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The changeover from first-order to second-order phase transitions in q-state Potts models is obtained at qc = 2
in spatial dimension d = 3 and essentially at qc = 4 in d = 2, using a physically intuited simple adaptation of
the Migdal-Kadanoff renormalization-group transformation. This simple procedure yields the latent heats at
the first-order phase transitions. In both d = 2 and 3, the calculated phase transition temperatures, respectively
compared with the exact self-duality and Monte Carlo results, are dramatically improved. The method, when
applied to a slab of finite thickness, yields dimensional crossover.
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I. INTRODUCTION: ORDER OF POTTS TRANSITIONS
AND UNDERLYING PHYSICAL INTUITION

The spatial dimensionality d , the symmetry of the local
degrees of freedom, and the presence of quenched randomness
strongly affect the occurrence and order of a phase transition.
A simple but effective method in studying the occurrence of
a phase transition has been the renormalization-group method
under the Migdal-Kadanoff approximation [1,2]. Thus, using
this method on widely different systems, the lower-critical
dimension dc below which no ordering occurs has been cor-
rectly determined as dc = 1 for the Ising model [1,2], dc = 2
for the XY [3,4] and Heisenberg [5] models, and the presence
of an algebraically ordered phase has been seen for the XY
model [3,4,6]. In systems with frozen microscopic disorder
(quenched randomness), using the simple Migdal-Kadanoff
renormalization-group approximation, dc = 2 has been deter-
mined for the random-field Ising [7,8] and XY models [9], and
yielding a noninteger value, dc = 2.46, for Ising spin-glass
systems [10]. Also under the Migdal-Kadanoff approxima-
tion, the chaotic nature of the spin-glass phases [11–13]
has been obtained and quantitatively analyzed, both for
quenched randomly mixed ferromagnetic-antiferromagnetic
spin glasses [14–16] and right- and left-chiral (helical) spin
glasses [17–19].

An important aspect of an occurring phase transition is the
order of the phase transition. The simple Migdal-Kadanoff
approximation has not been successful in predicting this for
an order-disorder phase transition in a model system. The
best example are the q-state Potts models which, in terms of
model system variety and experimental application, offer rich
behaviors. The Potts models are defined by the Hamiltonian

−βH = J
∑
〈i j〉

δ(si, s j ), (1)

where β = 1/kBT , at lattice site i the Potts spin si =
1, 2, . . . , q can be in q different states, the delta function
δ(si, s j ) = 1(0) for si = s j (si �= s j ), and the sum is over
all interacting pairs of spins. The Ising model is obtained
for q = 2. The lower-critical dimension of the Potts mod-
els is dc = 1, as also seen by the simple Migdal-Kadanoff
renormalization-group approximation [20]. However, for d >

1, the phase transitions of the Potts models are first order
for q > qc and second order for q < qc [21–27]. This has
not been obtained by the simple Migdal-Kadanoff approx-
imation, which yields second order for all q. The actual
changeover number of states qc(d ) depends on dimension-
ality d . For d = 2 and 3, qc = 4 and 2, respectively. For
d = 1, qc = ∞ [24]. This work considers integer values
of q.

As noted above, the q-state Potts models have a second-
order phase transition for q � qc and a first-order phase
transition for q > qc [28–30]. In renormalization-group the-
ory [21,27], the latter has been understood, and reproduced,
as a condensation of effective vacancies formed by regions of
disorder. Disorder is entropically favored for high number of
states q. However, these renormalization-group calculations
have required flows in large Hamiltonian parameter spaces,
with many different types of interactions, and not connectable
to the phase transition temperatures or thermodynamic prop-
erties of the original Potts models [Eq. (1)]. The effective
vacancy mechanism has not been incorporated into the simple,
pliable, otherwise effective, and therefore much used Migdal-
Kadanoff transformation.

