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Nonequilibrium relaxation of a trapped particle in a near-critical Gaussian field
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We study the nonequilibrium relaxational dynamics of a probe particle linearly coupled to a thermally
fluctuating scalar field and subject to a harmonic potential, which provides a cartoon for an optically trapped
colloid immersed in a fluid close to its bulk critical point. The average position of the particle initially displaced
from the position of mechanical equilibrium is shown to feature long-time algebraic tails as the critical point
of the field is approached, the universal exponents of which are determined in arbitrary spatial dimensions. As
expected, this behavior cannot be captured by adiabatic approaches which assumes fast field relaxation. The
predictions of the analytic, perturbative approach are qualitatively confirmed by numerical simulations.
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I. INTRODUCTION

Studying the motion of colloidal particles in contact with
thermally fluctuating environments provides a tool to probe
the rheological properties of soft-matter systems [1,2]. While
past studies have mostly focused on the behavior of tracer
particles passively carried by a fluctuating solvent, in recent
years increasing attention has been paid to cases in which the
particle and the solvent affect each other dynamically [3—10].
Particularly interesting is the case in which the medium is
a fluid near a critical point, thus displaying long-range spa-
tial correlations and long relaxation times. Objects immersed
in near-critical fluids are known to experience fluctuation-
induced forces [11-13] such as the critical Casimir force, i.¢.,
the thermal analog of the celebrated effect in quantum electro-
dynamics [14]. While equilibrium field-mediated effects have
long since been explored, the dynamical behavior of these
systems has rarely been addressed in the literature. Here we
wish to start filling this gap by analyzing a simple setup and
by predicting the dynamics of quantities which are easily ac-
cessible in experiments. The paradigm we have in mind is that
of a near-critical fluid such as a binary liquid mixture [15,16],
in which a colloidal particle is trapped by optical tweezers,
and we measure the average and the correlation functions of
its position.

In this work we study the nonequilibrium dynamics of a
probe particle in contact with a fluctuating medium close to
the bulk critical point of a continuous phase transition and
trapped in a harmonic potential. The medium is modeled
as a scalar order parameter ¢(x) subject to a dissipative or
conserved relaxational dynamics within the Gaussian approx-
imation (models A and B, respectively, in the classification of
Ref. [17]), while the probe represents an overdamped colloidal
particle interacting with the scalar field via a translationally in-
variant linear coupling. Because of this coupling, the particle
and the field affect each other dynamically along their stochas-
tic evolution, in such a way that detailed balance is fulfilled at
all times. Despite its simplicity, this minimal model already
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displays nonlinear and non-Markovian effects in the resulting
dynamics of the colloid, which make analytical predictions
difficult beyond perturbation theory.

Here we focus our attention on the dynamics of the probe
particle and we study how it is affected by the presence of the
field. A recent work [18] investigated the autocorrelation func-
tion of the particle fluctuating in the harmonic trap in contact
with a Gaussian field with conserved dynamics (model B), a
problem which was tackled within the weak-coupling approx-
imation. In particular, this proved the emergence of algebraic
tails at long times superimposed to the usual exponential
decay of the autocorrelation, the exponent of which depends
only on the spatial dimensionality of the system. These results
do not depend on the details of the chosen interaction potential
between the colloid and the medium, provided that it is linear
and translationally invariant.

A similar setup was analyzed in Ref. [19], where the
steady-state and effective dynamics of a colloid in contact
with a critical Gaussian field were investigated in the presence
of spatial confinement for the field. In the case of a linear cou-
pling between the fluctuating field and the colloid, an effective
Fokker-Planck equation was obtained under the assumption of
rapid relaxation of the field for each position of the particle.
This allowed the adiabatic elimination of the field degrees of
freedom, given by its eigenmodes in a finite box subject to
certain boundary conditions, from the coupled equations of
motion of the system.

Our aim here is to analyze the relaxation of the particle
after it is released far from its position of mechanical equilib-
rium in the harmonic trap. Within a weak-coupling expansion,
we first show that the average position of the colloid itself
displays an algebraic behavior at long times, and we relate its
decay exponents to those of the autocorrelation function of the
position of the colloid in view of the fluctuation-dissipation
theorem. We then interpret these dynamical exponents only
in terms of the spatial dimensionality of the system and the
dynamical critical exponent z of the field. Our analysis addi-
tionally reveals a transient algebraic behavior which is entirely
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due to the nonlinearity of the effective particle dynamics,
and which is therefore out of the reach of linear response
theory. We test our perturbative, analytical predictions against
numerical simulations of the complete system to exclude
the possibility that higher-order corrections in the coupling
constant A become increasingly relevant at long times; this
way we prove that the qualitative features of our analytical
predictions, based on a perturbative expansion in A, remain
valid beyond perturbation theory.

In the same spirit as Ref. [19], we then derive an effective
Fokker-Planck equation for the motion of the colloid in the
adiabatic limit by integrating out the field degrees of freedom,
which are a continuum of variables in the bulk. We use this
effective equation to study again the problem of relaxation
toward equilibrium and we investigate on the possible match-
ing between the perturbative and the adiabatic predictions;
this allows us to locate precisely the point at which the adi-
abatic approximation breaks down. In particular we find, as
expected, that the latter fails close to criticality and even far
from criticality when the field dynamics is conserved.

The rest of the presentation is organized as follows. In
Sec. II we introduce the model and the notation. In Sec. III
we study the problem of relaxation toward equilibrium using
a weak-coupling expansion, while in Sec. IV we consider the
same problem but within the adiabatic approximation (the de-
tails of which are presented in Appendix G); we then compare
the two approaches and thus determine the limits of validity of
the adiabatic approximation. In Sec. V we present numerical
simulations supporting our analytical predictions and we use
them to provide a qualitative description of the relaxation
beyond the linear regime. We finally summarize our results
in Sec. VL.

II. THE MODEL

The system composed by the particle and the field is de-
scribed by the Hamiltonian [18]

_ d l 2, o /f 2
H_/d x[z(w;) +2¢}+2X
—A/dd)up(x)V(x—X), (1)

where ¢ is a scalar Gaussian field in d spatial dimensions, and
the d-dimensional vector X denotes the position of a reference
point on the probe particle, e.g., its center. The constant k sets
the strength of the harmonic potential in which the particle
is trapped, while » > 0 is a measure of the deviation from
criticality and controls the correlation length & = r='/2 of
the fluctuations of the field at equilibrium. The system is
schematically represented in Fig. 1.

The coupling between the particle and the field is linear and
translational invariant: this may physically model, for exam-
ple, a colloid displaying a preferential adsorption toward one
of the two components of a binary mixture. The interaction
potential V(x) is a function which models the shape of the
colloidal particle, in the sense that the field interacts with the
colloid within its spatial extent, determined by the support of
V(x). For spherically symmetric tracers, it can be chosen as
V(x) = §(x) in the case of a pointlike colloid, while we will

FIG. 1. Pictorial representation of the model: a colloidal particle
is in contact with a fluctuating scalar field ¢(x) and trapped by a
harmonic potential.

consider a Gaussian form of V (x) with variance R whenever
we need to keep track of the particle size. We choose V (x)
to be normalized so that its integral over all space is equal to
unity; this way the strength of the interaction is set only by the
coupling constant A. If A and V(x) in Eq. (1) are chosen to be
positive, then configurations are favored in which the field ¢
is enhanced and assumes preferentially positive values in the
vicinity of the colloidal particle.

Adopting the minimal model in Eq. (1) is physically moti-
vated as follows. Upon approaching the critical point, spatial
correlations in the medium and consequently the character-
istic timescale of its dynamics grow arbitrarily large; the
system thus displays universal features, increasingly indepen-
dent of its microscopic details, and a minimal description
of the medium in terms of a suitably-chosen coarse-grained
order parameter is sufficient as long as one is interested in its
long-range and long-time behavior. Moreover, a mesoscopic
colloidal particle evolves on much longer timescales than the
microscopic degrees of freedom of the medium, due to their
difference in size. It is then expected that the particle coordi-
nate and the order parameter are the slow degrees of freedom,
while all other degrees of freedom effectively generate a ran-
dom forcing. In this model, we consider a simple scalar order
parameter ¢(x,t), while we neglect hydrodynamics effects
and other slow variables which should be taken into account
when describing real fluids or binary liquid mixtures [17].

We assume a purely relaxational dynamics for the field,

qp(x,t) = —D(@EV)* +C(x,1)

Sp(x,1)
= —D@V)*[(r = VI)p(x, 1) = AV (x = X)] + £ (x,1). (2)

Here o = 0 for a nonconserved dynamics of the order pa-
rameter ¢, while o« = 2 if ¢ is subject to local conservation
during the evolution, in the sense that Eq. (2) can then be cast
in the form 9,¢(x,t) = —V - J(x, t) with a suitably chosen
current J(x, ¢). These two choices of « correspond to model
A and model B in the classification of Ref. [17], in which we
neglect the self-interaction term ~¢4, i.e., within the Gaussian
approximation. Finally, ¢ (x, #) is a white Gaussian noise with
zero mean and variance

(t(x, )¢ (X, 1)) =2DT(V)*84(x —x)8(t —1),  (3)

with D and T denoting, respectively, the mobility (or diffusiv-
ity) of the field and the temperature of the environment.
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The dynamics of the probe particle is described by the
overdamped Langevin equation

X(1) = —vVxH + &)
= —vkX + vAf + &(1), 4)
where the force f acting on the particle is given by the gradient

of the interaction energy [20]

£(X, ¢;1) = Vx / dx p(x, 1)V (x — X(1))

d? .
- / (and iqy (1)V_ge ™). 4)

The particle and the field are assumed to be in contact with
the same thermal bath at temperature 7', so that £(¢) is also a
white Gaussian noise with zero mean and variance

()8 (1) = 2vT §;;6(t — 1), (6)

where v is the mobility of the probe.
The Langevin equation for the field in Fourier space reads

by = —ayp, + Drg* Ve X 4 ¢, (7)
where we introduced o, = Dg®(g” + r), while [21]
(615 (1) =2DTq"8% (g + ¢St — 1)) (8)

It must be noted that an unbounded growth of the zero mode
¢4—0 is implied by Eq. (7) for model A dynamics when r =
0. While this has no consequence on the particle dynamics
[see Eq. (5)], in a more realistic system one would need to
counteract this growth by adding a suitable chemical potential.

Upon switching off the coupling between the particle and
the field, i.e., setting A = 0, the two stochastic processes
are noninteracting and their solution is summarized in Ap-
pendix A. They are characterized by the (inverse) relaxation
timescales

tglzvkzy, 9

7, (9) = ag = Dg* (> + 7). (10)

In particular, the relaxation time 74(q ~ 0) for the long-
wavelength modes of the field may become arbitrarily large
for model A dynamics at r = 0. The same happens for model
B dynamics for generic values of r, i.e., also off-criticality, due
to the presence of the conservation law for which r(;l(q —
0) = 0. These long-wavelength modes are always present in
the bulk, while they are cut off in a confined geometry such as
that considered in Ref. [19].

Since the dynamics in Eqgs. (2) and (4) satisfies detailed
balance, the joint equilibrium distribution of the field and the
particle is the canonical one,

Peql¢, X] oc exp(—=pH[9. XD, Y

where 8 = 1/T. Accordingly, the equilibrium distribution
Py(X) of the colloid is found by marginalizing Peq[¢, X] as

Peo(X) o f D e FHIPXI, (12)

We show in Appendix B that Pq(X) is actually not affected
by the presence of the field, and one still finds Peq(X)

exp(—pBkX?/2). The argument we invoke is completely gen-
eral: it relies neither on the linearity of the coupling nor on
the choice of a free-field theory, and not even on the use of a
quadratic particle potential. The only requirement is that the
dynamics occurs in the bulk (i.e., there must be no boundaries)
and that the coupling between the field and the particle is
translationally invariant. We emphasize that the equilibrium
distribution of the colloid would indeed depend on the kind
of coupling and boundary conditions if we had considered
a system in a confined geometry, thus breaking translational
invariance [19]. Moreover, even in the bulk considered here,
the marginal equilibrium distribution Pey[¢] of the field alone
does indeed get modified by the presence of X.

Nontrivial aspects of the field-particle interaction can
nonetheless be deduced by looking at the dynamical proper-
ties of the probe. In this work we therefore set out to predict
the dynamics of the average value of the position of the col-
loidal particle as it relaxes toward the center of the harmonic
trap, being initially displaced from the position of mechanical
equilibrium corresponding to X = 0.

III. WEAK-COUPLING APPROXIMATION

The coupled nonlinear Eqgs. (2) and (4) for the dynamics of
the particle and the field are not exactly solvable and we there-
fore resort to a perturbative expansion in the coupling strength
A, computing the relevant observables at the lowest nontrivial
order in this parameter [18]. It must be noted that A is not
dimensionless: dimensional analysis of the Hamiltonian in
Eq. (1) gives [¢] = d/2 — 1 and accordingly [A] =1 —d/2
for the dimensions [¢] and [A] of the field and the coupling
respectively, in units of inverse length.

