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Nonergodic extended states in the β ensemble
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Matrix models showing a chaotic-integrable transition in the spectral statistics are important for understanding
many-body localization (MBL) in physical systems. One such example is the β ensemble, known for its structural
simplicity. However, eigenvector properties of the β ensemble remain largely unexplored, despite energy level
correlations being thoroughly studied. In this work we numerically study the eigenvector properties of the β

ensemble and find that the Anderson transition occurs at γ = 1 and ergodicity breaks down at γ = 0 if we
express the repulsion parameter as β = N−γ . Thus other than the Rosenzweig-Porter ensemble (RPE), the β

ensemble is another example where nonergodic extended (NEE) states are observed over a finite interval of
parameter values (0 < γ < 1). We find that the chaotic-integrable transition coincides with the breaking of
ergodicity in the β ensemble but with the localization transition in the RPE or the 1D disordered spin-1/2
Heisenberg model. As a result, the dynamical timescales in the NEE regime of the β ensemble behave differently
than the latter models.

DOI: 10.1103/PhysRevE.105.054121

I. INTRODUCTION

Canonically invariant classical ensembles including
Dyson’s threefold ways [1] and their extensions over
symmetric spaces [2,3] (e.g., Laguerre [4], Jacobi [5],
or circular [6] ensembles) are central to the paradigm of
random matrix theory [7] epitomizing completely ergodic [8]
and chaotic [9] dynamics in quantum mechanical systems.
Corresponding energy levels tend to repel each other, where
the degree of repulsion is called the Dyson’s index, β, having
values 1, 2, and 4 for the Gaussian orthogonal, unitary, and
symplectic ensembles, respectively [10]. On the other hand,
regular dynamics observed in integrable systems [11,12] is
usually captured by the Poisson ensemble [13], where energy
levels are uncorrelated with inclination to be clustered (and
hence can be assigned β = 0). However, several physical
systems (e.g., kicked top [14], pseudo-integrable billiards
[15], Harper [16], Anderson model [17], etc.) show a spectral
property intermediate between the aforementioned ideal
limits. While phenomenological models [18–20] can mimic
the spectral properties in the intermediate regions, there exist
several generalizations of the classical ensembles capturing
the physics of mixed dynamics [21–29]. In particular, the joint
probability distribution function (JPDF) of eigenvalues for the
classical ensembles can be expressed as a Gibbs-Boltzmann
weight of a 2D system of particles, known as the Coulomb
gas model [30], where β is no longer restrained to be
quantized. Specifically, a harmonic confining potential yields
the Gaussian β ensemble characterized by the following
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where Zβ is the normalization constant and �E =
{E1, E2, . . . , EN } is the set of N eigenvalues [31]. Such
ensembles were originally conceived as lattice gas systems
[32] in connection to the ground-state wave functions of the
Calogero-Sutherland model [33]. Using Ei → √

βNEi, we
can express the partition function Zβ as [34]
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where the potential V[ �E ] has a confining term competing
with the pairwise logarithmic repulsion among N fictitious
particles. The strength of such interactions is controlled by
β [35], which can be interpreted as the inverse temperature of
the Coulomb gas. In the infinite temperature limit (β → 0),
the energy levels are allowed to come arbitrarily close to each
other, resulting in Poisson statistics, i.e., a signature of inte-
grability [13]. On the other hand, for β = 1, Eq. (1) coincides
with the JPDF of the Gaussian orthogonal ensemble (GOE),
yielding Wigner-Dyson statistics characterized by complete
level repulsion, i.e., a signature of chaos [9]. Thus tuning β,
it is possible to control the degree of level repulsion in the
energy spectrum of the β ensemble with β = 1 indicating
the chaotic-integrable transition. Corresponding Hamiltonians
can be represented as real, symmetric, and tridiagonal N × N
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matrices, H , with following nonzero elements [36]:

