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We discuss results on the dynamics of thermalization for a model with Gaussian interactions between two
classical many-body systems trapped in external harmonic potentials. Previous work showed an approximate
power-law scaling of the interaction energy with the number of particles, with particular focus on the dependence
of the anomalous exponent on the interaction strength. Here we explore the role of the interaction range in
determining anomalous exponents, showing that it is a more relevant parameter to differentiate distinct regimes
of responses of the system. More specifically, on varying the interaction range from its largest values while
keeping the interaction strength constant, we observe a crossover from an integrable system, approximating the
Caldeira-Leggett interaction term in the long-range limit, to an intermediate interaction range in which the system
manifests anomalous scaling, and finally to a regime of local interactions in which anomalous scaling disappears.
A Fourier analysis of the interaction energy shows that nonlinearities give rise to an effective bath with a
broad band of frequencies, even when starting with only two distinct trapping frequencies, yielding efficient
thermalization in the intermediate regime of interaction range. We provide qualitative arguments, based on an
analogous Fourier analysis of the standard map, supporting the view that anomalous scaling and features of the
Fourier spectrum may be used as proxies to identify the role of chaotic dynamics. Our work, that encompasses
models developed in different contexts and unifies them in a common framework, may be relevant to the general
understanding of the role of nonlinearities in a variety of many-body classical systems, ranging from plasmas to
trapped atoms and ions.
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I. INTRODUCTION

The transfer of energy within many-body systems is critical
to the understanding of dissipative processes and equilibra-
tion dynamics, a central problem in nonequilibrium statistical
mechanics [1,2] and its broad range of physical applications
[3,4]. For classical systems, various techniques to introduce
coarse graining in the dynamics have been implemented, re-
sulting in either stochastic equations such as the Langevin
equation, or deterministic partial differential equations for
probabilistic quantities such as in the Fokker-Planck equa-
tion. These approaches do not extend naturally to quantum
mechanical systems where the consideration of Hamiltonian,
conservative structures and the related unitarity are strong
requirements. For this reason, models for open systems based
on Hamiltonian dynamics have been promoted since the
early 1960s [5–9], resulting in what is now known as the
Caldeira-Leggett model [10–12]. In these models, a smaller
subsystem, composed of a test particle or a set of harmonic
oscillators, is linearly coupled to a larger subsystem, the bath.
The latter is composed of an infinite number of harmonic
oscillators distributed with a continuum of frequencies, and
with a well-defined initial energy distribution, for instance
Boltzmann-like. By properly imposing initial conditions on
the degrees of the freedom of the bath, connections to the
Langevin or Fokker-Planck equations are readily achieved

either by considering a single realization of the test particle
initial condition or a properly averaged one, respectively. It
is crucial in this approach that the bath is composed of a
continuum of frequencies for the harmonic oscillators, as this
ensures that energy revivals due to multiple beating between
the various particles make the dynamics irreversible as ex-
pected for thermalization processes.

Initially motivated by the need to understand thermaliza-
tion processes in systems composed of a finite spectrum of
frequencies, as usually occurs in trapped systems in atomic
and plasma physics, we discussed thermalization in the con-
text of a model, which may be also considered a nonlinear
generalization of the Caldeira-Leggett model [13]. As a
byproduct of the nonlinearity, we reported in Ref. [14] anoma-
lous scaling behavior for the average total interaction energy
with respect to the number of particles, for two equally bal-
anced baths, once thermalization was approached. Power-law
scaling was observed with an exponent quantitatively close
to that associated with Kolmogorov scaling in turbulent fluid
mixtures [15], suggestive of thermal homogenization. The
model was also used to study the interplay of nonlinearities
arising from both interaction and confining potentials [16].

In a more recent contribution, we further explored the de-
pendence of this anomalous scaling with the interparticle in-
teraction strength [17], showing that the anomalous behavior
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FIG. 1. Scaling exponent α versus λ, evaluated, as described in Ref. [17], by fitting the interaction energy at long times to power law in
the number of harmonic oscillators, NA = NB = 50, 100, 200, 400. Both short- and long-range interactions do not result in anomalous scaling
for the exponent α, while at intermediate values the scaling exponents are anomalous. The curves presented in each plot differ by the value of
γ , showing a propensity to a broader and deeper anomalous region in the λ space with increasing γ . Also, the two plots show a dependence
on the relative values of the trapping frequency, (a) being obtained for ωB/ωA = 144/89, (b) for the case of identical trapping frequencies,
ωB/ωA = 1.

only appears for an intermediate range of interaction strength
values. While for simplicity we focused on one-dimensional
(1D) systems, the phenomenon persists in higher dimension-
ality, differing only in the specific value of the anomalous
scaling exponent. A perturbative, analytic approach was used
to predict the values of the anomalous scaling exponents.