We consider the following formal expansions of the field
and of the coordinates of the particle:

p(x.1) =Y M¢"(x, 1),
n=0

[e.¢]

X(t) = Z,\"X<">(t). (13)

n=0

These can be inserted into Eq. (4) for the particle to get, order
by order in the coupling A,

XO@1) = —vkXO@) + &), (14)
X® (1) = —vkX™P () + vf" (1), (15)

where we introduced

n

1 d
(@) = —
@ n! dim =0

f(@). (16)

At O(A%), Eq. (14) is solved by the Ornstein-Uhlenbeck
process, recalled in Appendix A. The higher-order corrections
X can be formally expressed as

t
X" () = vf ds e 7O, (17)

fo
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where 7, is the time at which the initial condition X@(r =
to) = Xp is imposed. Similarly, the Langevin Eq. (7) for the
field in Fourier space renders

%D (1) = =g (1) + &4(0), (18)
Dq*V, d"!

8y (1) =~y (1) + eX,(19)

(n— D! dan—T =0

where X on the right-hand side of Eq. (19) is written in powers
of A as in Eq. (13). The function V,; is the Fourier transform of
the interaction potential V (x), and it only depends on |q| if we
take V (x) to be isotropic, i.e., a function of |x|. The properties
of the uncoupled field ¢;0)(t) are discussed in Appendix A,
while the equation of motion of the field at O(X) can be
formally solved as

¢ (s) = D"V, / dr e D XV (o)
fo

If we assumed the field to be initially in thermal equilibrium
in contact with the colloid, then a second term accounting for
the initial condition of the field would appear in Eq. (20) in
the form G, (1 — 19)$." (1), where the function G,(t) is the
free-field propagator defined in Appendix A 2. However, such
a term turns out a posteriori to be irrelevant for what concerns
the long-time properties of the tracer particle. For the sake of
simplicity, we will assume instead that the initial condition
of the field ¢,(#) is extracted from its stationary distribution
reached before the colloid is put in contact with the field.

A. Perturbative corrections to the position

The average particle position is given by
X)) = (XV0) + X XP0) +00H, @D

because one can argue on the basis of the invariance of the
equations of motion under A <> —A, ¢ <> —¢ that (XV(¢)) =
0 [18]. The first nontrivial term is thus of O(A?) and it can be
computed starting from

£O (5 ) = d'q ) i X0 (s))
(s1) = (zﬂ)dqu—q% (s1)e :

a‘ ;

< [0 +ig - XVne 2], @)

while bearing in mind that, as we take the expectation values
over the realizations of the noises ¢,(¢) and £(¢),

(0) (0) iq-[X© (5)—XO(s)]
&, (s2)p, " (s1)e
q q
— <¢(O)(S2)¢(O)(S1 ))(eiq'[x(o)(b‘z)—x(o)(h)]) (23)
q q ’

because at O(A%) the two processes ¢((]°)(t) and X©(r) are
independent. Using V_, = V* because V (x) is real, we find

@ dq ! sy [
X0 =v | LLig v | dsye = [ a
X2() f@n)d:qﬂ g / 5o f 5

X [xq(s1, 52) + vg*e V2 IC, (s1, $2)1Q,(s1, 52).
(24)

‘We have introduced

0y (51, 52) = (£ VXV C2XT 0]y (25)
(6P (5109 (52)) = 89 (p + )Cy (51, 52), (26)

where the averages are taken over the noninteracting pro-
cesses with A = 0; they are computed by standard methods
in Appendix A. The functions C,(sy, s2) and x,(s1, s2) are,
respectively, the stationary correlator of the Gaussian field in
the absence of the particle and its dynamical susceptibility
(see Ref. [22] and Appendix A 2), given by

Cy(s1,52) = Cylsy — 51) = e a2l (27)

@+
Xg(s1, 82) = Xg(s2 — 51) = Dg®e =0 (s, — 51), (28)

where 6 (x) is the Heaviside distribution.

We first specialize Eq. (24) to the case of a particle leaving
at time ¢t = t( the initial position X(#y) = X # O (the above
expression for (X *'(¢)) would remain valid if the initial condi-
tion X©(y) were drawn instead from a random distribution).
The asymptotic behavior of the resulting X(#) at long times is
then examined in Appendix C, where we consider the general
case in which V;, ~ ¢". Although we have assumed V (x) to be
normalized to unity in real space (hence V,—o = 1), this may
model the case in which the colloid is linearly coupled to the
nth (even) derivative of the field via an interaction term of the
form

Hine = =X / d‘xV(x — X)V"p(x) (29)

in the Hamiltonian in Eq. (1). Below we summarize the main
results of this analysis. To lighten the notation, we will often
omit the suffix j from (X;(¢)), since its only nonzero compo-
nent is the one along the initial displacement Xj.

B. Long-time behavior of the position

By direct inspection of Eq. (24) in the case of model A
and B dynamics (see Appendix C), we find the long-time
asymptotics of the mean particle position (X (¢)) to be given
in model A by

e V! for r > y/D,
(X)) ~ LeDrt for r < y/D, (30)
=1+ for r =0,
and in model B by
~ @D for r >0,
(X(@) ~ {t—(1+d/4) for r—0. (31)

These results have a clear physical interpretation: the long-
time dynamics of the particle is practically determined by the
slowest timescale characterizing the system. The two compet-
ing timescales are given by tx and 74 in Egs. (9) and (10),
where we set ¢ = 0 in the latter to account for the longest
wavelength mode, which is infinite in the bulk. Consider first
the case of model A dynamics, for which 7~ "(g=0)=Dr.
Sufficiently away from the critical point, i.e., for large r,
where the field evolves more rapidly than the particle, the
motion of the latter is essentially unaffected. Upon approach-
ing criticality, i.e., by reducing the value of r toward 0, the
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d=1 d=3
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FIG. 2. Evolution of the average position (X (7)) of a harmonically trapped particle initially released out of equilibrium and coupled to a
field evolving with model A dynamics, for various decreasing distances r from the critical point. The plots show the analytical prediction up
to O(A?). The points are obtained from the numerical integration of Eq. (24) and they are joined by a linear interpolation to guide the eye. The
exponents observed at criticality, » = 0, agree with those predicted in Eq. (30). In these plots A = 1,v =10,k =0.1,7T =1,D =1, X, = 10,

and the interaction potential is Gaussian with R = 1.

dynamics of the field becomes instead increasingly slower
and eventually it provides the longest timescale: this deter-
mines the change in the rate of exponential decay observed
in Eq. (30). Finally at criticality, » = O, the divergence of
the timescale characterizing the field dynamics induces cor-
respondingly a scale-free behavior of the tracer particle. In
model B, however, t4(g = 0) is formally infinite even away
from criticality, due to the presence of a conservation law: as a
result, the dynamics of the tracer particle is always controlled
by the field for any value of the parameter r.

The prediction in Eq. (24) is plotted in Figs. 2 and 3,
which clearly show an initial exponential decay followed by
a crossover toward the algebraic behavior, once the leading
order contribution (X ©(¢)) = X, exp(—yt) has faded out. In
Appendix D we link the decay exponents for » = 0 with
the dynamical critical exponent z = 2 4+ « of the underlying

Gaussian model; there we also derive the asymptotic form of
the average position at long times

2
(0 = Y2 s

evk?
ddP 2
X /(ZT)(sz|th*‘/f| (p - Xo)xp1:(t = 1/y).
(32)

At criticality, r = 0, this gives generically

A
(X)) =

*¢1 Xo 1 d+2 1—(d+2
) (D) @2z~ pmI=dramz - (33)

where c; is a numerical constant [see Eq. (D14) in
Appendix D], and the even integer n indicates a coupling
to the nth derivative of the field, as in Eq. (29). For n = 0,

d=3

d=2

10° 10°

(X (1))

10°

t=7/2 \
|

10° 10° 101 102 103 10% 10° 10* 102 103 10%
e e
—o—Dr?/vk =10 Drijvk=1 —*—Dr?/uk=10"" —+—Dr?/vk=0 ‘

FIG. 3. Evolution of the average position (X (¢)) of a harmonically trapped particle initially released out of equilibrium and coupled to a
field evolving with model B dynamics, for various decreasing distances r from the critical point. The plots show the analytical prediction up
to O(A2). The points are obtained from the numerical integration of Eq. (24) and they are joined by a linear interpolation to guide the eye.
The decay exponents agree with those predicted in Eq. (31). In these plots A, v, k, T, D, and X are set to unity and the interaction potential is

Gaussian with R = 1.
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10°

1073

(X())

10~
t711/2
10—9 | | |
10° 10! 102 102 10*

vt

FIG. 4. Average particle position (X (¢)) in the presence of a cou-
pling to the nth derivative of the field, as in Eq. (29). The plot shows
the case of model A in d =1, and the observed decay exponents
agree with those predicted in Eq. (33) for z = 2. In this plot A, v, k,
T, D and X are set to unity and the interaction potential is Gaussian
withR = 1.

we recover from Eq. (33) the critical exponents in Eqs. (30)
and (31) by setting z =2 (model A) or z =4 (model B),
respectively. Specializing Eq. (32) to the off-critical case of
model B renders, instead,

A2caXoD

ky (DV)_(2+n+d/2)l_2_(d+n)/2, (34)

(X)) =

where the numerical constant ¢, is given in Eq. (D15). This
dependence is, as expected, generically algebraic with a tem-
poral decay to zero which is faster than the critical case.
Figure 4 shows how the value of n changes the decay expo-
nent of the asymptotic behavior in agreement with Eq. (33).
Moreover, Eq. (32) reveals that the details of the interaction
potential V; do not affect the large-z behavior of the tracer
particle: indeed, the interaction potential only enters Eq. (32)
via V12 22 Vo, meaning that two distinct potentials with
the same behavior for p ~~ 0 yield exactly the same asymptotic
expression for the average position. This is verified in Fig. 5,
where the average position is plotted for various choices of
V (x) and the corresponding curves become indistinguishable
at long times.

In Sec. VB we will comment on how to amplify the long-
time algebraic decay (which is most relevant at r = 0) in
possible experimental realizations of the system.

One may ask the extent to which the results we obtained
via a weak-coupling expansion could be retrieved by using
a simpler linear response analysis. The linear response is
formally recovered from Eq. (24) as

d
(XjtNr = Xod—%(xj@)(;)) . (35)

(the zeroth-order term trivially vanishes) and it turns out,
with hindsight, that the long-time asymptotic expression in
Eq. (32) for the average position is indeed linear in Xy. At
short and intermediate times, however, nonlinear contribu-
tions arise which are encoded in the full response in Eq. (24),
but they would be missed if we truncate it to the linear order.

1071
siar
—e— Gaussian

Box
——  Cusp

10—4 |
10° 10! 102

vt

FIG. 5. Independence of the long-time behavior of the average
position of the colloid from the particular choice of the interaction
potential V (x). The plot shows the correction (X ®(¢)) for model A in
d = 1 (the leading order exponential term is irrelevant at long times).
The exponent of the algebraic decay is not affected by the specific
form of V(x), but only by the behavior of its Fourier transform V,
for ¢ — 0, in agreement with the asymptotic expression in Eq. (32).
On the contrary, the short-time behavior is sensitive to the particular
choice of V (x). The forms of the interaction potential reported here
are Gaussian V, = exp(—R%q?/2), box V, = sinc(Rgq/2), cusp V, =
1/(1 + R?¢%). Here R indicates the linear size of the colloid. In the
plot we set » = 0 and all the other parameters to unity.

A simple way to highlight them is to choose X large enough
so as to leave the linear response regime: Fig. 6 shows the
emergence of an intermediate algebraic behavior with differ-
ent decay exponents, which is correctly described by Eq. (24)
and is actually observed in numerical simulations presented
further below in Sec. V. We give a semi-phenomenological

2
1 L
0 Moo,
Y
0 o,
10 | 0,0
A b, 1
i/ 10 21 booo t
Vi ©oo o i
_4 000000 $3/2
10 i Coog
0000
—6 | Vog,
10 1 1 1 1
0 1 2 3 4
10 10 10 10 10
vt

FIG. 6. Relaxation of the average position (X (¢)) toward equilib-
rium in d = 1 critical model A when the initial position X is chosen
sufficiently large so as to emphasize the nonlinear response. Open
blue circles represent the theoretical prediction in Eq. (24), while red
filled circles are the results of numerical simulations performed at
T = 0 (we justify this choice and describe the simulation method in
Sec. V and Appendix I). Parameters used in the simulation are v = 1,
k=0.1, Xo =150, D=1, R=1, A =0.25, integration timestep
At = 0.01 and lattice size L = 2048.
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description of this transient behavior in Sec. V A and in Ap-
pendix E; our analysis allows us to predict the amplitude and
the slope of the average position in this regime, as well as an
estimate of the crossover time 7. at which the decay exponents
in Egs. (30) and (31) are recovered.

C. Comparison with the autocorrelation function

The predictions presented above are to be compared with
the long-time behavior of the autocorrelation function C(¢) =
(X(t) - X(0)). The case of model B dynamics is discussed in
Ref. [18], where it was shown that

(—d/4

0@ xO0 ~ {acan ot S0

for r > 0. (36)

We briefly derive this result in Appendix F within the same
perturbative framework as we did for the average position. In
doing so, we extend the calculation to model A, for which we
find

e for r>y/D,
e P for r < y/D, 37)
t=42 for r=0.

