t ), the rate of
entropy Ṡ(t ), and the rate of entropy flow from the system
to the outside ḣd (t ) on the system parameters. The expression

(c)

FIG. 4. (a) Ṡ(t ) versus t is evaluated analytically via Eqs. (15)
and (23). (b) The entropy production rate ėp(t ) as a function of t .
ėp(t ) is analyzed analytically via Eqs. (14) and (21). (c) The entropy
extraction rate ḣd (t ) as a function of t evaluated analytically using
Eqs. (13) and (22). In the figures, the red line indicates the plot
for a heat bath where its temperature linearly decreases while the
black solid line is plotted by considering a Brownian particle that
operates between the hot and cold baths. Clearly ḣd (t ) and ėp(t ) are
considerably large for linearly decreasing temperature case. In the
figures, we fix ε = 2, 0, τ = 20.0, λ = 0.6.

for Ṡ(t ), ḣd (t ), and ėp(t ) can be evaluated via Eqs. (23), (22),
and (21), respectively, as shown in Fig. 4. In the figure, we
plot Ṡ(t ), ḣd (t ), and ėp(t ) as a function of t . In the figure, the
red line indicates the plot for a heat bath where its temperature
linearly decreases while the solid line is plotted by considering
a Brownian particle that operates between the hot and cold
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h d
e p

FIG. 5. The entropy production rate ėp(t ) and the entropy ex-
traction rate ḣd (t ) versus λ. The entropy production rate is analyzed
via Eqs. (14) and (21) while the entropy extraction rate is evaluated
analytically using Eqs. (13) and (22). In the figure, the parameters
are fixed as ε = 2, τ = 2.0 and t = 106 (steady state). At steady state
ėp(t ) = ḣd (t ).

baths. The fact that ėp(t ) > 0 and ḣd (t ) > 0 exhibits that the
system is exposed to symmetry-breaking fields such as exter-
nal force or nonuniform temperature. As a result, the system
is driven out of equilibrium. The entropy, entropy production,
and extraction rates are also higher for linearly decreasing
cases than the particle that operates between two heat baths
indicating that a system that operates in a heat bath where
its temperature decreases linearly with the reaction coordinate
exhibits a higher level of irreversibility. As expected, ėp(t )
and ḣd (t ) approach their steady-state values ėp = ḣd as time
progresses. Even in the absence of symmetry-breaking fields,
as long as the system is operating in a finite time, the system
exhibits irreversible dynamics and as a result ėp > 0 for small
t and decreases (the system relaxes to equilibrium) as time
increases. In the limit t → ∞, ėp = ḣd = 0.

The velocity approaches zero (quasistatic limit) in the
vicinity of a stall force or when U0 → 0. At quasistatic limit,
regardless of any parameter choice, we find ėp = ḣd (t ) = 0.
One should note that the vanishing of velocity may not indi-
cate the system is at thermodynamic equilibrium as pointed
out by Ge et al. [25]. This can be appreciated by plotting
ėp(t ) or ḣd (t ) [using Eqs. (21) and (22)] as a function of load
in long time limit. For linearly decreasing temperature case,
we plot ėp(t ) and ḣd (t ) as a function of load in Fig. 5. The
figure depicts that in the long time limit, both ėp(t ) and ḣd (t )
attain a zero value at stall force.

The dependence for �S(t ), �ep(t ), and �hd (t ) as a func-
tion of t can be explored employing Eqs. (28), (27), and
(26), respectively. The expressions for �hd (t ), �S(t ), and
�ep(t ) are lengthy and will not be presented in this work.
As shown in Figs. 6(a) and 6(b), for a system that operates
between hot and cold reservoirs, �hd (t ) and �ep(t ) approach
a nonequilibrium steady state in the long time limit. However,
for a system that operates in heat baths where its temperature
decreases linearly, �S(t ) and �ep(t ) increase linearly as time
progresses. This reveals that, unlike systems that operate be-
tween hot and cold reservoirs, this system exhibits a higher
level of irreversibility. Next we explore the dependence of the
free energy dissipation rate shown in Eqs. (43) and (44) on t .

p
d

FIG. 6. (a) �ep(t ) as a function of t that evaluated analytically
via Eq. (27) for fixed ε = 2.0, τ = 20.0 and λ = 0.6. (b) �hd (t ) as a
function of t is plotted using Eq. (26) for fixed ε = 2.0, τ = 20.0 and
λ = 0.6. In the figures, the red line shows the plot for a linearly de-
creasing temperature case and the black line is plotted by considering
a Brownian particle that operates between the hot and cold baths.