In this paper we extend our analysis of the model by con-
sidering the dependence of various indicators on the range of
the interaction, that goes from the hard-sphere model in one
extreme to a lattice model resembling the Caldeira-Leggett at
the other, though without the continuum of frequencies used
in the latter. Specifically, in Sec. II, we discuss the behavior
of the scaling exponent versus the range of the interaction,
and show the morphing from the regime of rare short-
range collisions amenable to the Boltzmann approach into
the Caldeira-Leggett regime, in the limit of small interaction
strength. Anomalous exponents emerge in the intermediate
regime in which nonlinearity and chaos are expected to domi-
nate the dynamics. The study also allows us to qualitatively
relate the nonlinear regime to the most efficient conditions
for thermalization. In Sec. III we discuss the dynamics of
the interaction energy in Fourier space that shows the emer-
gence of a large number of effective degrees of freedom in
the interacting system, necessary for thermalization, despite
the initial presence of just two relevant frequencies. It is
then more manifest that nonlinearities, via frequency dou-
bling and cascading, are responsible for the emergence of
an effective multifrequency bath. We also identify a robust
and sensitive indicator of the Fourier spectrum of the interac-
tion energy, qualitatively discussing its meaning in the three
different regimes. Analogous behavior is evidenced in the
case of the Fourier analysis of the standard map for which
chaotic regimes are well established. In Sec. IV, we discuss
the general applicability of the model in a number of concrete
physical contexts, including the relationship of our findings to
nonextensive statistical mechanics.

II. ANOMALOUS SCALING, THERMALIZATION,
AND INTERACTION RANGE

The Hamiltonian considered, inspired by a microscopic
model for a meter in quantum measurement theory [18], is
[13,14,16]

H =
NA∑

m=1

(
P2

m

2mA
+ 1

2
mAω2

AQ2
m

)

+
NB∑

n=1

(
p2

n

2mB
+ 1

2
mBω2

Bq2
n

)

+γ

NA∑
m=1

NB∑
n=1

exp

[
− (Qm − qn)2

λ2

]
, (1)

where (Qm, Pm) and (qn, pn) are the positions and momenta
of each particle of the two species A and B, respectively,
where positions lie in a generic D-dimensional space, which
we will assume to be D = 1 in the following considerations.
The interspecies term is governed by two parameters, with γ

being the strength and λ the range of the interaction. Although
the interaction Hamiltonian looks rather simple, it allows for
the study of a variety of situations, including equally balanced
and unbalanced mixtures, attractive (γ < 0) and repulsive
(γ > 0) interactions, as well as long-range (λ → ∞) and
short-range interactions. Based on our former studies we only
focus here on repulsive interspecies interactions, as they show
more markedly anomalous scaling (see for example Figs. 3
and 5 in Ref. [17]). In particular, for a completely unbalanced
mixture (for instance NA = 1 and NB → ∞), small γ and
large interaction range, the model mimics, in the classical
limit, the genuine Caldeira-Leggett approach used to model
dissipation in open systems. At least in the limit of weak
interactions we expect the dynamics to be determined by two
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FIG. 2. Evolution of a particle in phase space (position in abscissa, momentum in ordinate) for various values of the interaction range λ,
and the same initial conditions for all particles in the system, with interaction strength γ = 1. The initial condition in phase space for the
selected particle is (0.13455, 0.14265). The presence of rare interactions between particles is evidenced in (a) corresponding to a quasilocal
interaction. Progressive increases by two orders of magnitude of λ correspond to plots (b) and (c) in which more frequent interactions appears
especially in the center of the trapping potential, which the latter situation corresponding to large energy exchange, while (d) shows a case of
very large λ for which nonlinearities in the interaction potentials are not enough to create energy exchange. For comparison, in the latter case
we also report, in red (innermost ellipse, thin line), the trajectory corresponds to a pure harmonic motion of the particle, starting from the same
initial conditions but without interparticle interactions (closed dynamics).

dimensionless parameters γ /(KBTi ) and λ/

√
2KBTi/(mω2

i ),
(i = A, B), where the two quantities in the denominators re-
flect the typical available energy and length scale of the
corresponding thermal bath, respectively. The equations of
motion corresponding to the Hamiltonian in Eq. (1) can be
numerically integrated to machine precision. A plot of the
time-averaged interaction energy, at the end of the times con-
sidered, versus number of particles, for NA = NB = N , shows
power-law scaling as detailed in Ref. [17].

A study of the interaction energy after the onset of ther-
malization, defined as the time-average of last term in the
right-hand side of Eq. (1) in a time interval after thermaliza-
tion completed

Ēint = γ

NA∑
m=1

NB∑
n=1

exp

[
− (Qm − qn)2

λ2

]
, (2)

was performed showing anomalous scaling with the particle
number N in each bath, Ēint ∼ Nα with α between 1 and 2,
for intermediate and fixed values of λ, and varying γ [16].
The results were analytically interpreted for small values of γ ,
in a perturbative setting where the interaction energy is small

with respect to the total energy of the two separated systems
imagined as noninteracting [corresponding to the first two
terms in the right-hand side of Eq. (1)], that allowed for the es-
timation of the critical exponents for various dimensionalities.
For large values of γ , we evoked an analogy to a fluid dynam-
ics system in which strong viscosity suppresses turbulence,
leading then to the disappearance of the anomalous exponents.
In this setting, saturation regimes were identified when γ is
large and positive, corresponding to strong repulsion between
the two systems resulting in phase separation, and when γ is
large and negative, corresponding to clustering maximizing all
possible interactions among all particles of the two systems.