(X(@)-X(0) ~

The similarities between the two sets of exponents [see
Eqs. (30) and (31)] appear to be a manifestation of the
fluctuation-dissipation theorem at long times. Indeed, one
could write for the particle a linearized effective equation [18]
in the form

X(t) = FIX]+ h(t) + &), (38)

where & () is white Gaussian noise, /() is an external forcing
term, and F[X], possibly nonlocal in time, already contains
the effects of the interaction with the field. The knowledge
of the response function R(7) would allow one to express,
within the linear response regime,

t

(X)) = / dt' R(t —t)Hh(t)). (39)
to

Now, studying the relaxation of X (¢) starting from an initial

condition X, # 0 is tantamount to setting h(t) = Xod(t — 1)

into the effective Eq. (38), thus one concludes that

(X(@)) = XoR(1). (40)

Then it is clear that at long times, i.e., sufficiently close
to equilibrium, the fluctuation-dissipation theorem holds, re-
lating the linear response in Egs. (30) and (31) with the
correlation function C(¢) in Eqgs. (37) and (36) according to

1 dC(@)

(41)

IV. ADIABATIC APPROXIMATION

In this section we carry out a first-order adiabatic elimi-
nation of the field degrees of freedom which are assumed to
be fast compared to the motion of the colloid: this way we
obtain an effective equation for the dynamics of the particle
alone. Note that projecting the fast degrees of freedom over
the dynamics of the tracer particle adopting the Mori-Zwanzig
scheme [23,24], which renders a linear equation, may lead to

uncontrolled results in the present case, because the effective
particle dynamics is actually nonlinear [25,26]. We follow
instead Ref. [27] and we integrate out the field degrees of free-
dom using a transparent and physically intuitive procedure. In
the process, we generalize the approach of Refs. [27-29] to
the case in which a continuum of fast variables are coupled to
a single slow variable (see Appendix G for further details).
As it is customary in this context [27], we will initially
choose as a small parameter for the adiabatic expansion the
ratio v/D of the mobility of the particle to that of the field.
However, it is clear from the discussion in Sec. II that the true
time scale for the relaxation of the field variables is expressed
by Eq. (10), so that the long-wavelength Fourier modes ex-
hibit slow relaxation close to criticality (model A) or even
far from criticality for a conserved dynamics (model B). We
thus expect the adiabatic approximation to eventually break
down; in the following, we will be interested in locating when
this breakdown occurs and possibly matching the adiabatic
approximation with the weak-coupling solution in Eq. (24).

A. Effective Fokker-Planck equation

Let us go back to the coupled equations of motion Egs. (4)
and (7) for the particle and the field, respectively. The first
observation is that the equations for the Fourier components
¢4(t) decouple over the modes g: this holds true because
we are considering the Gaussian model, which renders linear
equations of motion. One should however bear in mind that
the field ¢(x, ¢) is real, which implies qﬁj; = ¢_g; this sug-
gests to separate its real and imaginary parts qﬁg = N¢, and
¢g = J¢, [30]. We then rewrite Egs. (4) and (7) as

. ad
X =—yX+vi / (2n(§dq(¢ffgf, — PN+ E0).  (42)

¢y = —agpg + Diggy’ + ¢, 43)

where we defined g,(X) = V, exp(—iq - X) and the noise cor-
relations read

r
(e Oz @) = S 18%q — ) £ 8% + s — 1.
(cR@)ckah) = o, (44)

with 'y, = 2DT ¢”. The equations of motion for ¢*/ are now
completely decoupled and their time-dependent probability
distribution factorizes into

Plo. X.t]1= [ ] P(¢5:X.1)P(p}: X. 1). (45)

geR4

Clearly, this P does not factorize into an X-dependent and a
¢-dependent part, if not possibly at the initial time #y. Note
that the noise term in Eq. (44) still correlates ¢7 with ¢Z ,
for o = R, I. When we write the Fokker-Planck equation cor-
responding to the set of Langevin Egs. (42) and (43), this
produces mixed derivatives in the form §2/ (8¢5 897 ,), which
can nonetheless be dealt with by noticing that ¢* = ¢ and

¢I_q = —¢>é. We thus obtain

diq
Qn)?

P = [LX + (L8 + cg)]P, (46)

054125-7



VENTURELLI, FERRARO, AND GAMBASSI

PHYSICAL REVIEW E 105, 054125 (2022)

where, calling V = Vx and I'y, = 2vT, we introduced the
operators

dq R I Iy o
Lx=V. [yX— \))\./ (Zﬂ)dq((ﬁqgg — ¢qg§) + ?V
“47)
and
2

5(¢g)"

The second consideration is that the coupling with the field
in the equation of motion for X is linear. The problem of
the adiabatic elimination of a fast variable from a system of
two stochastic differential equations was addressed, e.g., in
Ref. [27] and generalized in Refs. [28,29] to the case of a
multi-dimensional Fokker-Planck equation linear in the fast
variables. We sketch in Appendix G how the same method can
be naturally extended to Eq. (46), which contains a continuum
of fast variables. The resulting Fokker-Planck equation for the
slow variable X(¢) turns out to be

) r
L —[ozqug — DAq“gZ(X)] + 7¢

= 57 (48)

aP(X, 1) = LIP(X, 1), (49)

where, in the case of an isotropic interaction potential,

2
E;"(ff:V-(XyX)+vaV2+O((g> ) (50)

with x =1 — A?p and
v ddq qZ—a
= _/ —dﬁWq'z'
Dd Jg @n) (¢ +1)

This integral converges, at finite values of r, provided that
the interaction potential V,, decays sufficiently fast for large
g, thus providing some form of ultraviolet cutoff. We may
identify, a posteriori, the coefficient A>; as the actual di-
mensionless small parameter in the adiabatic expansion which
emerges naturally from the calculation.

Equation (49) is markedly Markovian; non-Markovian
effects would appear at the next perturbative order, here ne-
glected [27]. It shows that, up to the second order in the
adiabatic approximation, the only effect of the interaction with
the field is to renormalize the drift and diffusion coefficients
by the same amount in the equation of motion for an otherwise
diffusing particle in a potential: this, in turn, is equivalent
to rescaling time according to + — x¢. This is expected in
order for Eq. (49) to render the correct steady state distribution
Peq(X) ox exp(—BkX 2/2) of the particle, which does not de-
pend on A (Appendix B). Such a dependence emerges instead
during relaxation: in fact, Eq. (49) implies straightforwardly
that a particle initially displaced from its equilibrium position
at time 7o = 0 will relax back as

(D

(Xaa(1)) = Xoe™*7". (52)

B. Comparison with the perturbative solution

It is natural at this point to investigate if and when the
perturbative solution in Eq. (24) matches with the adiabatic
approximation in Eq. (52). To address this issue, we consider

their ratio

(Xaa (1))

X))

@)
=12 [Wr _ &0 (t»ey’] + 00,
Xo

(53)

which vanishes when the adiabatic approximation gives the
same result as the weak-coupling expression at this pertur-
bative order. Note that ¢ can be computed analytically by
choosing, for instance, a Gaussian or §-like potential, as done
in Appendix H. In order for ¢ to vanish for some time ¢, and
therefore for the adiabatic approximation to be accurate, we
need (X@(t))e”" to be linear in ¢. One might expect this to
be the case at long times 7: indeed, the colloid moves faster
initially, when it is released, while it slows down as it reaches
the bottom of the harmonic trap, thus making heuristically
the adiabatic approximation more reliable. We have already
analyzed the behavior of (X®)(¢)) in this regime both for
model A in Eq. (30), and model B in Eq. (31), so we conclude
that:

(1) The adiabatic approximation is never accurate in model
B: indeed, (X ®)(¢)) always decays algebraically at large ¢ and
there is no way that it can counterbalance the term e”’, thus
causing |¢| to grow without bounds. This is not surprising,
because in the whole adiabatic elimination procedure we have
used the ratio of the two mobilities v/D as a small adiabaticity
parameter; however, the actual timescale 7, for the relaxation
of the field is given in Eq. (10), which shows that, for any
choice of D and r, there are always long-wavelength Fourier
modes in model B which relax slower than the colloid.

(i) By the same token, the timescale for relaxation in
model A is given by Eq. (10) with o = 0, so that the slowest
mode is characterized by 7, '(g = 0) = Dr. We are led to the

conclusion that (X ?)(¢))e”" can only possibly behave linearly
when Dr > y, as it is clear by looking at Eq. (30). Being
Ty ! = y the timescale of relaxation of the colloid in the trap,
this implies that even the slowest field mode must relax faster
than the colloid.

In Appendix H we determine, in the case of model A, the
linear growth coefficient a defined as

(X(Z)(t))eyt ~ at for t > 1y, (54)

which enters the definition of ¢ in Eq. (53); we then compare
it to the values of w in Eq. (51) computed with the same
interaction potential (which is chosen to be Gaussian for def-
initeness). This way we prove that the balancing in Eq. (53)
does occur, thus making ¢ = 0 at long times.

V. NUMERICAL SIMULATION

To verify the validity of our analytical predictions beyond
the various approximations considered, we numerically simu-
late the system by direct integration of the coupled Langevin
equations of motion for the field and the particle, Egs. (2)
and (4), respectively. To this end, we discretize the field over
a lattice of size L and we adopt periodic boundary con-
ditions, as described in Appendix I. A great simplification
arises by noticing that the long-time asymptotic expression we
found in Eq. (32) for the average position of the colloid does
not depend on the temperature 7 (which affects instead the
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FIG. 7. Average position (X (7)) of the particle in numerical simulations of the noiseless equations of motion, corresponding to 7 = 0,
ind =1 (left) and d = 2 (right). All the simulations are in excellent agreement with the long-time behavior predicted in Egs. (30) and (31)
(corresponding to the slopes indicated by the solid straight lines). We do not show here the full prediction in Eq. (24) for graphical clarity,
as it is almost indistinguishable from the simulation points (but we do present such a comparison in Figs. 6 and 8). The parameters used in
the simulationare v =1,k =0.1, X =2,D = 1, R = 0.5, A = 0.25, and Ar = 0.01. The system size is chosen to be L = 2048 in the d = 1

case, and L = 512 in the d = 2 case.

dynamics at intermediate times and the amplitude of the ther-
mal fluctuations). At long times and close to the equilibrium
position X = 0, noise fluctuations make it challenging to ob-
serve clearly the algebraic decay predicted in Eqs. (30) and
(31). In addition, it is well-known that very large systems are
needed to sample the vicinity of a bulk critical point without
incurring in finite-size effects. Accordingly, we first simulate
the noiseless equations of motion, corresponding to setting
T =0, in large systems in d = 1 and d = 2, finding excel-
lent agreement with the analytical prediction in Eq. (24) and
its long-time algebraic behavior. This is presented in Fig. 7,
which shows the average position in simulations performed at
small values of the coupling A [solid lines represent the slope
of the long-time algebraic behavior predicted by Eqs. (30)
and (31)]. We then focus on one of these curves and we
re-introduce the noise by considering 7' # 0, showing that in
fact the effect of thermal fluctuations on the average colloid
displacement is negligible provided that one averages over a
sufficiently large number N of realizations. Indeed, we show
in Fig. 8 that even the noisy curve agrees with the prediction in
Eq. (24), with scarce dependence on the specific choice of the
interaction potential V,, provided that its characterizing length
scale R is of the same order as the one used in the simulation
(which is performed by adopting a Gaussian interaction po-
tential, see Appendix I).

A. Analysis of the transient behavior for large X

As anticipated in Sec. III B, by choosing a sufficiently large
value of the initial displacement X; one observes an inter-
mediate, algebraic behavior in the average particle position,
highlighted in Fig. 6. This would not be captured by a linear
response analysis of the system, but it is correctly described
by the perturbative prediction in Eq. (24). In this section we
use such analytical prediction together with numerical simula-
tions of the system to provide a phenomenological description
of this transient behavior within the small-A regime, where
Eq. (24) agrees well with numerical data. By inspecting

several relaxation curves corresponding to different values of
the initial displacement X, one can observe the following:

(i) For short times ¢ < tx = y ', the dynamics is dom-
inated by the initial exponential decay determined by the
force exerted by the harmonic trap. If one insists on isolating
the O(A?) correction to the average position by subtracting
the leading order exponential decay, then they would observe
an initial growth (qualitatively analogous to Fig. 10) whose
precise form is influenced by all the microscopic details of the
confining potential and of the interaction potential, such as y,
R and the functional form of V (x) (see, e.g., Fig. 5).

(ii) Fort 2 tx and up to a crossover time which we denote
by t., the average displacement of the colloid decays alge-
braically with an exponent which does not coincide with the
one eventually displayed at longer times. This exponent shows

100 a ®  Simulation
—1 L ) « 4
10 Prediction
A
o) -2 |
b 10
v 3
0 7
—4
10 r
1 2
100 10 10
vt

FIG. 8. Average particle position (X(¢)) during the relaxation
to equilibrium in d = 1 critical model B, in the presence of noise.
Simulation results are plotted as a solid red line, while the blue dots
represent the theoretical prediction in Eq. (24); they are shown to
be in complete agreement. Parameters used in the simulation are
r=0,v=1k=0.1,Xy=2,D=1,R=1,A=0.25, Ar =0.01,
T =0.1,L =128,and N = 7.7 x 108 realizations.
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FIG. 9. Average particle position (X (¢)) during its relaxation to-
ward equilibrium in d = 1 critical model A, when the initial position
Xy is chosen sufficiently large so as to emphasize the nonlinear re-
sponse. In the main plot, the various curves correspond to increasing
values of X, and the associated crossover time 7. is seen to shift
toward larger times. In the inset, the same curves are collapsed ac-
cording to the scaling form in Eq. (55) (see the main text). Parameters
used in the simulation are v =1,k =0.1,7T =0,D =1, A = 0.25,
R=1,At =0.01,and L = 8192.

some universal features, as it only depends on the spatial
dimensionality of the system and on the critical properties of
the field (i.e., on its dynamical critical exponent z). Moreover,
quite surprisingly, the amplitude of (X (¢)) in this regime turns
out to be independent of the value of X, itself, a clear example
of nonlinear response.