In general Ḟ < 0 and approaches zero in the long time limit
for both cases (see Fig. 7).

As discussed before, once the expressions for Ḣd (t ), Ėp, ṠT

are analyzed, the corresponding entropy balance equation can
be calculated as dST (t )

dt = Ėp − Ḣd . The expressions for these
relations are very complicated. In Fig. 8, using Eqs. (36) and
(37), we plot �Hd (t ) and �Ep(t ) as a function of t for fixed
ε = 2.0, τ = 20.0 and λ = 0.6. In the figure, the red line
shows the plot for a linearly decreasing temperature case, and
the black line is plotted by considering a Brownian particle
that operates between the hot and cold baths. Surprisingly,
although �Ep(t ) and �Hd (t ) saturate to a constant value for
a heat engine that operates between the hot and cold heat
baths, for linearly decreasing temperature case both �Ep(t )
and �Hd (t ) step up in time linearly. This justifies that, unlike
systems that operate between hot and cold reservoirs, systems
that operate in heat baths where their temperature decreases
linearly have a higher level of irreversibility.

Exploiting Eq. (45), let us now investigate further how the
free energy behaves as a function of the system parameters.
Figure 9(a) depicts the plot for the change in free energy �F
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FIG. 7. (a) The free energy dissipation rate Ḟ versus t for a lin-
early decreasing temperature case is plotted using Eq. (43). (b) The
free energy dissipation rate Ḟ as a function of t for a heat bath that
coupled with the hot and cold temperature employing Eqs. (43) and
(44). For both figures, the parameters are fixed as ε = 2.0, τ = 20.0
and λ = 0.6.

versus t for the system that operates between the hot and
cold baths. On the other hand, Fig. 9(b) shows the plot for
the change in free energy �F versus t for the system that
operates in a linearly decreasing temperature profile. The fact
that �F �= 0, indicates that our model system is inherently
irreversible even within the long time limit. The change in
free energy �F decreases in time and saturates to a constant
but minimal value for the system that operates between the
hot and cold baths. On the contrary, for the system that op-
erates in a linearly decreasing temperature case, the change
in free energy decreases linearly indicating that the degree of
irreversibility is higher for such systems.

IV. THE EFFICIENCY AND VELOCITY
OF THE HEAT ENGINE

As discussed before, in the presence of external force, the
velocity approaches zero V (t ) = 0 in the vicinity of the stall
force. For the Brownian heat engine that operates between two
heat baths, the stall force is given as

f = E
( Th

Tc
− 1

)
(
2 Th

Tc
+ 1

) , (48)

FIG. 8. (a) �Ep(t ) as a function of t is evaluated via Eq. (37).
(b) The plot of �Hd (t ) versus t is plotted employing Eq. (36). In the
figures, the parameters are fixed as ε = 2.0, τ = 20.0 and λ = 0.6.
For both figures, the red line shows the plot for a linearly decreas-
ing temperature case and the black line is plotted by considering a
Brownian particle that operates between the hot and cold baths.

while for linearly decreasing thermal arrangement case, the
stall force is calculated as

f = E (Th − Tc)(4Th + Tc)(
2T 2

h + T 2
c + 6TcTh

) . (49)

Evaluating Ep near the stall force, one finds Ep = 0 as long as
the system is at a steady-state regime. Far from a steady-state
regime (even in the vicinity of the stall force), Ep > 0 which
is expected as the engine operates irreversibly. For isothermal
case without load, Ep = 0 at stationary state. Next, we explore
the dependence of the velocity and efficiency on the system
parameters.