In this study, we complement those findings with similarly
intriguing results by assessing the dependence of the inter-
action energy on the interaction range λ. We use the same
protocols as in Ref. [16] for evaluating the scaling exponent α,
augmented, whenever sufficient, such as in the contour plots
shown later in Fig. 4, by a fast procedure for semiqualitative
studies of broad parameter ranges.

In Fig. 1, we show the dependence of the scaling exponent
α on the interaction range λ for different values of γ . There
is no anomalous scaling for small and large λ, where we get
α = 2 with minimal error bars, especially in the Caldeira-
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FIG. 3. Dependence of the dynamics of thermalization on the interaction range λ for two systems made of 500 particles each. (a) Shown
are the curves of the dependence of the inverse temperatures versus time for the same initial inverse temperatures of 0.2 (dashed lines) and 2.0
(continuous lines) in arbitrary units, and same coupling strengths γ = 1. The final value of the equilibrium inverse temperature, as well as the
thermalization timescales, strongly depend on λ in the long-range limit. (b) Plot of the final inverse temperatures, after 105 time steps, versus
the interaction range λ for three different values of the interaction strength γ . This shows clearly that thermalization occurs, for the chosen
timescale, only for small λ and large γ .

Leggett limit. By contrast, in the intermediate region of λ,
α decreases reaching a minimum of about 1.5. We have also
explored a possible scaling of the curve with γ /λ2, as the
interaction term in the Hamilton equations (see for instance
Eqs. (7), (9) in Ref. [13]) suggests that, at least when the
interaction term dominates the dynamics, the motion is ruled
by γ /λ2. The analysis seems inconclusive in determining the
scaling, and requires further exploration with other indicators
as discussed in Sec. III. Even without a precisely defined
scaling, it looks clear that the interaction term becomes less
important as λ increases, as confirmed by analyzing the
full Caldeira-Leggett limit realized as λ → ∞ and γ small
enough.

In order to emphasize the difference between the various
cases even at the level of single-particle dynamics, in Fig. 2
we show the phase space dynamics for a single particle in one
of the two systems, for various values of λ, spanning six orders
of magnitude. This direct analysis in phase space corroborates
the former figure. At small λ, interactions are quasilocal and
therefore rare, which implies sudden changes of energy as
observed in Fig. 2(a). Increasing λ results in more interactions
especially in the center of the trap where the particle density
is higher [Fig. 2(b)], resulting in increased energy exchange
[Fig. 2(c)]. Finally, in the Caldeira-Leggett limit [Fig. 2(d)]
the particle behaves nearly as an isolated system, with no
effective interparticle interactions. For comparison, the trajec-
tory of isolated particle [closed dynamics (CD)] is also shown.

The interaction range also has a strong influence on ther-
malization, resulting from two competing factors. A larger
λ results in more interactions with surrounding particles at
any given time. However, as mentioned before, the energy
exchange, which is large when λ is smaller than the average
interparticle distance, is suppressed as λ grows, with a sug-
gested scaling as γ /λ2. Therefore we expect the final inverse
temperature to initially decrease with increasing λ, followed
by a return to the initial temperatures when the two systems

are barely interacting in the Caldeira-Leggett limit. This dy-
namics is shown in Fig. 3. In the left panel, we show the
instantaneous inverse temperature of the two systems, βA and
βB, versus time for different λ, and the same value of γ . The
instantaneous temperature is defined, as detailed in Ref. [14],
by averaging the energy and its square on the ensemble at each
time step, and evaluating the energy variance, such that the
inverse temperature is

β =
√

D/σE , (3)

with D the spatial dimension and σE = (〈E2〉 − 〈E〉2)1/2.
Equation (3) holds for a Maxwell-Boltzmann distribution,
which is a satisfactory description for most parameter cases
analyzed in this paper, apart from the extreme cases of
very large γ discussed in Fig. 4. Larger λ values result in
longer thermalization times and results in lower final inverse
temperatures. Larger interaction ranges imply more entities
responsible for thermalization, so it is intuitive that thermal-
ization times are consequently increased. It is also reasonable
that thermalization occurs at higher final temperatures, as
the initial interaction energy gets larger with increasing λ.
Therefore there is an increasing latent heat to be distributed
among the particles in the systems. In the right panel, we plot
the inverse temperatures after 105 time steps as a function of
λ, for three values of γ . This plot complements the inferences
from the other panel, again showing that at the larger values
of λ there is no thermalization at least on the timescales
considered. By contrast, at small λ the two systems track each
other and have a common inverse temperature, that becomes
progressively lower with increasing λ, until a γ -dependent
threshold value of λ is reached, beyond which the two systems
do not thermalize. We note that for the γ = 0.1 case, the initial
interaction energy, for λ � 1, is sufficiently small that the
equilibrium temperature still lies between the initial temper-
atures of the two baths. For the cases of larger γ , this occurs
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FIG. 4. Contour plots for the scaling exponent α [left plots, (a) and (c)] and the thermalization parameter ε̄(t f ) [right plots, (b) and (d)] in
the λ-γ plane. The plots are taken after evolving the system for 105 time steps (top plots) and for 106 time steps (bottom plots). Notice the
consistent behavior of the scaling exponent near 2 in the right-bottom part of the related plot, where the Caldeira-Leggett approximation is
expected to hold. The initial inverse temperatures are 2.0 and 0.2, resulting in an initial temperature contrast of ε(0) = 18/11 � 1.636.