Hi,i = Ai, Hi,i+1 = Hi+1,i = Bi/
√

2,

Ai ∼ N (0, 1), Bi ∼ χ(N−i)β, (3)

where N (0, 1) is the Normal distribution and χk is the chi
distribution with a degree of freedom k. There have been
extensive studies on β ensemble in terms of the density
of states (DOS) [32,37–39], associated fluctuations [40–44],
connection to stochastic differential operators [45–47], and
extreme eigenvalues [48–51]. In this work we give numerical
evidence of chaotic→integrable, ergodic→nonergodic, and
delocalization→localization transitions by thoroughly study-
ing the properties of eigenvalues (Sec. II), eigenfunctions
(Sec. III), and dynamics (Sec. IV). Therefore we identify the
critical values of β segregating ergodic, nonergodic extended
(NEE), and localized regimes. We compare the spectral prop-
erties of the β ensemble with the properties of another matrix
model, namely Rosenzweig-Porter ensemble (RPE) [21,52],
where for a real symmetric matrix, H , all the elements are
randomly distributed with

Hi,i ∼ N (0, 1), Hi, j/σ ∼ N (0, 1), σ 2 =1/2N γ̃ , γ̃ ∈ R. (4)

Moreover, as an impetus to applications in physical systems,
we compare both the β ensemble and RPE to the widely
studied 1D disordered spin-1/2 Heisenberg model [53–55],
where for simplicity we will consider the chain to be isotropic.
The Hamiltonian of such a chain of length L with magnetic
field in the Z direction is defined as

H = −J

2

L∑
i=1

�σi · �σi+1 + hiσ̂i
z, (5)

where �σi = {σ̂i
x, σ̂i

y, σ̂i
z} are the Pauli matrices, hi is the ran-

dom magnetic field applied in the Z direction on the ith site,
and J is the coupling constant. We assume a periodic bound-
ary condition (i.e., σ̂ α

i+L = σ̂ α
i ), J = 1, and hi to be uniform

random numbers sampled from [−h, h], so the disorder in
Heisenberg model can be controlled by tuning h. While the
model is integrable exactly at h = 0, even an infinitesimal
fluctuation in magnetic fields on different sites is expected to
induce chaos in the thermodynamic limit (L → ∞) [54]. In-
creasing h further introduces more defects in the chain leading
to many-body localization (MBL) where the critical disorder
strength, hc for the ergodic to MBL transition depends on
the energy density [55]. Since the Z component of total spin,
Sz = 1

2

∑L
i=1 σ̂ z

i , is conserved in the Heisenberg model, we
take L to be even and choose the largest symmetry sector
Sz = 0 having

( L
L/2

)
eigenvalues for our analysis.

One can intuitively speculate the existence of two critical
points in the β ensemble, considering that the diagonal part,
A, is competing with the perturbation from the off-diagonal
part B. The overall interaction strength can be calculated in

terms of the Frobenius norm of B, i.e., ||B||F ≈
√∑N−1

i=1 B2
i =√

1
2 N (N − 1)β ≈ N

√
β, where B2

i = (N − i)β is the mean

value of B2
i (as the χ2

k distribution has mean k). Similarly,
the strength of the diagonal contribution is ||A||F ≈ √

N . Thus
for the weak perturbation (||B||F < ||A||F ⇒ β < 1/N), one
may expect the energy states of the β ensemble to localize,

while they should be extended for ||B||F > ||A||F. Therefore it
is convenient to express the Dyson’s index as

β = N−γ , γ ∈ R. (6)

So the perturbation strength can be expressed as ||B||F =
N1−γ /2, and it is reasonable to expect that γAT ≡ 1 is the An-
derson transition point such that the energy states are localized
for γ > γAT.

The role of the control parameter manifested in the off-
diagonal terms of the β ensemble is reminiscent of the RPE,
where relative strength of perturbation indicates that Ander-
son transition occurs at γ̃AT = 2 [56]. Moreover, due to the
random sign altering nature of the RPE matrix elements,
there exists an ergodic transition at γ̃ET = 1 segregating three
distinct phases: ergodic, NEE, and localized states [56]. Sim-
ilarly, for the β ensemble, even though the off-diagonal
elements, Bi, are strictly positive, the diagonal terms, Aj , can
be positive or negative at random. If we equate the rescaled
perturbation, ||B||F/

√
N to the total fluctuation from on-site

terms, ||A||F, we expect ergodic transition at γET ≡ 0 such
that the energy states occupy the entire Hilbert space in the
regime γ � γET. However, these heuristic arguments based
on the norm alone cannot account for any phase transition.
For example, eigenvectors are exponentially localized in tridi-
agonal matrices with i.i.d. random elements [57]. Thus the
inhomogeneity of the off-diagonal terms evident from Eq. (3)
is essential for the existence of NEE in the β ensemble as will
be demonstrated in the following sections.