(iii) For t > ¢,, we recover the asymptotic decay expo-
nents predicted by Egs. (30) and (31), in agreement with linear
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FIG. 10. Perturbative correction to the average position (X (¢))
during the relaxation to equilibrium in d = 1 critical model B. Blue
dots represent the theoretical prediction of (X (¢)) in Eq. (24), while
we plotted in different shades of red (and different dashing) the
quantity [(X) — (X@)]/A% estimated in numerical simulations for
increasing values of A € [0.25-2.00], from lightest to darkest (and
from shortest to longest dashing). For each curve we subtracted from
the data the purely exponential decay and divided by A2. For large
values of XA, one observes qualitatively the same power-law decay
at long times, whose onset is nonetheless delayed as A increases.
Parameters used in the simulationare T = 0,v = 1,k = 0.1, Xy = 2,
D=1,R=1,At =0.01,and L = 128.

response analysis. The crossover time 7. becomes larger upon
increasing Xp.

The problem is analyzed in full details in Appendix E. We
start by identifying the crossover time ¢, with the relaxation
timescale of the field over length scales comparable with Xj:
this timescale can be read in Eq. (10) by setting g ~ 1/Xp,
which yields in the critical case . ~ X /D. The physical moti-
vation is the following. At time ¢ = O the colloid is released in
position X, and enters in contact with the field; since the latter
has a nonzero relaxation time, at short times # < tx we expect
the particle to be dragged primarily by the restoring force
of the harmonic trap, X ~ —yX,. On a timescale given by
7x = y ! the colloid covers a distance of the order of AX ~
Xy, so that it becomes relevant to consider the time #.(Xp)
taken by the field to rearrange over such a distance. Once the
field has reached a state close to its equilibrium configuration
around the colloid (which is by now close to the center of
the harmonic trap), then the dynamics is captured by linear
response and we recover the asymptotic results of Sec. III B.
Of course the transient regime cannot be appreciated if one
chooses a small value of Xj, simply because correspondingly
. <L 1x.

Motivated by the phenomenological observation stated
above that the behavior of the particle is algebraic within the
transient region ¢ < t., while the amplitude is independent of
Xo, we propose for times ¢ >> tx the scaling ansatz

(X(0)) = cot ™ f(t/1c), (55)
where f(7) is a scaling function with the property that

P for T > 1,

const. for v < 1. (56)

f(o) ~ {
The intermediate exponent ¢y and the coefficient ¢ (the latter
up to some numerical constant) can now be determined from
an asymptotic matching of Eq. (55) with the long-time expres-
sion (X;(t)) = cooXot %>, where ¢ and oo, are known from
our previous asymptotic calculation, Egs. (32) and (33). This
gives at criticality

g =1+

)\2
and ¢y ox — DUz, (57)
Z vk

A similar analysis can be repeated for the off-critical case in
model B, yielding for & < X, a crossover time t. ~ X3 /(Dr)
with intermediate exponent and proportionality factor

d—1 A2D
oy =2+ — and ¢ W(Dr)f(dH)/z, (58)

respectively.

In Fig. 9 we plot the average position of the tracer particle
in the case of critical model A (d = 1) for three values of
the initial displacement Xy. In the main plot we observe that
the three curves share the same amplitude within the transient
region ty <t < ft., with 7. becoming larger as X; is increased.
In the inset we exhibit the collapse of the three curves accord-
ing to the scaling ansatz in Eq. (55), which can equivalently
be written as (X;(¢)) 2 cot* f(r) upon defining T = ¢ /¢, and
fo(r) = 7% f(1). Plotting £ 7% (X;(¢)) versus (¢ /t.) shows in-
deed that a single curve f>(t) well describes the dynamics for
> 1yx.
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B. How to amplify the long-time algebraic decay

Here we address the question of how to control the overall
amplitude of the algebraic decay predicted for the average
particle position. Indeed, although our model is not meant
to describe the dynamics of an actual colloid in a fluid, it
still makes sense to check whether it would be in principle
possible to amplify it and make it comparable with the length
scale of the colloid radius R. A naive look at the asymptotic
expressions in Egs. (33) and (34), which are linear in Xj,
would lead to the (wrong) conclusion that the algebraic decay
can be enhanced by increasing X,. However, we have checked
in Sec. V A that the crossover time ¢. at which the asymptotic
algebraic decay starts to be seen increases upon increasing Xj.
Accordingly, one should better ask: how large is the average
position at time 7., when the decay assumes its asymptotic
algebraic form? Interestingly, plugging the various estimates
for . given in Sec. V A into Egs. (33) and (34) leads to the
same expression for the position at the crossover time, i.e.,

D | 4.
(X)) = ——X, 77, (59)
ky

where the numerical constant c¢ is either c; or ¢, for the critical
or off-critical cases, respectively. This expression tells us that
the optimal value of X should be chosen as small as possible
to amplify the effect, but still sufficiently large so as to satisfy
the assumption . > 1y introduced in Sec. V A.

We now recall that the coupling parameter A is not dimen-
sionless, so that the notion of “small A’ we have often adopted
in the previous sections has to be made more precise. To do
this, we now choose to measure lengths in units of the colloid
radius R. The position at time ¢, can then be conveniently
expressed as

(X(t)) = &RXo/R)' 7%, (60)

where the dimensionless coupling g*> = cA?D/(kyR¢*?)
emerges naturally as the actual small parameter for our per-
turbative expansion in Eq. (13) [31].

In Appendix J we focus on the case of the off-critical model
B, which is the closest to experimental realizations among the
models we considered in this work. Choosing for the various
parameters of the model the typical values corresponding to
experiments with silica particles immersed in binary fluid
mixtures [12,16], we show that the amplitude of the effect we
predicted in Eq. (59) is in principle well within the reach of
digital videomicroscopy.

C. A hint at the large-A behavior

The agreement between the perturbative solution in
Eq. (24) and the numerical simulations justifies the weak-
coupling approximation we adopted throughout this work and
ensures that the higher-order contributions which we have
systematically neglected do not become increasingly relevant
at long times, at least as long as the coupling constant X is
small. Now we can use the numerical simulation to explore
the regime in which A becomes larger. We will consider for
definiteness the case of critical model B in d = 1 and choose
values of the coupling A € [0.25-2.00]. With the choice of pa-
rameters k = 0.1 and D, y, and R set to unity, this corresponds
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FIG. 11. Average particle position (X (t)) during its relaxation to
equilibrium in d =1 critical model B. We chose a large value of
the coupling constant A, well beyond the perturbative regime where
agreement is observed between simulation data and our analytical
prediction. Here the theoretical prediction indeed fails to describe
even the qualitative behavior of the average position at short times
(see main text). Parameters used in the simulation are A =2, T = 0,
v=1k=01,X,=2,D=1,R=1, At =0.01,and L = 128.

to taking the dimensionless coupling g defined in Sec. VB
within the range g € [0.55-4.42].

Figure 10 compares the prediction in Eq. (24) with the
corresponding total correction to the average position, includ-
ing higher-orders, which we can extract from the simulation
data by subtracting from the measured trajectory (X (¢)) the
purely exponential decay (X©(¢)) predicted at O(A?), and
therefore dividing by A2. One observes that at long times
the exponent of the algebraic decay does not change upon
increasing A, but the amplitude predicted by Eq. (32) acquires
positive corrections coming from higher-order contributions.
The time at which the onset of the power-law behavior occurs
also shifts toward longer times as the value of A increases.

A common feature in all the curves shown in Fig. 10 is
that the (O(A%) correction, which vanishes at t = 0, grows
up to a maximum value before decaying algebraically to
zero. One can envision that, for large enough A, the correc-
tion A2(X®)(¢)) would become larger than the leading term
(XO(t)), thus affecting its monotonic behavior. Of course
such a scenario is well beyond the reach of the asymptotic
expansion in Eq. (13), and in fact it is proven wrong in the
numerical simulations performed at large A which we report
in Fig. 11, where a clear departure from the weak-coupling
prediction is observed even at short times.

In passing, we observe that the initial growth of the cor-
rection (X®(¢)) to the average position shown in Fig. 10
also presents an algebraic behavior (although, of course, the
effect is masked by the leading exponential contribution in this
short-time regime). However, the characterizing exponents are
found in this case to depend on the specific choice of the in-
teraction potential V (x), while they are in general insensitive
to the value of r quantifying the distance from criticality.

VI. SUMMARY AND CONCLUSIONS

We analyzed the relaxation toward equilibrium of a col-
loidal particle linearly coupled to a scalar Gaussian field,
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both following a stochastic evolution which preserves detailed
balance at all times. Working within a weak-coupling expan-
sion, we have shown that the average position of the particle
displays an algebraic decay at long times [see Egs. (30) and
(31)] when the field is close to its bulk critical point (Figs. 2
and 3), and also far from criticality for a conserved-type field
dynamics (model B). At criticality, we related these decay
exponents with the dynamical critical exponent z of the un-
derlying Gaussian dynamical field theory, see Eq. (33). These
exponents exhibit a certain degree of universality, in the sense
that they depend only on the spatial dimensionality of the
system but not on the specific form of the coupling between
the field and the particle, provided that it is linear and transla-
tionally invariant. We supported these predictions beyond the
perturbative approximation through numerical integration of
the Langevin equations of motion, as shown in Figs. 7 and 8.

In the adiabatic limit, we derived an effective Fokker-
Planck equation for the colloidal particle by integrating out
the field degrees of freedom from the coupled equations of
motion; then we used it to obtain an adiabatic approxima-
tion of the relaxation toward equilibrium in the same setting.
The matching of the adiabatic solution with that obtained
via weak-coupling approximation is only possible for a dis-
sipative field dynamics (model A) and sufficiently far from
criticality so that 74 < 1y, being 7, and tx the relaxation
timescales of the noninteracting field and of the particle,
respectively [Egs. (9) and (10)]. In particular, since 74 can
become arbitrarily large at the critical point due to the pres-
ence of long-wavelength modes, the adiabatic approximation
can never be applied for a critical field in the bulk, as it
was heuristically expected. In the case of a conserved field
dynamics (model B), moreover, the adiabatic approximation
fails also away from criticality, because of the presence of
such slow modes for any value of the parameter .

Finally we showed that, by choosing a sufficiently large
value of the initial displacement Xj, a transient algebraic
regime is observed in the average position of the particle
which would be entirely missed if one had adopted linear
response analysis, while it is correctly described by our per-
turbative prediction in Eq. (24). The main features of this
intermediate regime are encoded in the scaling form we pro-
posed in Eq. (55).

We emphasize that the conclusions we reached in this
work are in principle qualitatively testable with current exper-
imental technology, for instance by microscopic observation
of silica particles trapped by optical tweezers and immersed
in a binary liquid mixture close to the critical point of the
demixing transition [15,16].

Various related problems can be addressed within this
model. A question we left open in this work is for instance
whether the inclusion in the Hamiltonian of additional terms
which are nonlinear in the field ¢ may have an effect on the de-
cay exponents of the average particle position. We expect the
latter to depend in general on the static and dynamic univer-
sality classes of the bulk field Hamiltonian, so that additional
terms involving ¢ (and not X) should play a role whenever
they are relevant in the renormalization group sense. However,
nonlinear couplings such as ~¢3(x)V (x — X) (which have the
same symmetry as those considered in this work) may turn
out to provide subleading contributions at long times. The

case of relaxation toward equilibrium is possibly the simplest
nonequilibrium scenario, but another typical setting is that of
an external periodic forcing which drives the particle into a
nonequilibrium periodic state [32]. Moreover, if two or more
particles interact with the same fluctuating field, then an effec-
tive interaction between them arises which modifies both their
static and dynamical behavior. Different types of field-particle
couplings can also be studied, as well of the effects of the field
on the dynamics of an active tracer particle [33,34]. Finally, to
approach the critical point of the fluid we are trying to model,
we are naturally led to go beyond the Gaussian approximation
and use, instead, a scalar ¢* theory as a starting point for a
perturbative analysis, as well as more appropriate minimal
models of the dynamics. We shall explore these issues in
future works.
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APPENDIX A: CORRELATION FUNCTIONS

In this Appendix we calculate the expectation values over
the decoupled processes in Eqgs. (2) and (4), which are recov-
ered by setting A = 0.

1. One and two-time correlation functions of
the noninteracting particle

Each component X; of the particle position X(¢) is ruled
at O\ by a Gaussian and Markovian process [see Eq. (4)].
Accordingly, its propagator is Gaussian:

1 )d |:_|X—m(t)|2:| Al
Vimo) TP 20200 |

where, denoting by (A|B) the conditional average,

m(r) = m(t; Xo, o) = (X(1)[X(20) = Xo),

P(X, t|Xo, o) = (

(A2)

and the variance is the same for each component X;, due to
the isotropy of the problem:

o (1, 10) = (X7 (0)|X;(10) = Xo),) — m; (0).