In this study, we find an also simple, physically motivated
adjustment to the usual Migdal-Kadanoff approximation that
cures the problem of the order of the phase transition, dra-
matically improves the calculated transition temperatures both
in d = 2 and 3, and appears to be widely applicable to other
systems.
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FIG. 1. From Ref. [33]: (a) Migdal-Kadanoff approximate
renormalization-group transformation for the d = 3 cubic lattice
with the length-rescaling factor of b = 2. (b) Construction of the
d = 3, b = 2 hierarchical lattice for which the Migdal-Kadanoff re-
cursion relation is exact.

II. MIGDAL-KADANOFF AS A SIMPLE EFFECTIVE
RENORMALIZATION GROUP

The Migdal-Kadanoff approximation renders a nondoable
renormalization-group transformation doable by a physically
motivated approximate step, is very easily calculated, appli-
cable to a large number of systems, including, for example,
such complexities as the quenched-random helical spin glass
[17–19], and effective across physical dimensions d .

Starting with the example given in Fig. 1(a), an exact
renormalization-group transformation cannot be applied to the
cubic lattice. Thus, as an approximation, some of the bonds
are removed. However, this weakens the connectivity of the
system and, to compensate, for every bond removed, a bond
is added to the remaining bonds. This whole step is called
the bond-moving step and constitutes the approximate step

of the renormalization-group transformation. At this point,
the intermediate sites can be eliminated by an exact summa-
tion over their spin values in the partition function, which
yields the renormalized interaction between the remaining
sites. This is called the (exact) decimation step and completes
the renormalization-group transformation. As shown in Fig. 1,
the renormalization-group recursion relations of the Migdal-
Kadanoff approximation are identical to those of an exactly
solved hierarchical lattice [20,31,32].

The above can be rendered algebraically in the most
straightforward way by writing the transfer matrix between
two neighboring spins; for example, for q = 3,

Ti j ≡ e−βHi j =
⎛
⎝

eJ 1 1
1 eJ 1
1 1 eJ

⎞
⎠, (2)

where −βHi j is the part of the Hamiltonian between the two
spins at the neighboring sites i and j. In this Eq. (2), the q × q
transfer matrix is exemplified with q = 3. Our calculations are
done for many values of q, all the way to q = 100, as seen in
Fig. 2.

The bond-moving step of the Migdal-Kadanoff approxi-
mate renormalization-group transformation consists in taking
the power of bd−1 of each element in this matrix, where b is the
length-rescaling factor of the renormalization-group transfor-
mation, namely, the renormalized nearest-neighbor separation
in units of unrenormalized nearest-neighbor separation. The
decimation step consists in matrix-multiplying b bond-moved
transfer matrices. The flows, under this transformation, of
the transfer matrices determine the phase transition and all
of the thermodynamic densities of the system, as illustrated
below.

FIG. 2. Calculated transition temperatures 1/J of q-state Potts models. The top curve is obtained with the conventional Migdal-Kadanoff
approximation. In d = 2, the bottom curve is the exact transition temperatures obtained from self-duality. In d = 3, the bottom curve is Monte
Carlo results [30]. The intermediate curve is obtained with our simply improved Migdal-Kadanoff approximation. First- and second-order
phase transitions are given with triangles and squares, respectively. The improved calculation gives the changeover from second to first order
exactly (after q = 2) in d = 3 and very nearly (after q = 5 instead of q = 4) in d = 2. In the latter case, the changeover can be brought down
to q = 4 by a simple physical argument and calculation, as seen in Fig. 4. Both in d = 2 and 3, the values of the phase transition temperatures
are dramatically improved with the improved calculation and join the exact results for q � 10 and q � 5, respectively.
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III. SIMPLY IMPROVED MIGDAL-KADANOFF
RENORMALIZATION-GROUP METHOD