A. The particle’s velocity

The velocity of the particle is sensitive to time. Our anal-
ysis indicates that the velocity of the particle depends on the
system parameters. For instance, the velocity of the particle is
positive when Th �= Tc and f = 0. For isothermal case V < 0
as long as f > 0. In general for Th �= Tc and f > 0, the system
exhibits fascinating dynamics where V > 0 when the load is
less than the stall force f ′, f < f ′ and V < 0 if f > f ′. This
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FIG. 9. (a) The change in free energy �F versus t is plotted
using Eq. (45) for the system that operates between the hot and cold
baths. The figure depicts that at a steady-state, the free energy satu-
rates to a constant but minimal value. (b) (b) shows the dependence
the change in free energy �F versus t for the system that operates in
a linearly decreasing temperature profile. The figure depicts that as
time progresses, the free energy decreases linearly. In both figures,
the load is fixed as λ = 0.2. The barrier height is also fixed as ε = 0,
ε = 1.0 and ε = 2.0 from the top to bottom.

suggests that the mobility of the particle can be manipulated
by varying the external force.

The dependence of the velocity on time is also explored
via Eqs. (7) or (19). The time t dictates the magnitude and the
direction of the velocity. This can be appreciated by plotting
V as a function of time [see Fig. 10(a)]. Figure 10(a) depicts
that for small t , the net particle flow is in the reverse direction
(negative). As time increases, the magnitude of V increases
and saturates to a constant value. The particle velocity is sig-
nificantly higher for the Brownian particle that operates in the
thermal bath where its temperature decreases linearly than a
Brownian particle that operates between two heat baths. In the
figure, we set ε = 2.0, τ = 20.0, and λ = 0.6. In both figures,
the black solid line indicates the plot for a heat bath where its
temperature linearly decreases while the red line is plotted by
considering a Brownian particle that operates between the hot
and cold baths.

Exploiting Eqs. (7) or (19) further, in Fig. 10(b) we plot
the velocity V as a function of ε. The figure depicts that
the particle manifests a peak velocity at a particular barrier

FIG. 10. (a) Particle velocity V as a function of t is plotted via
Eqs. (7) or (19) for fixed ε = 2.0, τ = 20.0 and λ = 0.6 (b) Particle
velocity V as a function of ε is analized employing via Eqs. (7)
or (19) for fixed t = 10.0, τ = 20.0 and λ = 0.6. In both figures,
the black solid line indicates the plot for a heat bath where its
temperature linearly decreases while the red dashed line is plotted by
considering a Brownian particle that operates between the hot and
cold baths.

height εmax and at this particular height, the engine operates
with maximum power. Once again the particle velocity is
considerably higher for the Brownian particle that operates in
the thermal bath where its temperature decreases linearly than
a Brownian particle that operates between two heat baths. In
the figure, we set t = 10.0, τ = 20.0, and λ = 0.6.

The dependence for the velocity V on load is explored
employing Eq. (19) as shown in Fig. 11. In the figure, we fix
t = 10.0, ε = 2.0, and λ = 0.6. The figure depicts that as long
as the load is less than the stall force, V > 0 while when the
load is greater than the stall force, V < 0. At stall force, the
particle velocity becomes zero. On the other hand, the velocity
steps up as the τ increases as depicted in Fig. 11(b).

B. The efficiency of the heat engine

Let us now explore how the efficiency η behaves as the
model parameters vary. For both cases, the rate of work done
is given as Ẇ = f V (t ). On the contrary, the rate of heat input
is model dependent. For the case where the system operates
between the two baths, the rate of heat input is given as
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FIG. 11. (a) The particle velocity V as a function of λ is eval-
uated via Eqs. (7) or (19) for fixed ε = 2.0, τ = 8.0 and t = 10.0.
(b) The particle velocity V as a function of τ is plotted employing
Eqs. (7) or (19) for fixed t = 10.0, ε = 2.0 and λ = 0.6. In figures,
the black solid line indicates the plot for a heat bath where its
temperature linearly decreases while the red dashed line is plotted by
considering a Brownian particle that operates between the hot and
cold baths.

Q̇in(t ) = Q̇h(t ) = Th(p2P32 − p3P23) ln( P32
P23

). For linearly de-
creasing temperature case, since the heat bath from the left
potential well contributes for the particle to jump to the right,
the particle must get Q̇in(t ) = Th(p2P32 − p3P23) ln( P32

P23
) +

Tc(p2P12 − p1P21) ln( P12
P21

) amount of heat from the system.
The efficiency then is given by

η = Ẇ

Q̇in(t )
. (50)

In general, the efficiency of the system increases in time and
at a steady state, the system attains maximum efficiency. The
efficiency at the quasistatic limit can be obtained via Eq. (50).
For a Brownian heat engine that operates between two heat
baths, one gets