only for a very limited range of λ values, due to the more
exothermic nature of the corresponding dynamics.

The general trend of the thermalization can be evidenced
by studying the anomalous exponent α and the onset of ther-
malization versus λ and γ . Since we were interested in a semi-
quantitative analysis in this case, we decided to implement a
faster procedure for the estimation of α. Instead of determin-
ing the interaction energy for five values of N as in Ref. [16],
we have assumed a power-law dependence, consistent with
all data collected so far, and determined α by comparing the
time-averaged interaction energies for only two values of N ,
N1 and N2. For the power-law dependence we expect

Ēint (N2)

Ēint (N1)
=

(
N2

N1

)α

, (4)

which immediately allows for the determination of α. In
practice, to speed up the data taking we have opted for
N2 = 100, N1 = 50, which implies

α = log2

(
Ēint (100)

Ēint (50)

)
. (5)

For the analysis of thermalization, we have considered the
parameter introduced in Ref. [14], i.e.,

ε = 2
|βA − βB|
βA + βB

, (6)

which is evaluated at each time step. We then consider the
ratio of the average ε at final time, with an averaging window
of 103 time steps, and the ε at initial time, ε̄(t f )/ε(0).

The outcome of this analysis is shown in Fig. 4. The
left column shows contour plots for α while on the right,
contour plots are shown for ε̄(t f )/ε(0), all as a function of
λ in abscissa, and γ in ordinate. The top plots are relative
to the case of 105 time steps, with both the interaction en-
ergies and the inverse temperatures determined by averaging
within a time window of 103 times steps. The lower plots are
instead evaluated for 106 time steps, to check for possible fur-
ther gains in the thermalization process. Indeed, as expected,
thermalization occurs for a broader range of values in the
λ-γ plane with a tenfold increase in the evolution time. Also
worth noticing is the Caldeira-Leggett region, in the lower-
right corner of each contour plot. In this case, as well as for
all the band of values on the left side, the scaling exponent is
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close to 2, as expected for long-range interactions involving
all possible particle pairs. Notice also that at large λ and γ

the scaling exponent is anomalous. On the left plots for the
thermalization, the less thermalizing regions are obtained for
large λ, although the extent of thermalization (or lack thereof)
depends on the values of γ . It is also evident that regions
of anomalous exponents and thermalization strongly overlap,
and for the chosen parameters they correspond to λ in the
1–10 range.

The contour plots show a correlation between the onset
of thermalization at finite times and the presence of anoma-
lous scaling in the interaction energy with particle number. It
should be noted, however, that the determination of the inverse
temperatures is based on the assumption of a Boltzmann dis-
tribution as described in detail in Ref. [14], which implicitly
assumes a weak interaction between the two systems. In the
nonperturbative regime corresponding to large γ we do not
expect this assumption to hold, and therefore the results in
this regime, realized in our case if γ � 10, are purely in-
dicative of the qualitative behavior, requiring both verification
of the energy distribution as well as the introduction of new
parameters better suited for the description of these strongly
coupled systems. Also, the fact that thermalization occurs
faster in the regime where anomalous scaling occurs is only
indirect evidence for the possible role of chaotic dynamics.
We return to this issue later with an assessment in Fourier
space, by contrasting signatures in our model with those seen
when considering textbook paradigm that exhibits a transi-
tion to chaotic dynamics, the standard map [19]. For now, to
better understand the relationship between thermalization and
nonlinearity, we consider a different approach that provides
a clear indication of the thermalization mechanism while al-
lowing the association of a regime of chaotic dynamics with
optimal thermalization.

III. FOURIER ANALYSIS AND EMERGENCE
OF EFFECTIVE BATHS

The initial motivation for considering the generalized inter-
action term was the issue of how thermalization proceeds in
the instance where there is no overlap between the frequencies
associated with the bath and those with the system to be
thermalized. Earlier work had shown that, under these con-
ditions, thermalization does not occur when the interspecies
interaction is of the Caldeira-Leggett form [20]. However,
the experimental technique of sympathetic cooling suggests
otherwise and this is what motivated consideration of a more
general, nonlinear interaction term as introduced in Ref. [13].
Thermalization may be viewed as akin to homogenization due
to mixing in fluids, with exponents that reflect how well mixed
or, equivalently, thermalized the two-component system has
become. In the study of fluid mixing, the role of the dynamics
(often chaotic) in producing interactions on multiple scales
is well established. This is often reflected in the spatial or
temporal frequency spectrum associated with the dynamics.
With this analogy in mind, it seems reasonable to expect
similar behavior to be manifest in our study of thermalization.
In particular, the intrinsic nonlinearity of the interaction term
implies the generation of additional frequencies in the motion
on top of the preexisting two due to the harmonic trapping.