II. PROPERTIES OF ENERGY LEVELS

Now we would like to study the energy level properties
of the β ensemble following the Hamiltonian in Eq. (3) and
identify the transition from integrable to chaotic regimes as we
vary the Dyson’s index. We also compare the properties of the
β ensemble with the results known for RPE and Heisenberg
model. Some of the results in this section are known, and we
list them for completeness.

A. Density of states (DOS)

As a starting point, we look at the DOS, which is the
marginal PDF of energy levels. The bulk eigenvalues of
the β ensemble roughly scale with system size as εβ =√

4 + 2N1−γ [58]. So we scale the eigenvalues as E → E/εβ

and obtain the DOS numerically, as shown in Fig. 1(a) for N =
8192 and various γ . For γ > 1 we obtain εβ ≈ 2 such that
the DOS converges to the Gaussian distribution, N (0, 1/4)
with increasing N , as illustrated in Fig. 1(c) for a specific
value of γ = 1.1. Exactly at γ = 1, the DOS is system size
independent and follows a shape intermediate between Gaus-
sian distribution and Wigner semicircle law since εβ = √

6.
But for 0 � γ < 1, the DOS converges to the semicircle law
upon increasing N , as shown in Fig. 1(b) for a specific value
of γ = 0.6. However, in the limit β → ∞ (i.e., γ < 0 and
N → ∞), all the eigenvalues of the β ensemble freeze and
produce a picket-fence spectrum [59]. A qualitative evolution
of the shape of the DOS in the β-N plane is shown in Fig. 2
of reference [35].
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FIG. 1. Density of states (DOS) of the β ensemble (a) averaged over 500 disordered realizations for various γ where N = 8192. (b)
γ = 0.6 and (c) γ = 1.1 for various N . We also show Wigner’s semicircle law (solid bold) and Gaussian distribution N (0, 1/4) (dashed bold).

In case of the RPE, bulk eigenvalues scale as εRPE =√
4 + 2N/σ 2 = 2

√
1 + N1−γ̃ . Consequently the scaled DOS

of RPE (E → E/εRPE) varies from Wigner’s semicircle to a
Gaussian similar to the β ensemble as γ̃ is increased from
0. Contrarily for 1D disordered spin-1/2 Heisenberg model,
DOS always follows a Gaussian distribution spreading with
the disorder strength, which is typical of many-body systems
with local interactions [60]. However, the differences in global
shapes of DOS from these different models do not dictate the
correlations in the respective local energy scales as demon-
strated below.

B. Nearest-neighbor spacing (NNS)

One of the most commonly investigated quantity re-
flecting local spectral correlations is the distribution of
nearest-neighbor spacing (NNS) of the ordered and unfolded
eigenvalues (see the Appendix), which follows Wigner’s
surmise and exponential distribution for the chaotic and in-
tegrable systems, respectively [7]. As the nature of correlation
present in the spectrum edge is different than that of the
bulk energy levels, we numerically evaluate the PDF of NNS

choosing only the middle 25% of the spectrum. The results
for N = 8192 are shown in Fig. 2(a) with markers along with
the approximate empirical PDF of NNS [Eqs. (12) and (13)
in [35]], which is N-independent, provided N 
 1. Such a
functional form also implies that for s � 1, P(β; s) ∼ sβ ∀ β,
thus the degree of level repulsion is indeed quantified via β, as
expected from Eq. (1). We observe a crossover from Wigner’s
surmise to exponential distribution in Fig. 2(a) as we decrease
β, implying a suppression of chaos. A similar crossover is
observed in RPE [61] and 1D disordered spin-1/2 Heisenberg
model [62] as well.