η = 1 − Tc

Th
, (51)

which is the efficiency of the Carnot heat engine. For the heat
engine that operates in a heat bath that decreases linearly, at

FIG. 12. (a) The efficiency η as a function of λ evaluated using
Eq. (50) for fixed values of ε = 2, τ = 2.0 and t = 1000.0. (b) The
efficiency η as a function of ε is plotted employing Eq. (50) for
fixed values of t = 1000.0, τ = 2.0 and λ = 0.2. The bottom line
represents the plot for linearly decreasing temperature case while the
top line is plotted for a heat engine that operates between the hot and
cold baths.

the quasistatic limit, we get

η = 1 − (Tc(Tc + 5Th))

(2Th(Tc + 2Th))
, (52)

which is approximately equal to the efficiency of the en-
dorevresible heat engine ηCA

ηCA = 1 −
√

T − c/Th, (53)

as long as the temperature difference between the hot and the
cold reservoirs is not large. This can be further appreciated
by Taylor expanding Eqs. (52) and (53) around τ = 1. As
discussed in Ref. [20], it is still unknown why different model
systems approach the Taylor expression shown above.

The dependence of the efficiency η on the model parame-
ters is also explored by omitting the heat exchange via kinetic
energy. The efficiency η as a function of rescaled load is
evaluated analytically [see Fig. 12(a)] via Eq. (50). The fig-
ure is plotted by fixing ε = 2.0, τ = 2.0, and t = 1000.0.
The figure exhibits that η increases to its maximum (qua-
sistatic limit) value. The efficiency is considerably large for
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the system that operates between two heat baths. The effi-
ciency η as a function of barrier height is plotted in Fig. 12(b)
for the parameter values of λ = 0.2, τ = 2.0, and t = 1000.0.
The efficiency decreases as the barrier height increases. When
the magnitude of the rescaled temperature steps up, the effi-
ciency of the system monotonously increases.

V. SUMMARY AND CONCLUSION

Studying the thermodynamic feature of nonequilibrium
systems is challenging since their energy as well as the
particles’ flux constantly changes in time. Consequently,
exploring the thermodynamics feature of non-equilibrium sys-
tems requires a more general concept as well as rigorous
mathematical analysis. Due to the lack of exact solutions,
most of the previous works addressed how different ther-
modynamics features behave either at the quasistatic limit
or at steady-state regimes. To fill this gap, in this work, we
present an exactly solvable model that helps to explore the
thermodynamic features of systems beyond a linear response
and steady-state regime. Not only the long-time property
(steady-state) but also the short-time behavior of the system
is explored by obtaining exact time-dependent solutions. The
general expressions for free energy, entropy production as
well as entropy extraction rates are derived for a system that
is genuinely driven out of equilibrium by time-independent
force as well as by spatially varying thermal background.

From an equilibrium thermodynamics point of view, the
entropy S(t ) is the most explored physical quantity. It is
a well-known fact that even in the absence of symmetry-
breaking fields, the entropy of systems can be greater than
zero S(t ) > 0 as long as the system operates in a finite
time and only in a long time limit does the system become
reversible S(t ) = 0. However, in the presence of symmetry-
breaking fields, the systems are driven out of equilibrium even
within the long time limit. In this regard, most of the previous
studies focused on exploring how the entropy S(t ), the pro-
duction ėp(t ) and extraction rates ḣd (t ) behave either at steady
state or the quasistatic limit. To comprehend the thermody-
namic features of systems beyond a linear response and the
steady-state regime, we solve the model system analytically.
The thermodynamic properties of a system that operates be-
tween the hot and cold baths are also compared and contrasted
(as a function of time) with a system that operates in a heat
bath where its temperature linearly decreases along with the
reaction coordinate. For our model system, the fact that the
entropy, the entropy production, and extraction rate are greater
than zero suggests that in the presence of symmetry-breaking
fields such as nonuniform temperature or external force, the
system is driven out of equilibrium. The entropy production
ėp(t ) and extraction rates ḣd (t ) are also considerably larger
for the linearly decreasing temperature case than the entropy
for Brownian particle that operates between the hot and cold
baths. This suggests that the degree of irreversibility is higher
for the system that operates in a heat bath where its tempera-
ture decreases linearly along with the reaction coordinate.