This can be interpreted as a dynamical realization of an ef-
fective bath where frequencies do, indeed, overlap making
thermalization possible.

In order to explore this possibility, it is natural to consider
the time evolution of the interaction energy 〈Eint (t )〉, which
clearly displays increasingly quasiperiodic to aperiodic be-
havior with time. We consider a long time series where, by
the end, thermalization has either occurred or there are clear
signs that it will not even at very long times. We illustrate
our results, in Fig. 5, for cases where each subsystem consists
of 400 particles. We consider a set of cases where we hold
the interaction strength γ fixed and vary the range of the
interaction potential λ. The large λ limit closely approximates
the Caldeira-Leggett dynamics. In each case, the dynamics
is run for long times (105 steps) with a sampling time of
0.01 that corresponds to a Nyquist frequency of 50 (times
and frequencies in arbitrary units). The series is then broken
up into time segments of 211 = 2048 time steps and the fast
Fourier transform (FFT) is evaluated for each segment.

The plots on the left of each panel in Fig. 5 show the
evolution of the spectrum as a function of the starting time
of the sequence, which may be thought of as a time delay
relative to t = 0. The right plot in each panel shows the FFT
spectra corresponding to segments at the start and end of
each simulation. Figures 5(a)–5(d) correspond to parameters,
which result in thermalization while Fig. 5(e) considers large
λ where the interaction is essentially Caldeira-Leggett, with
a weak quadratic nonlinearity, and does not display any signs
of thermalization. In Fig. 5(f) we show the spectrum of the
interspecies interaction energy computed when, within each
species, the motion of each particle is expressed by a sinu-
soidal time dependence at its own angular frequency, with
equal amplitudes. As noted in the caption, the spectrum shows
frequencies of 2ωA/2π and 2ωB/2π , which is appropriate
given the quadratic dependence of the interaction energy on
particle separation in the weak coupling limit. This is similar
to what is seen in Fig. 5(e) where nonthermalization occurs. In
the cases where thermalization occurs, the transfer of spectral
strength from the initial frequencies to higher values is clearly
inferred both from the cascade plots as well as in the two-
time FFT plots. The cases where we see the evolution of the
spectrum to higher frequencies, corresponding to a decay of
the original harmonic frequencies, occur at smaller λ values.
By contrast, a considerably more limited spectral evolution is
seen in the case (e) where thermalization does not occur. This
is another clear analogy with fluid mixing where the spatial
spectral energy shifts seen there are mimicked by temporal
equivalents in the dynamics in our setting. This may well be
the reason behind the scaling similarities seen both here as
well as in our earlier work [16].

It should also be noted that, although four cases that result
in thermalization are shown, there are underlying differences
in the mechanism for generating the dynamic bath. An indica-
tion of this feature is visible in the trajectories shown earlier
in Fig. 2. The middle two values of λ = 10−1, 1 correspond
to complex, multiparticle dynamics resulting near the center
of the trapping potential while the lowest value of λ = 10−3

corresponds to a very short-range, impulsive interaction be-
tween particles in the two species. In the latter situation,
the spectrum shows the main peak but other frequencies do
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FIG. 5. Fourier analysis of the thermalization dynamics for N = 400 and γ = 1. The three-dimensional cascade plots on the left of each
panel show the evolution of the FFT spectrum of the interaction energy versus time. The FFT is constructed by considering time series samples
of 2048 time steps. The plots on the right of each panel show the FFT at two specific time windows, the initial segment (first 2048 time steps,
continuous black lines), and at the end of the full time period considered (last 2048 time steps, dashed red lines). The cases shown are for (a)
λ = 10−3, (b) 10−2, (c) 10−1, (d) 1, (e) 102 while, for contrast to the case (e), the Fourier spectrum of the interaction energy when the particles
of each bath move harmonically with equal amplitudes at the frequencies of 2ωA/2π and 2ωB/2π is shown in (f). (e) corresponds to a case
where the interaction term closely resembles the Caldeira-Leggett form, for which we do not expect the composite system to thermalize.

develop in time, leading to the possibility of thermalization.
However, these arise from the innate randomness in the un-
equally spaced, episodic kicks when the particles interact. By
contrast, the middle ones show strong frequency (harmonic)
generation due to the nonlinear nature of the interaction. As
already discussed, the largest value of λ corresponds to a
quasilinear, Caldeira-Leggett, regime.