At O()%) the particle position is described by the Ornstein-
Uhlenbeck process (i.e., by the Brownian diffusion in a
harmonic potential [35]), for which it is easy to derive the
well-known results

(A3)

m(t) = (XO@)) = Xge 7070, (A4)

T
ol(t,10) = il e~ 2], (AS)

where we introduced y = vk as in Sec. II and we assumed the
particle to start its motion at position X@(#y) = X at time
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t = ty. Similarly, the connected two-time correlation function
C(t;, 1p) is given by

Clh. ) = (XX 1)

= (%" @) = (X @))][x]”2) - (X[ @w)])

— %[e—y\tz—tll _ e—V(t1+tz—2to)]' (A6)

2. Two-time correlation function of the noninteracting field

The Langevin Eq. (7) for the field reads at O(1°) and in
Fourier space

¢ = —agd + ¢, (A7)
(L) (1)) = 2DT q*8% (q + q)8(t — 1), (A8)

where o, = Dg*(q> + r), while @ = 2 for model B and & = 0
for model A. This equation is formally identical to that of the
Ornstein-Uhlenbeck particle, so it is easy to derive [36]

(6P (518 (52)) = 8% (p + [ CL (51, 52)
+ Gy(s1 — 10)Gy(s2 — 10)2 ()], (A9)

where we introduced the free-field propagator G,(s) =
0(s)e~**. Here 6(s) is the Heaviside step function, and

CD(SI SZ) — [efot,,hzfsl\ _ e*dq(sl+3272to)]
q 9

prp (A10)
is the correlation function corresponding to the case of Dirich-
let initial condition ¢, () = 0. It also coincides with the
connected correlation function (¢;0)(sl )¢,(,0)(Sz)>c computed
with any other fixed initial condition ¢, (t,). For fo — —o0 we
recover from Eq. (A9) the correlation function in the station-
ary state, which is time-translational invariant, as expected.

If we assume that ¢,(#) is randomly drawn from the sta-
tionary distribution of the field and we average the correlation
function in Eq. (A9) over all possible initial conditions, we get
(@7(t0))ic. = T/(g* + r) and it follows that

(6P (52)), . =87 (p + 9)Cy(s2 — s1),

where

(Al1)

(A12)
|

Cyl1) = ——el
q q2+r

o= 5 [CG15D)+C(s2,52)-2C(1,5)]

exp [ — Tqu(l — e—ylsz—sll)]

In particular, for 7y = 0,

m(sy) —m(s;) = Xo(e™ 72 — e 7)),

while m(¢) vanishes for ty — —oo.

exp {_Tqu[l _ eVl _ %(e""“ — e—ysz)z]}

is the expected equilibrium correlation function of the field.
This is the expression we will adopt in this work, as we
assume the field to be initially in thermal equilibrium, before
the particle is added.

3. n-time correlation functions of the noninteracting particle

The knowledge of the one- and two-time correlation
functions discussed above is sufficient to write down the gen-
erating functional Z[j] of the n-time correlation functions for
the Ornstein-Uhlenbeck (or any other Gaussian) process: for
each spatial component x = x; separately, it reads

Z[j] = (el dsitx)
1
= /Dx(s)exp{ - Efdsldsz [x(s1) — m(s1)]

X C_I(S1732)[X(Sz)—m(sz)]+[dsj(s)x(s)}

1
= eXP[E/dSMSz J(s1)C(s1, $2)j(s2) +/de(S)m(S)],

(A13)

where C(sy, s2) is given in Eq. (A6) and m(¢) in Eq. (A4).
We normalized the integration measure Dx(s) on the second
line of Eq. (A13) so that Z[j = 0] = 1. We can now use this
results to calculate Q,(sy, s2) defined in Eq. (25). Notice first
that, due to the statistical independence of the process along
the various spatial coordinates,

d

Qy(s1,52) = 1_[ e =X 0,

n=1

(Al4)

Each of these factors can be simply obtained from Z[j] in
Eq. (A13) by setting j = j*(s) = ig,[5(s — s2) — 6(s — 51)],
which yields

Qq(sl $) = eiQ'[m(Sz)*m(Sl)]efé[c(sl,51)+C(52»52)*2C(31,Sz)]_
(A15)

To specialize this formula to our problem, let again the par-
ticle leave the initial position X at time ¢ = f#y; the effect of
having Xy # 0 enters solely in the expression of m(¢) given
in Eq. (A4). We may write explicitly, in terms of the two-time
function C(sy, s,) defined in Eq. (A6),

for 1 =0,
(A16)
for tg —> —oo.

(A17)
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In the perturbative calculation of the autocorrelation function discussed further below in Appendix F [cf. Eq. (F2)], we also

need to derive the expressions for the averages

(eiq.X(O)(z)> — H(eiq”xnw)(t)>,

These quantities can be similarly calculated by using the generating functional in Eq. (A13): in fact,

; 8
X © i X V) _ 21
(XO(s2)e )= 55602V

(x O 53)e 4" =X 60l

—Z[/J]
5
and we get

d
(A18)
n=1
) d
(X (52)e XY = (X0 (5)e X D) T el 0), (A19)
n#j
d
(Xj(O)(Sa )eiq-[X(O)(sz)*X(O)(n)]> — <Xj(0)(S3)eiqj[x;w(sz)—x;o)(s,)]) 1—[ <eiq,,[xé0)(52)fxn(0)(sl)]>. (A20)
nj
(975" 0) = Z1j(5) = ig8(s — 1)] = & MmO, (A21)
= mj(s2) + iq;Cs1, 52)1fe %" V), (A22)
J($)=iq;5(s—s1)
, (A23)
J($)=iq;[8(s—s2)—8(s—51)]
(e[q.xrm(t)) — e‘%qzc(l’t)eiq'm(t), (A24)
(XO(5,)e4X 76D} = [m(s) + igC(sy, s2)](€4X "), (A25)
(XO(53)e/d XV 6D=XV60) — m(s3) 4 iq[C(s2, 53) — C(s1, 53)1} Qy(s1, 52). (A26)

APPENDIX B: EQUILIBRIUM DISTRIBUTION OF
THE PARTICLE

The equilibrium distribution of the system composed by
the colloidal particle in interaction with the field, the field
itself and the thermal bath which provides the thermal noise is
given by the Boltzmann distribution

Peql9, X] o< exp(—=pH[¢. XD, (B1)

where f is the inverse temperature of the bath and H is the
Hamiltonian. Assume that the latter has the generic form

H[p, X] = Hpl[p] + UX) — AHinlo, X],  (B2)

where Hy[¢] describes the field in the bulk and is not nec-
essarily Gaussian, while /(X)) is a confining potential for the
particle, e.g., U(X) = (k/2)X? in the case considered here.
Finally, H;y describes the interaction between the particle and
the field via a possibly nonlinear coupling

Hinlg, X] = fddxF[tﬁ(X)]V(X - X), (B3)

where F[¢(x)] is a quasilocal functional of ¢; we only require
this coupling to be translationally invariant. Our Hamiltonian
in Eq. (1) has indeed the form required in Eq. (B2). The
equilibrium distribution of the colloid follows as

Peg(X) / D ¢ PHI:XI

— e—ﬁU(X)/'Dd, e_ﬁ{’Hd)[Qﬂ_)L,Him[‘P’X]}’ (B4)

(

and our aim is to show that the functional integral on the
right-hand side does not actually depend on X, i.e., that the
interaction with the field does not affect the equilibrium distri-
bution Py(X) o< exp[—pBU(X)] of the colloid. The argument
goes as follows: introduce z = x — X and define a new shifted
field ¢(z) = ¢(z + X). Since the field is in the bulk, then
Hsld] = Hylel, while Hiy in Eq. (B3) becomes

Hinl$, X] — / 4z Flo@)]V (2). (BS)

The proof is concluded by noticing that the integration mea-
sure D¢ in Eq. (B4) remains the same under a translation by
X in space.

We emphasize that this argument fails if the system is not
translationally invariant, as it happens, for instance, in the
presence of boundaries or confinement [19]. Moreover, it does
not imply the factorization of Peq[¢, X] into two independent
parts at long times. In fact, the marginal equilibrium distribu-
tion of the field ¢, which may be obtained by integrating out X
in Eq. (B1), is actually modified by the presence of the colloid.
For a linear field-particle coupling such as that of Eq. (1), for
instance, we physically expect at equilibrium the field to be
enhanced around the colloid, i.e., around the minima of its
confining potential I/(x).

APPENDIX C: LONG-TIME BEHAVIOR OF THE
AVERAGE POSITION (MODEL A AND B)

In this section we derive the asymptotic behavior of the
second-order correction to the average position in Eq. (24)
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at long times by considering separately the cases of model
A and model B field dynamics. By rotational symmetry, we
can choose the initial position to have a single nonvanishing
coordinate, i.e., Xo(t) = Xoj, wherej is the unit vector of the
Jjth Cartesian axis. The resulting average position (X(¢)) will
then vanish at all times for all but the jth component. Using
Egs. (27), (28), (A15), and (A16), the latter can be written as

dd
Gl [ sz

2
x/ dsi[ey +quze’V(52’s‘)]
0

<X(2)( )>

x Cy(s2 — s1)sin (q;Xo;(e” """ — e777))

e RG2.31 )qz’ (C1)

where we introduced, for brevity,

R(sy, 1) = Z[l — eVl l((f”z eV )2]. (C2)
k 2

The more general case in which the particle is linearly coupled
to the nth even derivative of the field, as it does in Eq. (29),
can be simply accounted for as follows. Note first that Eq. (29)
can be rewritten in Fourier space for even n as

ddq .y, o —igX(t)
Ho = —2. / S Ve X (C3)

It is then enough to replace V, in Eq. (C1) with Vq = (iq)"V,
Since V(x) is normalized, we can expand the Fourier trans-
form of the rotationally invariant potential V, as |V,|* =
14 c2g* + ..., whence |V, | = ¢*" + c2¢*™D + . ... With-
out loss of generality, (X;z)(t)) can then be expressed as a sum
of expressions identical to Eq. (C1), but with ¢** in place of
|Vq|2. Accordingly, in the following we consider the specific
case of a potential with |V,|*> = ¢*" and we will show that each
term in this sum becomes increasingly irrelevant at long times
upon increasing .

1. Field with model A dynamics

In the case of model A dynamics, we start by rescaling
s\ =s1/t, $h =5/t and g — t'/2q so as to write Eq. (C1)
into the equivalent form

diq
Q)"

() —d/24n-3/2) ¥
) = sl f

S
x/ ds/l[a,-l/zq+th’1qze’V’(52’S')]
0

1

X Ct—l/Zq(t(S/z — s/l ) sin(t_l/ijXO,j

x (efytsll _ efytx’z))efR(tS'z,tsa)t7]q2. (C4)
In this way we removed the time dependence from the inte-
gration limits and left it in the integrand only; this is more
convenient for considering the limit + — oo. To this end,
let us briefly discuss the asymptotic behavior for t — oo

of each term in the integrand. The first term in parenthesis

tends to
-2y + l)t_l Tqu—yz(s’z—x’l)

{Dr for r >0

Dg*t~' for r=0 + ho,

(C5)
where we noticed that in both cases the second addendum
is subleading with respect to the first for large 7. Here
and in what follows h.o. denotes additional terms which
are subleading in the limit # — oco. The field correlator
tends to

Cl—l/Zq(l(Sé - Sll )

Tr—le—D(rt+q2)(s’2—s’1)
= th—ze—qu(s’z—x’l)

for r >0 + ho.

for r=0 (€6)

The argument of the sine tends to zero at long times,
so that we can expand sinx ~ x to leading order. Finally,
R(tsh, ts})t~'q* tends to zero at long times.

Let us now focus on the case r > 0. The correction to the
average position of the particle is then asymptotic to

(X;z)(t)) = \)DX()q(,'Cdt_(d/z-’—n_l)e‘_w

0 1 sy
x [ da [ s, [Casigie e
0 0 0

% [eyt(s;—s’.) — 1] + h.o., €7

where we performed the integration over the angular ¢ vari-
ables. The constant C; = ¢;/d comes from the integration of
the solid angle in d dimensions, being

dQy 21-d

=) Qmy T 7dPTWd)2)

(C8)

and where we noted that we can replace ¢; — ¢*/d in the
integral. At this point the integration over s and s} can be
performed explicitly and we immediately obtain

3N

vkt for vk < Dr,

(2)
<Xi U oo)) x {e‘D"’ for vk > Dr. (©9)

For r = 0 the asymptotics in Egs. (C5) and (C6) are different
from the noncritical case r > 0, and this affects the asymp-
totics of Eq. (C4) which reads

(X;Z)(t)) —vD%X,, ‘Cdtf(d/ZJrnfl)efyt

/ dq/ dSZ/ ds/ d+2n+1 7Dq2(s’275’])

x [er"“>=) — 1] + h.o. (C10)

As before, by performing the integration over s} and s} one
gets

<Xj(2)(l‘)> x t—(d/2+n+1). (C11)

We conclude that, in model A dynamics, an algebraic behavior
of the tracer particle is observed at long times only in the
critical case r = 0. These results are summarized in Eq. (30)
of the main text.
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2. Field with model B dynamics

The long-time asymptotic behavior of the average position
of the particle in the case of a field with model B dynamics can
be found in a similar manner as done above for model A. For
r > 0, we rescale s, 51 and g as we did in Sec. C 1 to obtain
Eq. (C4). In this case, however, the asymptotic behavior of the

J

thl/zq (t (S/z

thus leading to

20 ’
— ) =Tr e P60 4 ho,

first two terms are

—1 2 —yt(sh—s")
C{tfl/zq—i-l)Tl qe Y=

= [Dr +vTe "™V 1¢? +ho.,,  (Cl12)

and

(C13)

(X(Z)(t)) _ 1))(0 Cyt~ (d/2+n)e yt/ dC]/ d52/ dS, d+2n+3 7qu2(s/zfs'])[eyt(s’275’l) o l][D+r71UT€7yt(j/275,])]+h.0.