The above is cured simply by including a local disorder
state into the two-spin transfer matrix of Eq. (2). Inside an
ordered region of a given spin value, a disordered site does
not contribute to the energy in Eq. (1), but has a multiplicity

of q − 1. The subtraction is because the disordered site cannot
be in the spin state of its surrounding ordered region. This is
equivalent to the exponential of an on-site energy and, with
no approximation, is shared on the transfer matrices of the
2d incoming bonds. The transfer matrix does become, for
example for q = 3,

Ti j ≡ e−βHi j =

⎛
⎜⎜⎝

eJ 1 1 (q − 1)1/2d

1 eJ 1 (q − 1)1/2d

1 1 eJ (q − 1)1/2d

(q − 1)1/2d (q − 1)1/2d (q − 1)1/2d (q − 1)1/d

⎞
⎟⎟⎠. (3)

In this Eq. (3), the (q + 1) × (q + 1) transfer matrix is ex-
emplified with q = 3. Our calculations are done for the many
values of q, all the way to q = 100, as seen in Fig. 2. The
Hamiltonian, to be studied by renormalization group yielding
the exact solution of the hierarchical lattice, thus is

−βH =
∑
〈i j〉

{Jδ(si, s j )(1 − vi )(1 − v j )

+ [ln(q − 1)/2d](vi + v j )}, (4)

where vi = 1 or 0 indicates the presence or absence of lo-
cal disorder at site i. When vi = 0, the Potts spin can have
q different values si = a, b, c, . . .. Thus, the q + 1 states of
each site are (1, a, b, c, . . .) [21]. The delta function in the
original Potts Hamiltonian [Eq. (1)] indicates that there is no
temperature (1/J) dependence in local disorder and that there
is an entropic effect due to the multiplicity of states, taken into
account in Eq. (4). Thus, connecting with the Potts-lattice-gas
variables [21], the unrenormalized vacancy chemical poten-
tial −� depends on the multiplicity and the unrenormalized
vacancy-vacancy interaction K is zero.

Using this transfer matrix of Eq. (3), the renormalization-
group calculation yields qc. The first-order phase transition
is recognized by the disordered side at the phase transition
having, under repeated rescalings, the effective-vacancy po-
sition of (q + 1) × (q + 1) dominant in the transfer matrix,
rather than the elements of the q × q upper-left submatrix be-
ing simultaneously dominant. The first-order phase transition
is explicitly seen from the calculation, using this Migdal-
Kadanoff transformation, of the latent heat and from the
eigenvalue exponents of the discontinuity fixed point to which
the first-order phase transition points flow under repeated
renormalization-group transformations (Sec. IV).

The phase transition temperatures 1/J of q-state Potts
models, calculated with the simply improved Migdal-
Kadanof transformation, are shown in Fig. 1. The top curve in
this figure is obtained with the conventional Migdal-Kadanoff
approximation. In d = 2, the bottom curve is the exact tran-
sition temperatures obtained from self-duality [29]. In d = 3,
the bottom curve is Monte Carlo results [30]. The intermediate
curve is obtained with our simply improved Migdal-Kadanoff
approximation. First- and second-order phase transitions are
distinguished in the figure. The improved calculation gives the
changeover from second to first order exactly (after q = 2) in
d = 3 and very nearly (after q = 5 instead of q = 4) in d = 2.

In the latter case, the changeover can be brought down to
q = 4 by a simple physical argument and calculation, as seen
below. Both in d = 2 and 3, the values of the phase transition
temperatures are dramatically improved with the improved
calculation and join the exact results for q � 10 and q � 5,
respectively.