In order to better illustrate the interplay between the fre-
quency spectra and the interaction terms, it is instructive to
Taylor expand the potential, term felt by the nth single particle
in system A, for instance, in powers of (qn − Qm)/λ, that
results, modulo a constant

Vn(qn, Qm) = 1

2
mAω2

Aq2
n + γ

NB∑
m=1

exp [−(qn − Qm)2/λ2]

� 1

2
mAω2

Aq2
n + γ

NB∑
m=1

[
1 −

(
qn − Qm

λ

)2

+ 1

2

(
qn − Qm

λ

)4

+ O
(

qn − Qm

λ

)6

+ · · ·
]
(7)

The quadratic terms in qn can be rearranged to provide a
renormalized angular frequency ω′

A

ω′
A = ωA

√
1 − γ NB

mω2
Aλ2

, (8)

while the same oscillator interacts linearly with all the oscilla-
tors of system B. Obviously these considerations also hold for
any single oscillator of system B. This results, even without
considering the quartic term and higher-order terms, in NB + 1
normal modes with nondegenerate frequencies. Therefore we
see that already at this level, i.e., for λ not too small to make
the Taylor expansion invalid, other frequencies contribute to
the Fourier transform though only in a narrow band. This
is further enhanced and broadened by the presence of the
higher-order terms resulting in frequency mixing and har-
monic generation. The spectral broadening can be associated
with chaotic dynamics, as expected even at the quartic term
level [21–23]. Notice that, while the case of γ < 0 in Eq. (8)
just adds stiffness to the preexisting harmonic potential, the
repulsive case of γ > 0 may originate a region of antitrapping,
which eventually may lead to a situation quite similar to the
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FIG. 6. Comparison between the Fourier transforms at initial (continuous lines) and final (dashed lines) times in the two cases of (a) the
interaction Hamiltonian based on Eq. (1), and (b) on its quadratic approximation as in Eq. (7) for λ = 10 and values of γ = 10−4 (blue),
γ = 10−2 (red), and γ = 1 (black). In these plots we have considered time series of 8192 time steps in computing the FFT, resulting in a
higher-frequency resolution with respect to the plots in Fig. 5.

one of the Sinai model [24] in which hard spheres give rise
to a nonintegrable system. Then we expect less intriguing
behavior in the attractive case, and for this reason it has not
been considered in this contribution. In Fig. 6, we show a
comparison between the FFTs of the initial and final segments
taken from a long interaction energy series for systems evolv-
ing as in Eq. (1) (left panel) contrasted with evolution under
the leading, quadratic order term in the Taylor expansion in
Eq. (7) (right panel). Notice that for the strong coupling case
of γ = 1 the FFT peaks are shifted at higher frequencies for
the leading-order approximation, as expected from Eq. (7).
At large γ the negative curvature due to the coupling to the
oscillators of the other bath prevails and the effective potential
becomes bistable, a phenomenon already discussed in detail
in Ref. [13], and also visible in Fig. 2(c) with the particle
moving, at later times, around two symmetric locations. In this
approximation we expect small oscillations of the position of
each oscillator around one of the two minima of the bistable
potential at the angular frequency 
A


A = ωA

√
2

(
γ NB

mω2
Aλ2

− 1

)
. (9)

The predicted peaks for the Fourier transform of the
interaction energy, based on this approximation, occur at
frequencies 2
A/(2π ) � 0.78 and 2
B/(2π ) � 1.35, in ar-
bitrary units, to be compared to the observed ones of 0.96 and
1.04, respectively. Even within the quadratic approximation,
there is some limited broadening due to the multiplicity of
normal modes, as already discussed earlier and, in the strong
coupling regime, also due to the nonlinearity resulting from
the effective bistable potential. The left panel of Fig. 6 also
shows the dramatic effect of the genuine nonlinearities in-
duced by the full interaction energy. More specifically, further
low-frequency components are enhanced at the final times for
large γ , as expected for the onset of thermalization. Such an
enhancement is not visible at small γ , and correspondingly

there is no thermalization on the time scale of the simulation.
Moreover, for the full Gaussian interaction the peaks are no
longer well defined at large γ , and the Fourier spectrum is
basically featureless even at early times. These insights are
also corroborated in Fig. 1, where the case of nondegenerate
angular frequencies result in a broader anomalous region and
faster thermalization when compared to the degenerate case.
All these considerations are affected by the final temperature
of the baths, which tends to wash out the Fourier transform,
as shown in Fig. 7 of earlier work [25] discussing a bistable
potential interacting with a Caldeira-Leggett bath.