(C14)

As before, the integration over s/, and s} becomes trivial and we obtain

(2) —(d/24+n+2)
(Xj (1)) ot n+2),

The case r = 0 requires, in contrast with the previous ones, that momenta are rescaled in Eq. (C1) as g — ¢

we get the equivalent expression

d'q
(2m)

@) _ —(d/4+n/277/4) v
(X;7(0) =t

) [
dqfq /ds/zeﬂ/z(lfsz)/o dsi[o-1y + 0Tt

(C15)

1/44. In this way

1/2q287y1‘(s'27s/1)] x

1242

X Gty (t(sh — 57)) sin(t ™4 g, Xo (€772 — 7751y Rt (C16)
Since for r =0
Qg + VTt 2P0 = T2y =128 4y T M) 4 oo (C17)
and
Cring(t(sh — 51)) = Tt'2q72e™Pa' =50 4 ho, (C18)
one has
00 1 55
(X;z)(l)> :vXOJCdt—(d/4+n/2—3/2)e—yt / dq/ ds/z/ 2 ds/l qd+2n—le—Dq4(:/2—s’])[eyt(s’z—s’l) —1]
0 0
x [Dt™'2g* + vTe " >=V] + h.o. (C19)
(
At this point the integration over s} and s} is again straightfor-  function [22]
ward and we get it
Xo(g: 1) = lgI 7> x (qé gzo > (D)
<X»(2)(t)> o t_(d/4+n/2+l)- (C20)
’ Cota.t) = g2, g2, 24! D2
+(q,1) = lql g, P (D2)

We thus conclude that, in model B dynamics, an algebraic
behavior of the tracer particle is observed at long times both
in the critical case (r = 0) and off-criticality (r > 0). These
results are summarized in Eq. (31) in the main text.

APPENDIX D: CONNECTION BETWEEN THE
LONG-TIME BEHAVIOR OF THE PARTICLE AND THE
CRITICAL PROPERTIES OF THE FIELD

We are now in the position to relate the decay expo-
nents of the average particle coordinate which we obtained
at criticality to the dynamical critical exponent z of the un-
derlying free-field theory. The key is to introduce the general
scaling form of the dynamical susceptibility and two-time

where £ is the correlation length of the field (which diverges
at criticality), z is its dynamical critical exponent and 7 its
anomalous dimension; finally, D~' and a, represent some
microscopic time and length scales, respectively. The scaling
functions x4 and Cy are well-behaved at the critical point,
where they take a constant value (depending in general on
whether the critical point is approached from above or from
below). It is also well-known that z =2+« and n =0 in
the case of model A (¢ = 0) and model B (« = 2) dynamics
within the Gaussian approximation [22].

To address the long-time behavior of the average position,
we start again from Eq. (24), where we identify

Xx(1) = v0(1)e™” (D3)
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as the susceptibility of the particle. We then rescale time as s = s't and momenta as p = gt'/%, as suggested by the scaling forms
in Egs. (D1) and (D2). This gives

<X(2)(t)) — t27(d+1)/Z/
J

ddp . 2 ! / 5/2 / / ’ /
) ipjlVp-ire ds, dsy xx(t(1 = 55))Qp-1: (257, 155)
0 0

2
x [xo(pt ™%, 1(sh — 1)) + (pt ™) xe (2 (s, — $1))Cy (pt ™17, 1 (sh — s1))]. (D4)
where
Q,(s1, 57) = 4N 2= =G RG12) (D5)

and R(s, s) was defined in Eq. (C2). It is easy to check that p*t ~>/*R(ts), ts) — 0, thus
yr>

Qpr11: (15, 155) = 14 it 7op - Xp(e V1% — 7V, (D6)

ixx(t (1= $5)Qp-11: (15, 155) 2 ve ™ - X (e 7770 — 1), (D7)

where we omitted an imaginary term from the right-hand side of the last equation because it would vanish by symmetry when we
integrate over p in Eq. (D4). The integrand in Eq. (D4) now only depends on u = s — s}, so that v = s, + 5| can be integrated
out yielding

_ _ dp ! _ s -
(X2 (0)) = w2tz f gt PilVar PP Xo f duf (0){xs (pr =" tu) + (= 5 ()Co(pr ™7 1)}, (D8)
0
where we defined the function

fa) =1 —uyEe™ —1). (D9)

We now look for a saddle-point estimate of the integral over u in Eq. (DS8), bearing in mind that we are after terms which can
counterbalance the exponential factor exp(—y¢) in front of the integrals, so as to produce an algebraic behavior of (X ;2)(t)) for
large t. We can already drop a subleading term from

fu) =~ (1 —u)e’™ = exp Hyu + %111(1 — u)“ = /W), (D10)

where the function g(u) has its maximum in u* = 1 — (y¢)~!. The integrands X¢ and Cy are both decreasing functions of their
second argument and they decay with the relaxation timescale 7, of the field: we thus expect them not to affect the position
of the saddle point whenever 7,4 3> 1y, i.e., in the presence of slow field modes (with hindsight, we actually know that this
argument only fails in model A when we are sufficiently far from criticality so that Dr > y). Moreover, due to the additional
factor x,(tu) ~ e~?™ in front, the term containing Cy in Eq. (D8) is a priori subleading for large . We thus obtain

1
/ du f@)xs(pt ™%, tu) + (pt =) x (tu)Cy (pt—'/%, tu))
0

1 yi—1 252 V27 1
~ du ey, (pt =7 tu) ~ ¢ xo(pt =17, tu*)/ du exp |:—y—(u — u*)2:| =2 eritly (pt_'/z,t - —),
/0 ’ yr 0 R 2 o2 y
(DI11)
from which one reads the general asymptotic result
27y . ddp _ 1
(XP(0)) = L (@+2)/z f (Zn)dp,va,-uﬁ(p-Xo>><¢<pr Ve — ;>. (D12)

This expression depends on the specific form of the field susceptibility x4(q, ¢) and it is thus in general model-dependent. Close
to criticality, however, we can plug in the scaling form Eq. (D1) to get
d‘p Da 1
X :t"_("””)/z/— P (p - X Ve, “ 02—~ ), D13
x;7®) Gy PP (- Xo)x=|pt~ ' = y (D13)
where we set n = 0 since we are dealing with a free theory, and we generically assumed V, ~ ¢" for small g; this also accounts
for the case of a linear coupling to the nth even derivative of the field as in Eq. (29) (see discussion in Appendix C). When
£ — 00, the ¢ dependence drops out of the d? p integral and we recover the universal long-time scaling at criticality, see Eq. (33).
Using the free-field susceptibility given in Eq. (28) allows to write explicitly, for model A and B at criticality (r = 0) and
within the Gaussian approximation, the asymptotic estimate
2 d +2n\ A*X,
V2mey r (1 LAt n) 0
zed

p (1)~ (D)~ @+, (D14)

(X)) =
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where the constant c¢; was defined in Eq. (C8), and I'(x) is the Euler gamma function. This determines the asymptotic amplitude
of the average particle position. A similar calculation gives, for the off-critical model B,

(X;(1)) ~ —chdr(l +

ed

where we noted that the free-field susceptibility simplifies
because (p?t 2/ 4+ r) ~ r at long times, and we changed the
integration variable to y = Drp?+/f in Eq. (D12).

We emphasize that, to derive our expression for the av-
erage position of the colloid in Eq. (D4), we used explicitly
the fact that the Hamiltonian of the field is Gaussian: this
makes the equation of motion for ¢, (¢) linear and thus exactly
solvable via its linear response propagator. This prevents a
direct application of our final scaling result, Eq. (D13), to
an interacting field theory. We postpone the investigation of
a possible extension in this direction to future works.

APPENDIX E: NONLINEAR TRANSIENT BEHAVIOR FOR
LARGE INITIAL DISPLACEMENTS

In this Appendix we investigate the transient behavior
displayed by the perturbative solution in Eq. (24) when the
initial displacement X is chosen sufficiently large so as to
depart from the linear response regime. Our analysis is based
on the phenomenological observation that a transient regime
exists in which the average displacement of the colloid decays
algebraically, but with a characteristic intermediate exponent
different from the one displayed at longer times. One then ob-
serves for some time 7, a crossover to the asymptotic behavior
predicted by Egs. (30) and (31); the value of 7. grows as we
increase the initial displacement Xj. Interestingly enough, the
amplitude of the average position in the intermediate regime
turns out to be independent of the value of X, itself. This
behavior is well-confirmed by numerical simulations of the
system (see, e.g., Fig. 9) and it is already visible at zero tem-
perature; we thus focus here, for simplicity, on the noiseless
case.

Consider first the critical case » = 0. Here the field prop-
agator x,(t) defined in Eq. (28) can be expressed, both for
model A and B dynamics, in the compact form

Xq(t) = Dg e PT0(1), (E1)

where 7z = 2 + « is the dynamical critical exponent. Stepping
to dimensionless variables s; — s, /¢, s, — s/t in Eq. (24)
and rescaling momenta as p = gXp, we can rewrite our per-
turbative solution for the average tracer position as [37]

1-d

X t
(x21) = °T<b(yr, t—), (E2)

¢

d'p 2 :
O(I1y, ) =11, 11 ——ip;p“lV, d
(I, M) I 2/ 2yd PP Vx| /0 52

52
x / ds, e—nu(l—fz)—nzpz(sz—sl)
0

x explipj(e” M2 — e~ TSy, (E3)

where we set fo = 0 and we identified the crossover time
t. = Xj/D. This has to be compared with the asymptotic

d +2n\ A2XyD

(Dr)7(2+n+d/2)t727(d+n)/2’ (DIS)

(

expression we found in Eq. (33) which, upon setting n = 0,
can be expressed in terms of 7, as

chl_d N4
XP) ~ 220 (¢ 1(—) . E4
(X7 m) P s (E4)
The latter is, in fact, linear in Xp, so that at long times we can
write

(Xj(1) = cooXot ™, (ES)

where we introduced oo = 1 4+ d/z and coo X kz/(yde/Z)
up to a numerical constant (see Eq. (D14) in Appendix D).

We already noted that the correction in Eq. (24) to the
average position vanishes at time r = 0 (as well as for t —
00), and thus the function ®(I1;, I1,) vanishes for I1; =
IT, = 0. However, studying such function analytically is dif-
ficult, mostly because I1; and IT, cannot really be treated
as independent variables. Notice, moreover, that a residual
dependence on Xj is left into the integral over the variable p in
Eq. (E3) even after introducing dimensionless variables, thus
complicating the analysis even further. Some progress can be
made by assuming that, when 7, > tx = ! and the leading
order O(A) exponential term has become negligible, the av-
erage position of the colloid evolves according to a different
scaling form, namely Eq. (55) of the main text. This second
ansatz incorporates the phenomenological observation that the
amplitude of the average position is independent of X, within
the transient region ¢ < 7., while the behavior as a function of
time ¢ remains algebraic with an exponent oy # . The un-
derlying physical intuition is the following. At time ¢t = 0 the
colloid is put in contact with the field at position X (0) = X,
and at short times it is dragged primarily by the restoring force
of the harmonic trap, so that X ~ —yX;. On a timescale given
by tx = y~! the colloid covers a distance AX of the order
of AX ~ Xj, so that it becomes relevant to take into account
the time #.(Xp) taken by the field to rearrange over such a
distance. This allows us to identify 7.(Xp) = 74(q ~ 1/Xo)
in the language of Eq. (10), which tells us in particular that
when r = 0 this timescale is given by . = X/D. When Xj, is
small, however, we enter the regime in which 7, < tx and no
crossover is observed within the asymptotic region ¢ > tx.

The intermediate algebraic decay exponent o can be de-
termined by comparing the asymptotic form of Eq. (55) with
Eq. (E5) and by matching powers of X in the two expressions.
This gives By = 1/z, and thus

d—1
06020600—/3():1—}—7. (E6)

This matching additionally instructs on which parameters

control the amplitude of the average particle position within
the transient regime, yielding, up to some numerical constant,

. A2
co x DVes ox ﬁD(l’d)/z. (E7)
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We verified that Eq. (E6) correctly predicts the intermediate
exponent in numerical plots of Eq. (24) and in numerical
simulations of the system in various spatial dimensions d.
Alternatively, we can rephrase Eq. (55) as

(X;(1)) = ot f(2), (E8)

which is a function of the parameter T =t /¢, only, having
identified f>(t) = t=* f(r). In the inset of Fig. 9 we thus plot
t7%(X;(t)) o fo(t) to observe this scaling function from the
collapse of numerical curves obtained for different values of
the initial displacement Xj.

Above we presented the argument for the critical case r =
0, but it can be easily extended so as to cover the off-critical
case in model B, which also displays an eventual algebraic
decay. From Eq. (10) we read the crossover time

X3

Dr’
valid for r~!/2 =& « Xy. The asymptotic matching of
Eq. (55) with the long-time decay exponents given in Eq. (31)
|

1 (E9)

forr > 0, 1.e., aso = 2 4+ d/2, yields the prediction ap = 2 +
(d — 1)/2 for the intermediate decay exponent, and

A2D
co X V' Dreog —k(Dr)*“’”)/z. (E10)
Y

This correctly describes the transient behavior observed in
numerical simulations for the off-critical case in model B.