IV. LATENT HEATS OF THE Q-STATE POTTS MODELS IN
D = 2, 3 AND (Q + 1)-STATE COEXISTENCE AT THE

DISCONTINUITY FIXED POINT

The position-space renormalization-group solution of a
system yields the entire statistical mechanics of the system,
at and away from the phase transitions, including the thermo-
dynamic densities [33]. The calculation of the latter requires
following the entire range of renormalization-group trajec-
tories. In the ordered phases, the trajectories lead to strong
coupling behavior. To avoid numerical overflow problems,
with no approximation, at the beginning of a trajectory and
after each decimation, the transfer matrix is divided by its
largest element, so that its largest element then becomes 1.
This division is equivalent to subtracting the constant from
the Hamiltonian. This division is not necessary after bond
moving, since the largest element, taken to the power bd−1,
remains 1. The logarithm of the dividing element, namely, the
subtractive constant G(n) = ln(Ti j )max, where n indicates the
nth renormalization-group transformation, summed over the
trajectory, yields the free energy, and therefore the thermody-
namic densities.

The dimensionless free energy per bond f = F/kN is
thus obtained by summing the constants generated at each
renormalization-group step,

f = 1

N
ln

∑
{si}

e−βH =
∞∑

n=0

G(n)

bdn
, (5)

where N is the number of bonds in the initial unrenormalized
system, the first sum is over all states of the system, the second
sum is over all renormalization-group steps n, and G(0) is
the constant from the first division at the beginning of the
trajectory. This sum quickly converges numerically.

A derivative of the free energy f with respect to J gives the
energy density 〈δ(si, s j )(1 − vi )(1 − v j )〉. The calculated q-
state Potts energy densities in d = 2 and 3 are shown in Fig. 3.
The latent heat discontinuities are shown with the dashed
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FIG. 3. Calculated q-state Potts energy densities in d = 2 and 3. In each panel, the curves are, from right to left, for q =
2, 3, 4, 5, 6, 7, 8, 20, 50, 100. The latent-heat discontinuities of the first-order phase transitions are shown with the dashed lines. The second-
order phase transitions are marked with ×.

lines and are consistent with order of the phase transition
yielded by the renormalization-group flows. The latent heats
are also given in Table I and compared with the exactly known
values in d = 2 [28,29]. The correct qc = 2 is obtained for
d = 3. In d = 2, we need a first-order transition for q = 5 to
obtain qc = 4. However, this is a near miss in the calculation,
physically explained: In the middle of a disordered island,
all spin states contribute to the local multiplicity introduced
above. Thus, the subtraction q − 1 is an oversubtraction. In
fact, when q − 0.25 is used, the first-order transition with the
latent heat is obtained, as seen in Fig. 4. This would also
improve the latent heat values at low q in Table I.

The first-order phase transition points, under repeated
renormalization-group transformations, flow to an unstable
strong-coupling fixed point with eigenvalue bd [34,35]. In our
case, at this fixed point of the first-order phase transitions, the
many-times renormalized (q + 1) × (q + 1) transfer matrix
reduces to

Ti j =

⎛
⎜⎜⎝

eEq 0 0 0
0 eEq 0 0
0 0 eEq 0
0 0 0 eE0

⎞
⎟⎟⎠, (6)

From this matrix, under renormalization group, (q + 1) in-
dependent recursion relations of the form E ′

u = bd Eu are
obtained, yielding (q + 1) separate eigenvalues bd . The num-
ber of bd eigenvalues is the number of coexisting phases
[36,37] at the fixed point and at all points renormalizing onto
the fixed point, which is the generalization of the Nienhuis-
Nauenberg condition [34].

TABLE I. Exact [28,29] and our calculated latent heats L in d = 2.

q Exact L Calculated L

6 0.474 0.176
7 0.586 0.333
8 0.659 0.457
20 0.889 0.847
50 0.958 0.945
100 0.980 0.973

V. DIMENSIONAL CROSSOVER AND CORRELATION
LENGTH FROM FINITE-THICKNESS SLAB

CALCULATIONS

Our simple approach can easily be used in a variety of
systems. For example, we consider the Potts models on a
two-dimensional slap of finite thickness in the third dimen-
sion. As described by the work of Shnidman and Domany
[38], this system is solved by doing d = 3 renormalization-
group transformations until the many-renormalized system is
reduced to d = 2, followed by d = 2 renormalization-group
transformations. As explained by these authors [38], if the
correlation length of the original (unrenormalized) system is
less than the thickness of the slab, specifically at a first-order
phase transition since the correlation length diverges at a
second-order phase transition, the first-order phase transition
of d = 3 should be observed in the d = 2 slab. Conversely, if
the correlation length is greater than the slab thickness, the
two-dimensionality of the system is sensed and the d = 2
phase transition occurs. We have verified this dimensional
crossover with the (q = 3)-state Potts model, which has a