According to the celebrated statistical thermodynamics
theory, systems tend to maximize their entropy or minimize
their free energy in the effort to reach thermal equilibrium,
and consequently, the change in free energy �F = 0. This

also implies for any irreversible system, the free energy dif-
ference is a positive thermodynamic quantity. To discern the
thermodynamic features of systems beyond the equilibrium
regime, we further explore the dependence of free energy on
the system parameters for a system that is genuinely driven
out of equilibrium. For our system, �F �= 0 and this indicates
that our model system is inherently irreversible even within
the long time limit. The change in free energy �F decreases
in time and saturates to a constant but minimal value for the
system that operates between the hot and cold baths. On the
contrary, for the system that operates in a linearly decreasing
temperature case, the change in free energy decreases linearly
indicating that the degree of irreversibility is higher for such
a system. The term that is related to entropy production rate
(�Ep(t )) and the heat dissipation rate (�Hd (t )) saturates to a
constant value for a heat engine that operates between the hot
and cold heat baths. Surprisingly for the linearly decreasing
temperature case both �Ep(t ) and �Hd (t ) step up in time lin-
early. This justifies that, unlike systems that operate between
hot and cold reservoirs, systems that operate in a heat bath
where its temperature decreases linearly have a higher level
of irreversibility.

The energetics of the system that operates between the hot
and cold baths are also compared and contrasted with a system
that operates in a heat bath where its temperature linearly de-
creases along the reaction coordinate. We show that a system
that operates between the hot and cold baths has significantly
lower velocity but a higher efficiency in comparison with a
linearly decreasing case. For a linearly decreasing background
temperature case, we show that the efficiency of such a Brow-
nian heat engine is lower than Carnot’s efficiency even at the
quasistatic limit. At the quasistatic limit, the efficiency of the
heat engine approaches the efficiency of the endoreversible
engine.

Due to the lack of exact analytic results, most of the pre-
vious work studied the thermodynamic features of systems
in a linear response and steady-state regime. The exactly
solvable model presented in this work enables us to explore
how the free energy, total entropy, entropy production, and
extraction rates behave as a function of time far beyond linear
response and steady-state regime. The change in free energy
in particular exhibits an elegant time dependence. Only for a
linearly decreasing thermal arrangement does the free energy
monotonously decrease in time revealing the way the temper-
ature is arranged in the reaction coordinate affects the free
energy. In conclusion, even though a specific model system is
considered, the thermodynamic relations that are obtained in
this work are generic and vital to advance the nonequilibrium
statistical mechanics.
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APPENDIX A: BROWNIAN PARTICLE THAT OPERATES
BETWEEN TWO BATHS

In this Appendix we will give the expressions for p1(t ),
p2(t ), and p3(t ) as well as V (t ) for a Brownian particle that
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operates between the hot and cold baths. For the particle
which is initially situated at site i = 1, the time dependent
normalized probability distributions after solving the rate
equation d �p

dt = P �p are calculated as

p1(t ) = c1
a(2 + νb)

μ(μ + (a2 + μ)νb)

+ c2e− (a+a2μ+μ2 )t
2a

(
−1 + a(−1 + aμ)

−μ2 + aνb

)
, (A1)

p2(t ) = −c3e
1
2 t (−2−νb) − c2

a e− (a+a2μ+μ2 )t
2a (−1 + aμ)

−μ2 + aνb

+ c1
(2a2 + μ)

μ + (a2 + μ)νb
, (A2)

p3(t ) = c1 + c2e− (a+a2μ+μ2 )t
2a + c3e

1
2 t (−2−νb), (A3)

where

c1 = μ(μ + (a2 + μ)νb)

(a + a2μ + μ2)(2 + νb)
, (A4)

c2 = − a

(a + a2μ + μ2)
(−1 + a(−1+aμ)

−μ2+aνb

) , (A5)

c3 = − μ(μ + a2νb + μνb)

(a + a2μ + μ2)(2 + νb)

+ a

(a + a2μ + μ2)
(−1 + a(−1+aμ)

−μ2+aνb

) . (A6)

Here
∑3

i=1 pi(t ) = 1 revealing the probability distribution is
normalized. In the limit of t → ∞, we recapture the steady
state probability distributions

ps
1 = a

a + a2μ + μ2
, (A7)

ps
2 = μ(2a2 + μ)