APPENDIX F: LONG-TIME BEHAVIOR OF THE
AUTOCORRELATION FUNCTION OF THE PARTICLE

The autocorrelation function of the probe in the stationary
state can be expanded in powers of the coupling constant X as

(X(1)- X)) = Co(t — 1)+ X2Co(t — ') + O, (F1)

where the second-order correction reads [18]

Gt — 1) = XV@) - XD + (XP) - XD ) + (XO@') - XD (1)). (F2)

In this equation and in the following, the quantities X (¢) are computed in the same way as discussed in Sec. IIl. With some

straightforward calculations one obtains

t t 00
XD - XD = vey / dsy V=) / dsy &7 / dg gV PONs — 5)Cy(sa =51, (F3)
0

—0Q —00

VCyq

(X(Z)(t)~X(0)(t')) _ 7/" ds, eV t=s52) /‘52 ds, (e,y‘,/,m . e—ylt/fxz\)

—00 ]

oo
x / dqq" V[P Qii(s2 — 51)Cq(s2 — sl + vT g7 7)), (F4)
0

In these expression we introduced
T4 :
0%t —1') = exp [—7‘10 — e ')] (F5)

which is the equilibrium expression of Q,(¢, t') in Eq. (A15),
obtained by taking its limit for 7y — —o0. To derive Egs. (F3)
and (F4), one also needs the stationary value of the average
defined in Eq. (A26), i.e.,

(X(O) (s)eiq-(X(O) (l)—X(m(f')))

N Z[E*VIS*II _ e*V\S*t'I]tier —1). (F6)
e ¢ 4q
Finally, the constant c¢; comes from the integration of the
angular variables and it is defined in Eq. (C8).

The procedure to obtain the long-time expansion of the
autocorrelation function is very similar to the one used for
the average position in Appendix C and will be briefly sum-
marized here. For simplicity, let us set ¢/ = 0. To expand
(XD @) - XD (0)) for large ¢, one starts by rescaling s, —
s2/t, s1 — s1/t and ¢ — t'/%q for model A and noncritical
model B, while ¢ — t'/#g for critical model B. Then one
proceeds by expanding the resulting integrands for long times.
Integrating over s, 51, one finds for (XV(¢) - XV (0)) the

(

asymptotic behavior reported in Eqgs. (37) and (36) of the main
text.

The determination of the asymptotic behavior of the other
two terms in Eq. (F2) is slightly more involved due to the
increased complexity of Eq. (F4). It actually turns out that
the second term in Eq. (F2) is of the same order as the first
term in the case of model A dynamics, while it is subleading
for model B; the third term in Eq. (F2) is, instead, always
subleading with respect to the first. These facts are proven
in Appendix A of Ref. [38]. With these observations, the
asymptotic long-time behavior of (X(z) - X(0)) is then the
same as that of (X(z) - XV(0)). These results coincide with
those of Ref. [18] for the case of model B.

Finally, as a check we show that the correction in Eq. (F2)
to the variance (X2(¢)) vanishes at long times ¢: indeed, the
equilibrium distribution of the colloid cannot depend on the
coupling A (see Appendix B). Setting ¢ = ¢ in Eq. (F3), call-
ing u = s, — 51 and integrating over v = 2t — (s, + 51) gives
for the first contribution

XDy - XV())

veg [ —yu oo d+1 2 Heq
= due™ f dqq*" Vel" Qg (w)Cy(u), (FT)
0 0
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which correctly does not depend on ¢ (the stationary state is
time-translational invariant). The second contribution can be
worked out by again changing variables as s; — u = s, — 53
and by noticing that

d
05 0C,w)] =

which can be proved by direct inspection of Egs. (A12) and
(F5). Integrating in u by parts and evaluating the integral over
s, finally gives

— QS )Cy(w)lay +vTg e "], (F8)

(XO(1) - XO@) = —=2 | duer / dq ™' |V,)?
0 0

2k
x Qg )Cy(u). (F9)

Taking into account this explicit form together with Eq. (F7),
we deduce that the sum of all the contributions in Eq. (F2)
vanishes, as it should.

APPENDIX G: ADIABATIC ELIMINATION OF THE
FIELD DEGREES OF FREEDOM

Following Refs. [27,35], we derive an adiabatic approx-
imation of the dynamics of the system which consists in
integrating out the field degrees of freedom from the Fokker-
Planck Eq. (46) under the assumption that they relax much
faster than the position X(7) of the particle. As we have
denoted by D and v the mobility of the field and the colloid
respectively, which set the timescales for their relaxation, we
will use their ratio v/D as a small parameter for our ex-
pansion. A later comparison with the weak-coupling solution
discussed in Sec. III will lead us to conclude that the adiabatic
approximation is in fact only reliable for a dissipative field
dynamics (model A) and sufficiently far from the critical
point so that Dr > y = vk, being Ty = ! the relaxation
timescale of the colloid.

To simplify the notation, let us first rewrite the two coupled
Langevin Egs. (42) and (43) as

X = —vkX + Z /
o=R.1"R

=F(X, ¢;1) + &), (GD)

iq
Gy 0

0y = g} + DA+ & = —ag] —b 5], (@)

where 0 = R, I indicate the real or the imaginary part, re-
spectively. Here we introduced g,(X) = V, exp(—iq - X) as in
Sec. IV A, while

a=oa,= Dq‘)‘(q2 +r),
b= —-DArg"gy,
c=T4/2=DTq", (G3)
and f7 = vaq(” % ) The corresponding noise amplitudes can
be snnply obtalned from Eqs. (6) and (8),
(&(0)E; (1) = 2vT8;8(t —1') = Tey8(t — 1), (G4)

r
T‘f’[ad(q —q)£8%qg+ g8t — 1),
(G5)

(HOIHAGIE

where the plus sign in Eq. (GY) is taken for the real part o = R
and the minus sign for o = I. The average values of all the
noises involved here vanish, and so do the cross correlations
such as (;f(t)g“é, (") or (£7 (1)€;(t")). We notice that rescaling
time in Eq. (G1) as ¢t — vt is tantamount to setting v =1
and replacing D — D D/ v in all the above relations. We
will henceforth use D! as an adiabaticity parameter. In this
notation, the Fokker-Planck equation for the joint probability
distribution P[¢, X, t] becomes

|:£x~|— > f (Zn)d q} (G6)

o=R,]

where, recalling the definition of F in Eq. (G1), we introduced

r
Lx=-V -F+ Exvz, (G7)

and, calling 9y = 5¢"’
L7 = 0y(ag + b) + coy. (G8)

Let us also denote, for brevity,

/ dlq = Z / . (2n>d’ G

and omit the indication of the superscript o from now on:
a further dependence on o will be understood whenever a
quantity depends on g.

The approach described below resembles closely the Born-
Oppenheimer approximation for solving the Schrédinger
equation for an atom under the assumption that the nu-
cleus dynamics is much slower than that of the surrounding
electrons. For each fixed X, we consider the eigenfunctions
®n, (¢4; X) of the operators L, defined in Eq. (G8), each satis-
fying an eigenvalue equation

hny X)@n, (g X) = —ﬁq%q (g5 X).
We can expand the joint probability density P[¢, X, 7] as

= ZP,,(X, 1) Pulé:; X],

(G10)

Plg. X, 1] (G11)

where n = {n,} is the collection of the excitation numbers for
each mode, and we introduced

Oule: XT = [ ‘00, (3 X)

geR4

(G12)

(the prime sign again indicates a further product over real and
imaginary parts). In particular, using the property [35]
/D¢ Pn[¢; X] = dno, (G13)

one can show that the marginal probability distribution
Py(X, t) of the position of the particle can be obtained as

P(X,t) = /'D¢P[¢,X, t]. (G14)

In the following, we will thus derive an effective evolution
equation for Py(X, t).
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1. Transformation to a Schrodinger-type operator

It is well-known (see, e.g., Ref. [35]) that a Fokker-Planck
operator Lpp acting on a probability distribution P can be
brought, under suitable conditions, into a self-adjoint form via
a similarity transformation

Hep = e/ Lrpe—a2. (G15)

In the case of natural boundary conditions [35], the func-
tion @ is simply related to the stationary distribution Py =
N exp{—®g}, where N is a normalization constant. This way

the Fokker-Planck equation
0P = LrpP (G16)

takes the form of a time-dependent Schrodinger equation in
imaginary time for the transformed P = e®+/2P,

3P = HpP. (G17)
One can check that its eigenfunctions ¥,, defined by
©On = wn¢07 with wo = 5[7 (Glg)

have the same eigenvalues as Lgp and form an orthonormal

set,
/ wnwm = (Snm'

Now we observe that each of the operators L7 defined in
Eq. (G8) can be mapped onto

(G19)

Hep = cdy — W(¢) = —ad'a, (G20)

J

using the similarity transformation in Eq. (G15). Here,

a? N\’ a
W(p) = 4—<¢ + —> - = (G21)
C a

2

is a simple harmonic potential, while & and & are the raising
and lowering bosonic operators defined by

where we introduced

- b c .
f=¢+-=[“@+an.
a a

The solution to the eigenvalue problem [analogous to
Eq. (G10)]

QD

(G23)

An wn = _HFP wn

is then simply given by the set of eigenvalues A, = an, and
the corresponding eigenfunctions are

<\/7¢) Vo(d),
1/4 o)
Yo(d) = ( C) ¢/,

where H,(z) are Hermite polynomials [39]. Note that using
Py =Yg (@), as prescribed by Eq. (G18), correctly renders the
(g, 0 )-dependent part of the stationary distribution of the field
at fixed colloid position X, which is in our case the canonical
one. Indeed, rewriting the Hamiltonian in Eq. (1) in Fourier
Space we get

(G24)

V(@) = (G25)

(G26)

d? 1 .
Palg;x) oc e P o exp {—/3 / ﬁ[z(qz + r)gp—y — qu““"¢q]}

= e R )

which factorizes over the modes and their real and imaginary
parts. This coincides with Py = /¢ (@) upon substituting the
definition of ¢ in Eq. (G23) and of a, b, c in Eq. (G3).

2. Effective equation
Following Ref. [27], we now generalize that approach from
two to an infinite set of coupled Langevin equations. To ob-
tain an evolution equation for each of the P,(X, 1), we first
substitute the expansion of P[¢, X, ¢] in Eq. (G11) into the
Fokker-Planck equation (G6) and we multiply both sides by
W /W, where

Unlg: X] = (G28)

[T ¥ @:X)

geRd

(recall &, = ¥, \Wy). Then we take the functional integral
over D¢ and use the orthogonality relation

/D¢\ym\pn = (Smn, (G29)

(G27)

(

which follows from Eq. (G19). We now notice that the eigen-
value Eq. (G10) implies

/ gL, Bald; X] = — / 4”2 [X] Dol ;X
— a®ale: X], (G30)

where we introduced

! I
AHE/ dqunq :/ ddqnqaq.

Some straightforward algebra [27] then gives [omitting the
various functional dependencies from P, = P,(X, )]

(G31)

3P = Z< "Ly ® > — AP, (G32)
n
where by the average symbol we mean
9= [Dsc= [ ] ‘donc (G33)

geR4
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In particular, the marginal distribution for the particle position
defined in Eq. (G14) evolves according to

3Py = (LxPo)Py + ) _(LxPn)Pa
n#0

(G34)

because L9 = 0 (we proved this in Sec. G 1). By n # 0 in the
sum above we mean that the numbers n, cannot be all zero
51multaneously Since all the other Py’s decay on timescales
An! oc D71, we can solve for Py up to O(D™') by setting
8, 'm = Smo in Eq. (G32) and keeping only the term n = 0 in
the sum, whence

1 [Wn 1
Py = —<—,Cxq)()>P0 + O( )

W (G35)

Plugging this result back into Eq. (G34) and using the fact
that (V2®,) = 0 because of Eq. (G13), we get an evolution
equation for the reduced probability density

dPy(X, 1) = LMPy(X, 1), (G36)

where

L= v (Fel) + %Vz

1
+ 2V (F W) | V- (WF W)
n#0

<\y§F ( $O>> 20 (W, V) - V

el -o(3)

Recall that in general A,, = 1,[X] (although not in our specific
case), while we did not indicate the dependence on X and ¢ of
F and W, so as to lighten the notation. The result in Eq. (G36)
is analogous to Eq. (2.13) in Ref. [27], which was derived
for the simple case of two coupled scalar equations (notice
that the analog of the second term in braces in Eq. (G37) is
reported with the wrong sign in Ref. [27]).

To compute the averages which appear in Eq. (G37), we
can make explicit use of the fact that F is linear in each of
the ¢,, hence also in the bosonic creation and annihilation
operators &; and a,. Let us inspect explicitly one of these
terms:

(G37)

dd
(WaF W) = kX (Uy W) + / e %y
q
— kXS +fd—qf Y4 (wala, + at|Wo)
n0 (27T)d q aq nl|lq q!*0
b
__q<\ljnqj0>i|
Ay
Cq b,
=k [ [\/ 4" aq‘s“”]’
(G38)

where we used the definition of ng in Eq. (G23); the 8y, in the

last line selects the element n with n, = §,,, while 8y selects

the ”ground state” with n, = 0 for every p. Next, note that

1
V- (UnF )V - (U F )

n

= Za (v F\IJO)—B (WnF;Wy), (G39)

ij

and for the sake of simplicity we will assume isotropy of the
interaction potential (i.e., V; depends only on ¢ = |q|). This
implies that no mixed derivative of the form 9;0; will survive
the ddq integration, so that a §;; can be understood in the
sum. Similar considerations apply to the other averages in
Eq. (G37), which can be dealt with using the properties of
Hermite polynomials (or equivalently the bosonic algebra);
it is crucial at some point to reinstate the dependence on o,
because many of the contributions cancel out when taking
>, Alengthy but simple computation gives, once reinstating
the original parameters v and D,

et = Xd: [0,(vkX)) + xvT 2] + o((%)z), (G40)

j=1

where

2 d 2
—L/ 9Ly (G

D Jr 2m)* q*(q* + 1)
As we had already assumed V; to be isotropic, then x; = x is
the same for all the components (i.e., it is independent of the
index j). It can be easily computed by replacing ¢; — ¢*/d
in the integral, leading to the final result in Eq. (49).