The distinction between the various regimes identified
in the discussion of Figs. 5 and 6 becomes clearer with
further quantitative considerations, by focusing on the high-
frequency regime of the Fourier spectra at late times. These
tails are adequately fitted with a power-law dependence,
S(ω) � ωδ . The outcome of this analysis is shown in Fig. 7
versus λ and for three values of the interaction strength γ .
At low λ the spectrum is flat, compatible with δ = 0, which
is consistent with the sudden exchange of energy during the
rare collisions, as already remarked in interpreting Fig. 2. In
the opposite limit of large λ the absence of mixing due to the
very weak nonlinearity implies that the two original trapping
frequencies are preserved. For such a system with contribu-
tions to the Fourier spectrum from two frequencies, as verified
independently from Fig. 5(f), we expect δ � 0.8, which is
in line with the accurate determinations of δ at the largest
λ. In between, the nonlinearities generate several harmonics
nearby the two original frequencies, generating a cascade of
harmonics such as |ωA ± ωB| and all multiples. We therefore
expect that most of the spectral density is concentrated around
the two frequencies. The expected Kolmogorov scaling makes
sure that at the smallest timescales this intermediate regime
should have depleted Fourier components, although currently
we cannot provide an immediate quantification of this effect.
Nevertheless, the parameter δ appears a more reliable indi-
cator for the presence of an intermediate regime between the
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FIG. 7. Dependence of the scaling exponent δ upon the interac-
tion range λ. For each value of γ and λ, the FFTs are constructed
using the same procedure as indicated in Fig. 5, using 20 sequences
of length 2048 time steps at the end of the simulation. A range of
frequencies is uniformly chosen from 1/8 to 3/8 of the Nyquist fre-
quency and the FFT values in this range are fitted with a power-law
function to extract the exponent δ for each sequence. The 20 values of
δ are then analyzed to get both the mean values and error bars quoted
in the figure. We have verified that varying the range of frequencies
or number of segments considered does not affect the qualitative
features of the plot of our analysis. Three regimes are clearly visible
corresponding to a nonmonotonic behavior, with constant δ at low λ,
then a sudden decrease until δ reaches values of about −2, followed
by an increase at large λ to a new plateau corresponding to δ � −0.8.
The data also show the dependence for three distinct values of γ ,
most notably an increase of the value of λ, while increasing γ , for
which δ reaches its minimum value.

purely Boltzmann case at small λ and the Caldeira-Leggett
case at very large λ, as seen by comparing the quite scattered
plots in Fig. 1 and the clean structures present in Fig. 7. The
minimum value of δ is approximately constant, and shifted
to larger values of λ as the interaction strength is increased,
suggesting a combined dependence on γ and λ.

From a dynamical systems perspective, spectral signatures
of chaotic dynamics in the form of broadening have been
investigated for many years [26,27]. Given that the exponent
δ shows well-defined behavior in Fig. 7, as the interaction
range of the Gaussian potential is varied, this would appear
to a context for exploring the role of chaotic dynamics in
the system. Given the inherently high dimensionality of our
classical phase space, it is worth exploring if a paradigmatic,
low-dimensional dynamical system, such as the standard map
[19], exhibits similar trends. This would provide an indication
of the parameter regimes, in our problem, where the presence
of chaos assists in the thermalization process.

With this as motivation, we consider the well-studied
Chirikov-Taylor or standard map, an area preserving mapping
resulting from a periodically kicked Hamiltonian

H (p, q, t ) = p2/2 + K sin q
∑

n

δ(t − n), (10)
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FIG. 8. Dependence of the Fourier scaling exponent δ for the
simple standard map dynamics upon the stochasticity parameter K .
For each K , a long time series (105 time steps) of the momentum is
generated for a set of initial 40 conditions. The ensemble averaged
momentum is used for constructing the FFTs and an analogous
procedure as adopted for generating Fig. 7 is followed to extract
the exponent δ and its error bars for each sequence. These val-
ues are plotted against 1/K tto allow for a better inferential match
with the case of the Gaussian interaction potential, since the role of K
in the latter system is played by γ /λ2. Note that large K corresponds
to global chaos in the standard map while for values 1 � K � 4 sta-
ble regions coexist with chaos. The two curves labeled broad (circles)
and narrow (diamonds) correspond to initial conditions drawn from
the entire domain and from a limited (10% of the allowed domain)
area centered at a randomly selected point in phase space. Beyond the
threshold for global chaos, the behavior is independent of the choice.

where spacing between kicks has been set to 1. The resulting
dynamics are governed by the 2D mapping:

pn+1 = pn + K cos qn

qn+1 = qn + pn+1, (11)

where both p, q will be considered modulo 2π . The kick
strength K acts as the stochasticity parameter that determines
the character of the dynamics. For small K values, below a
critical threshold Kc = 0.9716 . . . , the increase in momentum
is bounded by local regions separated by invariant curves and
any chaotic dynamics is local [19]. On exceeding Kc, the last
demarcating boundary disappears and all regions of phase
space become accessible. The resulting phase space is mixed
in terms of the dynamics with stable, regions embedded in a
chaotic background. These stable regions shrink with further
increase in K . Beyond K = 4, the phase space is dominantly
chaotic with very small, isolated regions of stable dynamics,
which can reappear for specific parameter windows. For the
purposes of our discussion, the essential feature is the chaos
dominated dynamics for K > 4.