(a + a2μ + μ2)(2 + bν)
, (A8)

ps
3 = μ(μ + b(a2 + μ)ν)

(a + a2μ + μ2)(2 + bν)
. (A9)

The velocity V (t ) at any time t is the difference between
the forward V +

i (t ) and backward V −
i (t ) velocities at each site

i

V (t ) =
3∑

i=1

(V +
i (t ) − V −

i (t ))

= (p1P21 − p2P12) + (p2P32 − p3P23)

+(p3P13 − p1P31). (A10)

Exploiting Eq. (63), one can see that the particle attains a uni-
directional current when f = 0 and Th > Tc. For isothermal
case Th = Tc, the system sustains a nonzero velocity in the
presence of load f �= 0 as expected. Moreover, when t → ∞,
the velocity V (t ) increases with t and approaches the steady
state velocity

V s = 3
μ

(
baν − μ

a

)
2(2 + νb)

(
1 + aμ + μ2

a

) . (A11)

APPENDIX B: BROWNIAN PARTICLE THAT OPERATES
IN A LINEARLY DECREASING TEMPERATURE

The expressions for p1(t ), p2(t ), and p3(t ) as well as V (t )
are derived considering a Brownian particle that operates in
a heat bath where its temperature decreases linearly along
with the reaction coordinate. For the particle which is initially
situated at site i = 1, the time-dependent normalized proba-
bility distributions after solving the rate equation d �p

dt = P �p are
given as

p1 = a2(2 + ν)

μ2
2 + a1a2μ1ν + μ2

2ν
c1

+
(

−1 + −a2 + a1a2μ1

−μ2
2 + a2ν

)
e[t (

−a2−a1a2μ1−μ2
2

2a2
)]c2

(B1)

p2 = − −2a1a2μ1 − μ2
2

μ2
2 + a1a2μ1ν + μ2

2ν
c1

− −a2 + a1a2μ1

−μ2
2 + a2ν

e[t (
−a2−a1a2μ1−μ2

2
2a2

)]c2 − e[t 1
2 (−2−ν)]c3

(B2)

p3 = c1 + e[t (
−a2−a1a2μ1−μ2

2
2a2

)]c2 + e[ 1
2 (−2−ν)t]c3, (B3)

where

c1 = − −μ2
2 − a1a2μ1ν − μ2

2ν

(a2 + a1a2μ1 + μ2
2)(2 + ν)

, (B4)

c2 = − a2(−μ2
2 + a2ν)

(a2 + a1a2μ1 + μ2
2)(−a2 + a1a2μ1 + μ2

2 − a2ν)
,

(B5)

c3 = μ2
2 − 2a2ν + a1a2μ1ν + μ2

2ν − a2ν
2

(2 + ν)(a12 − a1a2μ1 − μ2
2 + a2ν)

. (B6)

Once again,
∑3

i=1 pi(t ) = 1 revealing the probability distribu-
tion is normalized. When t → ∞, the steady state probability
distributions converge to

ps
1 = a2(

a2 + a1a2μ1 + μ2
2

) , (B7)

ps
2 =

(
2a1a2μ1 + μ2

2

)
((

a2 + a1a2μ1 + μ2
2

)
(2 + ν)

) , (B8)

ps
3 =

(
a1a2μ1ν + μ2

2(1 + ν))((
a2 + a1a2μ1 + μ2

2

)
(2 + ν)

) . (B9)

The velocity V (t ) at any time t is the difference between the
forward V +

i (t ) and backward V −
i (t ) velocities at each site i

V (t ) =
3∑

i=1

(V +
i (t ) − V −

i (t ))

= (p1P21 − p2P12) + (p2P32 − p3P23)

+ (p3P13 − p1P31). (B10)

In the limit t → ∞, the velocity V (t ) increases with t and
approaches to steady state velocity

V s =
(
3
(−μ2

2 + a1a2μ1ν
))

(
2
(
a2 + a1a2μ1 + μ2

2

)
(2 + ν)

) . (B11)

054126-12



EXACT TIME-DEPENDENT ANALYTICAL SOLUTIONS FOR … PHYSICAL REVIEW E 105, 054126 (2022)

[1] H. Ge and H. Qian, Phys. Rev. E 81, 051133 (2010).
[2] T. Tome and M. J. de Oliveira, Phys. Rev. Lett. 108, 020601