We conclude by noting that our effective equation (49)
is heuristically consistent with the results of Refs. [28,29].
Similarly, we can consider several copies of the effective
Fokker-Planck operator obtained in Ref. [27] (let us call it
[,eff) one for each of the field modes (g, o) and particle
0.q

components j. Calling then each of these copies L{" = L7,

Xj=

one can recover our result £ as

et _ Z Z f (zn)d

j=1 0=R.I

(G42)

APPENDIX H: MATCHING BETWEEN THE
PERTURBATIVE AND THE ADIABATIC SOLUTIONS

In this Appendix we investigate how the weak-coupling
and the adiabatic approximations for model A dynamics
provide the same predictions for 4y < 7x. We choose for
definiteness a Gaussian interacting potential in the form

1 ( |x|2>
——exp| — — |,
(V27 R)? P 2R?
where R represents the radius of the colloid, and which reads
in Fourier space V, = exp(—g°R?/2); the case of the §(x)
potential, which models a pointlike colloid, is recovered in
the formal limit R — 0.
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1. Model A with Gaussian interaction potential

Here we specialize the prediction in Eq. (24) for the average particle position to the case of model A dynamics. For simplicity,
we rewrite it in the form

(XP) =81+ 8. (H2)

S = lvD/ ds, eV 52)/ dsy e_Dr(“_“)/ (2n)dqj e~Br-iCa (H3)

— v T/ ds2/ ds, e” y(t=s1) p=Dr(s2— S1)/ a’ 9 %e*quﬂ'Cq’ (H4)

Qr)Y g2 +r
with
1
B=D(s; —s1)+ — [(1 e vy — e = eV52)2] + R, (H5)
C= (7" —e ")Xy. (H6)

The integration over the momenta ¢ can be performed analytically. Since we have shown in Appendix C 1 that S, is subleading
for large ¢, here we only report

t s
Sl — ZUD/ dS2 e_”(’_‘”)[ ’ dS1 e_Dr(SZ—-Yl)/ de \IJ(Q) —th\IJ(Q)/ dq qd —Bg? —th\IJ(Q) (H7)
0 0 Q2m)d 0

Here we expressed C-q = CqgW(2) in polar coordinates, where W(2) is a suitable director cosine (e.g., W(2) =
1, cos ¢, sin6 cos ¢ for d = 1, 2, 3 respectively). Using the properties of Bessel functions [40], one finds that

A4 qx Jajp-1(gx)
[ Gt = @y P gay T (H8)
and since W(2) - —W(Q) forq — —q, we find
f a2y W(Q)e I / 4 p(2)elCIVR) — id [ dQq S4C _ —iJas2(qC) . (H9)
2m ) (2 ) Cdq) Qm) (2m )2 (gCy/>~!
Using the known integral [40]
d/2+1 -Bg* cir —C?/(4B)
/0 dqq’"" Jap(@Cle ™ = = 2By ; (H10)
we finally get
VDXO (s2—=s1) __ —Dr(sy—s )e_CZ/(4B)
81 = nd/221+d / dS2 / dSl[ey 270 ]e 27 W (Hll)

Following Sec. IV B, we now look for the linear growth coefficient a for large ¢ in the form (X Ot))er' = ar. Itis straightforward
to derive

d
— 1 @) (1)) ot
a—tlggodt[(X (t))e”]

_ wDX, /00 (e77" — 1)e P _vXpri? /°° (e — 1)e™ HI2)
o o [y

= u = s
d/221+d Du + %(1 — i)+ R2]1+d/2 d/221+d + %(1 — ) + Rzr]1+d/2

where we have introduced u =t — s in the second line and then y = Dru in the third, calling n = y /(Dr) the ratio of the two
timescales. Setting R = 0 in the previous expression we recover the case of the §(x) potential; expanding the integral in Eq. (H12)
in powers of n o v/D so as to make contact with the adiabatic approximation, we find

vaord/z’l

Stragaap L= d/2)+ 0. (H13)

aR=0)=
Note that this expression is well defined only for d < 2; this is reminiscent of the fact that the original integrals over ¢ in Eq. (24)
become UV divergent in d = 2 if the radius R of the colloid is set equal to zero. By keeping R finite in Eq. (H12) and introducing
the dimensionless variable ® = R?r we find, instead,

U)/Xord/z_1

a(R) = Y +dd/2Dg

d
[e@(z(a + d)F<1 -5 o) - 2®<2—d>/2} + O®?), (H14)
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which is well defined in generic d in terms of the incomplete gamma function

o0
I(a, @):/ dr 1 'e 228 1(a). (H15)
®

Ind < 2 we recover Eq. (H13) by sending R — 0 in Eq. (H14).

2. Time rescaling factor in the effective Fokker-Planck equation

The value of w defined in Eq. (51) can be easily determined for a rotationally invariant potential V (x) by considering polar
coordinates, i.e.,

v ddq q2—a v 00 qd+l—a
w=— Wl = pea [ da v (H16)
Dpd ),

Dd Jg 2n) (¢ + 1) v
where the constant ¢; was introduced in Eq. (C8). We focus here on model A (o = 0). Choosing V,, = 1 (pointlike colloid), we
immediately get from Eq. (H16) and ford < 2

prd/2-1 d
2]+d7-[d/2DF(l - 5)’

where we used the relation sin(x)I"(x)I'(1 — x) = 7 [39]. By choosing instead a Gaussian potential V, = exp(—q*R?/2), we
can use the representation [39]

nR=0)= (H17)

A" = 1 /Oodyy”_le_Ay (H18)
I'(n) Jo
to express
_vea [* o [T ar PRy _ vrd/2! o d @—d))2

where again we called ® = R?r. Comparing Eqgs. (H13) and (H14) with Eqs. (H17) and (H19), one can note that a = yXpu to

the perturbative order at which we are working. We can thus conclude that the weak-coupling and the adiabatic approximations

provide the same results in the case of model A field dynamics whenever Dr > y, and they match according to Eq. (53).
However, we have seen that they no longer agree when Dr ~ y (and in particular when the field is at criticality), and that no

agreement is generically found, as expected, in the case of model B field dynamics.

APPENDIX I: NUMERICAL SIMULATION

Numerical simulations are performed by direct integra-
tion of the coupled Langevin equations of motion Egs. (2)
and (4). Field variables are discretized as {¢,-(t)}§\': | with
¢i(t) = ¢(x;,t) € R, and they sit on the N = L? sites of a
d-dimensional hypercubic lattice of side length L. Distances
are measured in units of the lattice spacing a, which we
retain for clarity in the following formulas, but which will be
eventually set to unity. The coordinate X(¢) € R of the center
of the particle is taken to be real-valued, i.e., the particle is not
constrained to move on the lattice sites only. Upon integra-
tion by parts, the equation of motion of the particle can be
rewritten as

X(1) = —vkX + vA / dxV(x — X)Vo(x) + £(1)

N
~ —vkX +vA YV (x — X)Ve; + (1), an

i=1
where we introduced the discrete gradient

ejd)i _ d(xX; + ’Lj)2:l¢(Xi - ”’j), (12)

with ft; locating the position of the 2 neighboring sites of each
X; along direction j. The discretized equation of motion for the

[
field ¢; in model A reads

dui(t) = —D{(r — D)gi(t) — AV (x; — X))} + (1), (13)
where ¢;(t) is a Gaussian random variable with variance

(G = 2DTa’18ij8(t —t'). We also defined the dis-
crete Laplacian

~ 1
Api=—D (¢ =), (14)
(k.i)

where the sum runs over the 2d neighboring sites of x;. Simi-
larly, the discretized equation of motion for the field in model
B reads

dy¢i(t) = DA{(r — D)gi(t) — AV (xi = X))} + V - 1,(0),

I5)

where 3,(f) is a vectorial noise with zero mean and vari-

ance (0™ ()" (1")) = 2DTa™"5;;8,p5(t —1'), and we take

its discrete divergence as %anf"‘)(l). We chose in both cases

a Gaussian interaction potential as in Eq. (H1), which yields a

smooth expression for its Laplacian

|x|> — R%d

Equations (I1) and (I3) [or Eq. (I5)] represent a set of (N + d)
ordinary stochastic differential equations which can be inte-
grated by standard methods in real space [41]. We choose a

VV5(x) =
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simple Euler-Maruyama scheme (order At!/?) for the evolu-
tion of the field variables and a more refined method, i.e., the
Stochastic Runge-Kutta (order At*/2, see Ref. [42]), for the
particle coordinate. We expect this to improve the stability of
the particle dynamics in spite of the lower-order algorithm
adopted for the field, because the latter only contributes at
O <« 1) to the evolution of the particle.

At the beginning of each trial, we prepare the field in its
equilibrium distribution at temperature 7 in Fourier space
and then move back to real space using a discrete Fourier
transform. We then add the colloid at position Xy # 0, and
record its relaxation trajectory as it moves toward the center
of the harmonic trap. Simulations performed at temperature
T ~ O107") on a lattice with side L ~ (©(10%), such as the
one shown in Fig. 8, require O(108-10°) trials to obtain a
clear sample of the algebraic decay of the average particle
position. Indeed, the signal /noise ratio becomes increasingly
small at long times, which is the region we are mostly inter-
ested in.

The complete code written in C is made available open
source on GitHub [43].

APPENDIX J: A FIRST QUANTITATIVE ESTIMATE

In this Appendix we attempt a comparison between our
model with off-critical model B dynamics and experiments
performed on colloidal particles in binary liquid mixtures.
Even though our model is not meant to give a realistic descrip-
tion of such a physical system (for instance, hydrodynamic
effects are ignored), it is still interesting to inspect the typical
orders of magnitude and check how large the algebraic be-
havior of the average particle position can be made, compared
with its radius R.

Following Secs. V A and V B, we start by choosing the
value of the initial displacement X to maximize the amplitude
of the particle position at the crossover time .. This was given
in Eq. (60), which suggests to take X as small as possible,
but still sufficiently large so that the assumption 7, > tx we
made in Sec. V A is still satisfied. Recall that ¢, is the time
taken by the field to relax over a length scale ~Xj, and it can
be identified in the off-critical model B with . ~ XZ/Dr.

What is the typical size of #.? While r = £~/ 2 and it is
simple to plug in typical values for the correlation length &
which can be obtained in experiments, it is not obvious how
large a realistic D is. Within model B, we learn from Eq. (10)
that rd)_l ~ Drg® for wavelengths ¢ <« r'/?> = 1/£. However,
real binary fluid mixtures are generally described by model H
[17,22], where the field relaxation time for g§ < 1 is given

within mode-coupling theory by ;" ~ D;q?, with [44]

kT
£ bnng’

being 7 the fluid viscosity. Notice the similarity with the free
diffusion coefficient of the colloid (X 2(t)) ~ Dpt,

D = ksT 12)

6mrnR

Typical colloid radii are of the order of R ~ 1um, while
typical correlation lengths obtainable with a water-lutidine
mixture are of the order of a few tens of nanometers [15,16].
To give a heuristic estimate of D, we compare the diffusion
coefficient of the order parameter fluctuations in model B with
that of model H, thus identifying Dr 2~ Dg, which renders
te >~ X2 /Ds.

Equation (60) still contains the dimensionless parameter g,
which sets the strength of the interaction between the field
and the particle. Its amplitude will depend on the specific
coupling mechanism realized in a certain experiment, and
clearly the overall effect will be enhanced if g can be made
larger. However, here we take g ~ 1 to remain within the
perturbative regime, under which most of the analyses in this
work were carried out.

To fix the ideas, we take #. ~ 4tx, whence Xo >~ ,/2tx De.
From Eq. (60) we read

(X;(te)) 4oy D\ 2007y Dy \ ~@+3/2
R R2 R2 5

an

J3)
where in the last passage we inserted the realistic estimate & ~
R/50 and we set z = 4. Now we notice that 7; ~ R?/Dx is the
timescale of thermal diffusion of the colloid over a distance
of the order of its own radius. A typical value for the free
diffusion coefficent is Dg =~ 0.22(um)?s~! [15], whence 7; ~
4 — 5s. We can conclude that

(X;(.)) ~< T4
R 200ty

Typical timescales tx of relaxation of colloidal particles
trapped by optical tweezers are of the order of a few tens
of milliseconds [16]. It then appears that (X (¢.)) measured in
units of the colloid radius R can be made as large as 107!
at least. It should be stressed that digital video-microscopic
observation of 2-um-sized silica particles immersed in binary
liquid mixtures currently allows to resolve displacements of
up to 5 nm. We are thus led to conclude that, even if (X (z.))
is indeed small compared to the colloid radius, the effect we
predicted could still be detected experimentally.

(d+3)/2
) (I4)
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