C. Ratio of nearest-neighbor spacing (RNNS)

Another notable measure of the short-range spectral corre-
lations is the ratio of nearest-neighbor spacing (RNNS), which
is much simpler to study since unfolding of the energy spec-
trum is not required [63,64]. If we define r̃i = min{ri, 1/ri},
where ri is the ith RNNS, then P(r̃) = 2P(r)�(1 − r), with
�(x) being the Heaviside step function. We show the PDF
of r̃ with markers in Fig. 2(b) for N = 8192 along with the
empirical PDF of RNNS [Eq. (1) in [65]. Again a crossover

FIG. 2. Short-range spectral correlations for β ensemble: PDF of (a) NNS and (b) modified RNNS varying β for N = 8192, and varying
N for β = 0.2 and 2.5 (c), γ = 0.3 (d), γ = 0 (e), and γ = −0.3 (f). The markers indicate numerical data, while solid lines denote empirical
analytical forms [Eqs. (12) and (13) in [35] for NNS and Eq. (1) in [65] for RNNS]. We also show analytical expressions for the Poisson
ensemble (dashed bold) and GOE (solid bold).
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FIG. 3. Ensemble average of r̃ for β ensemble vs (a) β and (b) γ ,
and (c) for RPE vs γ̃ and (d) Heisenberg model vs disorder strength,
h. For (a), (b), and (c) system size, N , and for (d) chain length,
L, is varied. In (a) we show the 〈r̃〉 for N = 3 [Eq. (7) in [63]]
with a dashed line. The insets of (b), (c), and (d) show collapsed
data following the ansatz in Eq. (7), where critical parameter and
exponents are also given.

w.r.t. β is immediately apparent. For N 
 1, the density of
RNNS is system size independent, as shown in Fig. 2(c) for
two values of β while varying N . This can be inferred from
Fig. 3(a) as well, where the ensemble-averaged values of r̃
as a function of β collapse for different N provided N 
 1.
In Figs. 2(d), 2(e), and 2(f), we show the density of r̃ for
different values of γ while varying N . For any value of γ < 0
as N → ∞ (i.e., β → ∞), the energy levels are highly cor-
related and strongly repel each other. The increase in level
repulsion with N is shown in Fig. 2(f) for a fixed value of
γ = −0.3. Exactly at γ = 0 (i.e., β = 1) the density of r̃ is
independent of N and matches that of the GOE [Fig. 2(e)].
On the other hand, for any γ > 0 and N → ∞ (i.e., β → 0),
the energy levels become uncorrelated and clustered as in the
Poisson ensemble. In Fig. 2(d) we show that the density of
r̃ converges towards Poisson expression as we increase N
for a fixed value of γ = 0.3. These analyses imply that the
signatures of chaos in the short-range spectral correlations are
lost as we lower the repulsion parameter β. Now we identify
the exact nature of such a transition.

D. Criticality in chaotic-integrable transition

For a fixed γ , the quick convergence of PDF of RNNS with
system size [Fig. 3(a)] enables us to conclude that the 〈r̃〉 has
one-to-one correspondence with β when N 
 1. β increases
with N for any γ < 0 (as β = N−γ ), hence 〈r̃〉 should also
increase with N and vice versa. Figure 3(b) conforms to the
above expectations suggesting a scaling hypothesis for 〈r̃〉.
Let us assume that there exists a relevant correlation length
	 showing a power-law divergence around a critical point, γc,
i.e., 	 ∼ (γ − γc)−ν , where ν is a critical exponent. Then any
quantity A(γ , N ) showing nonanalytical behavior close to γc

should behave as

A(γ , N ) ∝ f ((γ − γc)(ln N )1/ν ), (7)

where f is a universal function and we assume 	 to scale
with ln N instead of N . Such a scaling ansatz valid for a
second-order phase transition is shown to hold in case of the
Kullback-Leibler divergence of RPE [61]. We collapse the
crossover curves from different system sizes based on Eq. (7)
(see the Appendix) and obtain γc = 0.0030 and ν = 1.0316
as shown in the inset of Fig. 3(b). Such a critical behavior
can also be inferred from the scale invariance of 〈r̃〉 w.r.t.
− ln β = γ ln N [Fig. 3(a)]. Comparing this with Eq. (7), we
get γc = 0 and ν = 1, which is consistent with our numerical
analysis.