(2012).
[3] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
[4] T. Tome and M. J. de Oliveira, Phys. Rev. E 82, 021120

(2010).
[5] R. K. P. Zia and B. Schmittmann, J. Stat. Mech. (2007) P07012.
[6] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[7] T. Tome, Braz. J. Phys. 36, 1285 (2006).
[8] G. Szabo, T. Tome, and I. Borsos, Phys. Rev. E 82, 011105

(2010).
[9] B. Gaveau, M. Moreau, and L. S. Schulman, Phys. Rev. E 79,

010102(R) (2009).
[10] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[11] D. Andrieux and P. Gaspar, J. Stat. Phys. 127, 107 (2007).
[12] R. J. Harris and G. M. Schutz, J. Stat. Mech. (2007) P07020.
[13] T. Tome and M. J. de Oliveira, Phys. Rev. E 91, 042140

(2015).
[14] Luo Jiu-li, C. Van den Broeck, and G. Nicolis, Z. Phys. B 56,

165 (1984).
[15] Chung Yuan Mou, J.-L. Luo, and G. Nicolis, J. Chem. Phys. 84,

7011 (1986).

[16] C. Maes and K. Netocny, J. Stat. Phys. 110, 269 (2003).
[17] L. Crochik and T. Tome, Phys. Rev. E 72, 057103 (2005).
[18] M. Asfaw, Phys. Rev. E 89, 012143 (2014).
[19] M. Asfaw, Phys. Rev. E 92, 032126 (2015).
[20] K. Brandner, M. Bauer, M. Schmid, and U. Seifert, New J.

Phys. 17, 065006 (2015).
[21] B. Gaveau, M. Moreau, and L. S. Schulman, Phys. Rev. E 82,

051109 (2010).
[22] E. Boukobza and D. J. Tannor, Phys. Rev. Lett. 98, 240601

(2007).
[23] Mesfin Asfaw Taye, Phys. Rev. E 94, 032111 (2016).
[24] Mesfin Asfaw Taye, Phys. Rev. E 101, 012131 (2020).
[25] H. Ge, Phys. Rev. E 89, 022127 (2014).
[26] Hyun Keun Lee, C. Kwon, and H. Park, Phys. Rev. Lett. 110,

050602 (2013).
[27] T. Bameta, D. Das, D. Das, R. Padinhateeri, and M. M. Inamdar,

Phys. Rev. E 95, 022406 (2017).
[28] D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103

(2013).
[29] O. Campàs, Y. Kafri, K. B. Zeldovich, J. Casademunt, and J.-F.

Joanny, Phys. Rev. Lett. 97, 038101 (2006).
[30] Mesfin Asfaw Taye, J. Stat. Phys. 169, 423 (2017).

054126-13

https://doi.org/10.1103/PhysRevE.81.051133
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/PhysRevE.82.021120
https://doi.org/10.1088/1742-5468/2007/07/P07012
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1590/S0103-97332006000700029
https://doi.org/10.1103/PhysRevE.82.011105
https://doi.org/10.1103/PhysRevE.79.010102
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1007/s10955-006-9233-5
https://doi.org/10.1088/1742-5468/2007/07/P07020
https://doi.org/10.1103/PhysRevE.91.042140
https://doi.org/10.1007/BF01469698
https://doi.org/10.1063/1.450623
https://doi.org/10.1023/A:1021026930129
https://doi.org/10.1103/PhysRevE.72.057103
https://doi.org/10.1103/PhysRevE.89.012143
https://doi.org/10.1103/PhysRevE.92.032126
https://doi.org/10.1088/1367-2630/17/6/065006
https://doi.org/10.1103/PhysRevE.82.051109
https://doi.org/10.1103/PhysRevLett.98.240601
https://doi.org/10.1103/PhysRevE.94.032111
https://doi.org/10.1103/PhysRevE.101.012131
https://doi.org/10.1103/PhysRevE.89.022127
https://doi.org/10.1103/PhysRevLett.110.050602
https://doi.org/10.1103/PhysRevE.95.022406
https://doi.org/10.1103/PhysRevLett.111.048103
https://doi.org/10.1103/PhysRevLett.97.038101
https://doi.org/10.1007/s10955-017-1869-9