FIG. 4. Calculated energy density in q = 5 and d = 2. The left
curve uses the q − 0.25 for the local disorder multiplicity. The cor-
rect first-order phase transition is obtained (left curve) by simple,
physically motivated adjustment.
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FIG. 5. Calculated energy densities for a two-dimensional slab
of finite thickness bn, for q = 3. The system is solved by perform-
ing n renormalization-group transformations for d = 3, reducing the
system to d = 2, followed by infinitely many renormalization-group
transformations for d = 2. Left panel: The temperature variation of
the energy density. The curves are, from bottom to top on the left,
n = 0, 1, 2, 3. The curves for n � 3 coincide to the accuracy of the
figure. For the narrow slabs, n = 0, 1, the correlation length at the
would-be d = 3 first-order transition is larger than the slab thickness
and the second-order phase transition of d = 2 occurs. For thicker
slabs, n � 2, the correlation length at the first-order phase transition
of d = 3 is less than the slab thickness and thus this first-order phase
transition actually occurs. Right panel: Slab thickness dependence of
the energy density. The curves are, from top to bottom, for temper-
atures T = J−1 = 0.5, 1.0, 1.5, . . . , 5.5. The first-order transition of
n � 2 is seen by the gap opening. From both panels, it is seen that
the latent heat does not depend on the slab thickness for n � 3, since
the correlation length at the first-order phase transition is less than
bn.

first-order phase transition in d = 3 and a second-order phase
transition in d = 2 (Fig. 3).

Our calculated results are shown in Fig. 5, for a two-
dimensional slab of finite thickness bn, for q = 3. The system
is solved by performing n renormalization-group transfor-
mations for d = 3, reducing the system to d = 2, followed
by infinitely many renormalization-group transformations for

d = 2. The left panel gives the temperature variation of the
energy density. The curves are, from bottom to top on the left,
n = 0, 1, 2, 3. The curves for n � 3 coincide to the accuracy
of the figure. For the narrow slabs, n = 0, 1, the correlation
length at the would-be d = 3 first-order transition is larger
than the slab thickness and the second-order phase transition
of d = 2 occurs. For thicker slabs, n � 2, the correlation
length at the first-order phase transition of d = 3 is less than
the slab thickness and thus this first-order phase transition
actually occurs. The right panel gives the slab thickness de-
pendence of the energy density. The curves are, from top
to bottom, for temperatures T = J−1 = 0.5, 1.0, 1.5, . . . , 5.5.
The first-order transition of n � 2 is seen by the gap opening.
From both panels, it is seen that the latent heat does not
depend on the slab thickness for n � 3, since the correlation
length at the first-order phase transition is less than bn.

Thus, our estimated correlation length of bn � 4 at the d =
3 Potts model transition is consistent with the Monte Carlo
measured values of 7 (11) lattice spacings for approaching
the transition from low (high) temperatures [39] and with the
general arguments presented in Ref. [38].

VI. CONCLUSION

The changeover from first-order to second-order phase
transitions in q-state Potts models is obtained in spatial
dimensions d = 2 and 3 by a physically inspired simple adap-
tation of the simple Migdal-Kadanoff renormalization-group
transformation. The phase transition temperatures are dramat-
ically improved by this physical adaptation. The latent heats
at the first-order phase transitions are calculated using the
renormalization-group transformation. The inclusion of the
local disorder state, which is the essence of our adaptation, can
be used for numerical improvement and to take into account
the possibility of a first-order phase transition.
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