We show the 〈r̃〉 curves for different system sizes and chain
lengths in Figs. 3(c) and 3(d) for RPE and Heisenberg model,
respectively. Again assuming a power-law behavior like
Eq. (7), we are able to collapse the data for RPE using γ̃c ≈
1.9750, ν ≈ 1.1359. For the Heisenberg chain we assume that
A(γ , N ) ∝ f ((h − hc)L1/ν ) and get hc ≈ 2.7696, ν ≈ 0.7842.
Note that the critical disorder strength found here corresponds
to the middle 25% of the eigenspectrum and hence conforms
to the energy density phase diagram of MBL transition present
in the literature [55].

Thus we show that the chaotic-integrable transition in all
three models is second order in nature. The crucial difference
lies in the physical significance of these critical points. We
observe that the chaotic-integrable transition occurs at γ̃AT

in the case of RPE, i.e., the energy states localize as soon
as the energy levels start to cluster. Contrarily in the case
of the β ensemble, a chaotic-integrable transition occurs at
γ = 0, which we previously argued to be γET, i.e., where
ergodicity breaks down. Thus in the thermodynamic limit
(N → ∞), there will be extended states for which energy lev-
els are uncorrelated, which has a profound implication on the
dynamical properties of the β ensemble (see Sec. IV). Thus
our analysis shows that the eigenstate localization property is
not necessarily indicative of the degree of repulsion present
in the energy spectrum as also observed in certain structured
matrix ensembles [66–68].

E. Power spectrum

Short-range spectral correlations in the β ensemble ex-
hibit criticality only around γET = 0. We also expect a
second critical point associated with the localization tran-
sition, which can be captured by the long-range spec-
tral correlations, e.g., the power spectrum of δn statistics
[69,70],

Pδ
k = |δ̂k|2, δ̂k = 1√

N

∑
n

δn exp

(
− i2πkn

N

)
, (8)

where δn ≡ En − n is the fluctuation of the nth unfolded
energy level, En, around its mean value, n. The ensem-
ble average of Pδ

k , denoted by 〈Pδ
k 〉, is explored for the

1D disordered spin-1/2 Heisenberg model in [71,72]. In the
β ensemble, there exists a critical frequency kc = N1−γ /2
for γ � 0 [73] such that for k � kc, 〈Pδ

k 〉 ∝ 1/k identify-
ing completely chaotic behavior whereas for k > kc, 〈Pδ

k 〉 ∝
1/k2, which is a signature of the Poisson ensemble. Note
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FIG. 4. Power spectrum of noise for (a) the β ensemble and
(d) RPE for N = 8192 as a function of dimensionless frequency,
ω = 2πk/N . In (b), the power spectrum is shown for various γ

[denoted with markers similar to (a)] and N (denoted by different
colors as in the legend). We see that 〈Pδ

ω〉 shifts downwards with
increasing N for γ = −0.3, where the dashed line ∝ 1/ω is placed as
a guide to the eye. (b) 〈Pδ

ω〉 for γ = 0.3 while varying N (data shifted
in the Y direction for clarity). Dashed and solid lines indicate 1/ω

and 1/ω2 behaviors, respectively. In (a), (c), and (d), stars denote the
critical frequencies, ωc, separating heterogeneous behavior. The inset
of (c) shows numerically obtained ωc, where the solid line denotes
the linear fit in log-log scale. We also show the analytical 〈Pδ

ω〉 for
the Poisson ensemble (dashed bold) and GOE [solid bold; Eq. (10)
in [69]].

that the power spectrum of some physical systems like the
Robnik billiard [74] and kicked top [75] exhibit a homo-
geneous behavior, 〈Pδ

k 〉 ∝ 1/kα , across all frequencies with
1 < α < 2.