We use the map to generate a long time series of 100000
points for a set (40) of initial conditions and, after com-
puting a time series of the ensemble averaged momentum,
follow an analogous protocol to that used in generating Fig. 7.
Namely, several segments of 2048 points were chosen at later
times, the FFT constructed and a range of frequencies fitted
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to find the exponent δ. The window considered has to be
adjusted in the case of the standard map due to an impor-
tant difference in the dynamics. In the case of the nonlinear,
Gaussian interaction potential, harmonic generation results
in higher frequencies being generated in the dynamics. By
contrast, for the standard map, as the highest frequency is
set by the time between kicks, subharmonics are generated
by the dynamics, rather than harmonics. Also, at the smaller
values of the parameter K , the existence of isolated peaks in
the frequency spectrum makes this fitting suspect. However,
as stated earlier, our main interest is in the regime where chaos
dominates the dynamics and, here, the method works well. We
consider a wide range of K values and, as seen from Fig. 8, it
is more useful plotting δ versus 1/K as this better aligns with
the results shown in Fig. 7.

We also considered two versions of the initial condition
ensemble, where the first (labeled Broad) was chosen over
the full extent of the allowed space while the second (Nar-
row) was taken from a narrow region centered at a randomly
picked point in phase space. For lower values of K , local
structures in phase space influence δ and this is reflected in
the differences between the two ensembles. This inference
is readily supported by considering the same analysis for
single initial conditions. However, once the chaotic dynamics
becomes global, the trends in δ become largely independent
of the initial ensemble.

The principal inference to be drawn from this exercise is
that the spectrum is largely flat (δ ≈ 0) at large values of K
where the dynamics is dominated by chaos. This is what is
observed in Fig. 7 for the Gaussian potential at smaller λ and
for larger values of the interaction strength γ . We also have
the limiting description in the limit λ → 0 where the random,
hard-sphere interactions are akin to a Sinai billiards where the
dynamics is known to be chaotic. Overall, these results would
appear to support the inference that there is a parameter range
in our problem where chaos, arising from the nonlinearities
in the interaction potential, assists in thermalization. Further
discussions on the chaos to thermalization connection in a
variety of dynamical systems with small number of degrees
of freedom can be found in Refs. [28–32]. Taken together
with the earlier discussions, our results suggest the existence
of different mechanisms that promote thermalization (or lack
thereof) as the range of the interaction potential is varied.

IV. CONCLUSIONS

We have discussed the thermalization process for two
species harmonically trapped in the presence of a nonlinear
interspecies potential of Gaussian form. This potential inter-
polates the two extreme regimes of rare, local collisions, as
in the Boltzmann approach, and the case of linear coupling
between harmonic oscillators characteristic of the Caldeira-
Leggett approach. This analysis is somewhat complementary

to the one presented in Ref. [33] where a system described
by the Vlasov-Poisson equation, for instance a collisionless
plasma, has been mapped into a Caldeira-Leggett-like set-
ting. In an intermediate regime of a characteristic interaction
length, there is the regime of frequent, weak interactions,
which is usually captured by the physics of the Fokker-Planck
equation. It is worth remarking that this model connects these
three different approaches in a unique scenario involving only
interaction strength and range as free parameters. In principle
there are no limitations on exploring arbitrary large coupling
strengths far from the weak, perturbative regime. However, we
do not necessarily expect Boltzmann energy distributions in
the strong coupling regime, which will require a careful future
analysis and the need to introduce new parameters replacing
the concept of temperature.

The regime of intermediate ranges exhibits anomalies for
the behavior of total interaction energy at equilibrium. This is
manifested both as an anomalous exponent in the dependence
of this quantity upon the number of involved particles, as well
as through a nonmonotonic behavior of the exponent ruling
the power-law dependence of the its Fourier transform in the
high-frequency tail. This second indicator seems quite sensi-
tive to the anomalous behavior, and allows us to characterize
the thermalization stage via the spectral study of the interac-
tion energy, a viewpoint recently discussed, in the context of
open quantum systems, in Ref. [34]. Further, the analogous
behavior of the exponent in our Gaussian model and the sim-
ple standard map suggest that chaotic dynamics resulting from
nonlinearities in the interaction potential may be involved in
the thermalization process for certain parameter regimes.

The nonextensive feature of the interaction energy at in-
termediate ranges is in line with what is expected in models
defined by nonextensive variables relevant for the description
of statistical systems with medium- and long-range inter-
actions [35]. It is already known, from detailed studies of
the Hamiltonian mean-field (HMF) model [36,37], that long-
range interactions in a many-body system result in deviations
from Maxwell-Boltzmann energy distribution in the form of
q distributions, ergodicity breaking, and deviations from the
central limit theorem for dynamical variables [38–40]. In this
framework, our model may provide a simple setting for a
many-body system fully defined in phase space, with weak or
strong correlations depending on the coupling strength γ , and
complementary to the HMF model. In particular, in the future
we aim at a careful study of the energy distribution to look
for deviations, at intermediate or long times, from the initially
imprinted Boltzmann distribution. This could complement
in our model recent findings on nonlinear models such as
the Fermi-Pasta-Ulam-Tsingou model [41], with predictions
of anomalous diffusion [42,43], and analysis of long-range
interactions [44,45]. Another issue worth considering will
be the exploration of regimes where the results presented
here have a bearing on quantum or, at least, semiclassical
approaches to many-body thermalization.
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