In Fig. 4(a), we show the power spectrum of the β ensem-
ble as a function of dimensionless frequency, ω = 2πk/N , for
N = 8192 and various γ with the bold curves showing the
analytical forms of 〈Pδ

ω〉 for the Poisson ensemble and GOE
[Eq. (10) in [69]]. In Fig. 4(b) we show 〈Pδ

ω〉 for same values
of γ but also by varying N denoted with different colors. We
see that for finite N and γ < 0, 〈Pδ

ω〉 ∝ 1/ω for a typical value
of γ = −0.3. However, we observe that for N 
 1 and γ � 0
(i.e., β → ∞), there are fluctuations around 1/ω behavior due
to the energy spectrum attaining a picket-fence structure. For
γ � 0, we can identify two critical points separating three
distinct regimes by looking at Fig. 4(b) or from the analytical
calculations in [73]:

(a) γ = 0: 〈Pδ
ω〉 ∝ 1/ω for any N ⇒ energy levels are

correlated at all scales even in the thermodynamic limit
(b) 0 < γ < 1: Heterogeneous spectra ⇒ ωc =

2πkc/N = πN−γ separating the Poisson ensemble and
GOE like scaling. In Fig. 4(c) we show 〈Pδ

ω〉 for γ = 0.3 and
various N , which clearly reflects the heterogeneous features.
In the inset we show numerically obtained ωc vs N .

(c) γ � 1: 〈Pδ
ω〉 ∝ 1/ω2 for any N ⇒ energy levels are

uncorrelated at all scales even in the thermodynamic limit.

Note that kc → ∞ for N → ∞ and 0 < γ < 1, i.e., the
signature of chaotic spectrum prevails over infinitely many
frequencies. However, their support set constitutes a zero frac-
tion of the set of principal frequencies as kc/kNyquist = N−γ →
0 for any γ > 0 (kNyquist ≈ N/2 is the highest frequency re-
quired to fully reconstruct the original spectrum [69]). Such
a fractal behavior suggests the absence of ergodicity in the
β ensemble for 0 < γ < 1. For example, in the case of RPE,
eigenstates occupy a zero fraction of the Hilbert space volume
despite being extended in the NEE phase (1 � γ̃ < 2) [56].
A corresponding power spectrum also exhibits heterogeneous
behavior as shown in Fig. 4(d). Thus we can attribute the
heterogeneity in the power spectrum of δn statistics to the
existence of NEE phase, and we can conclude that the β en-
semble enters the NEE phase for 0 < γ < 1 where ergodicity
breaks down at γET = 0 and the Anderson transition occurs at
γAT = 1.

With this primary evidence of the existence of the NEE
regime in the β ensemble, in the next section we will study
the eigenfunction properties and obtain the fractal scaling of
NEE states.

III. PROPERTIES OF EIGENSTATES

Due to the canonical invariance, the eigenvectors of
N × N GOE matrices are uniformly distributed in the unit
N-dimensional sphere, resulting in mutually independent
eigenvector components. Contrarily for the β ensemble, all
elements but the first component of the kth eigenvector can
be expressed in terms of the kth eigenvalue and different
matrix elements [36]. Hence even for typical values of β (i.e.,
β = 1, 2, 4), the eigenvector properties of the Wigner-Dyson
and β ensembles are different from each other, although their
energy level statistics are identical. This can be readily veri-
fied from the distribution of ln(N |�i|2) (�i is ith component
of the eigenstate |�〉), which has a long tail for β = 1 in the
β ensemble compared to GOE.

A. Localization transition

In order to characterize the Anderson transition from the
properties of eigenstates, we begin by computing the Shan-
non entropy, defined as S = −∑N

i=1 Pi ln(Pi ) with Pi = |�i|2.
In Fig. 5(a) we show ensemble-averaged S, obtained from
the eigenstates taken from the middle 25% of the spectra,
exhibiting a nonanalyticity around γ = 1. Assuming a power-
law behavior of the relevant correlation length, we obtain
the critical parameter γc = 0.95 and exponent ν = 0.65 using
Eq. (7), while the collapsed data are shown in the inset of
Fig. 5(a). We also observe that the inverse participation ratio
(IPR), I = ∑N

i=1 |�i|4, exhibits a criticality around γ = 1 as
shown in Fig. 6. Thus we confirm that the Anderson transition
occurs at γAT ≡ 1 for the β ensemble, and at γ̃AT � 2 for RPE
[Fig. 5(b)].

For the 1D disordered spin-1/2 Heisenberg model, Shan-
non entropy is almost constant for a particular L if the disorder
strength is small (h � 1) and slowly decaying for h 
 1.
Similar behavior for IPR indicates that the energy states of
the Heisenberg model in the MBL regime are extended in
the Hilbert space exhibiting a nontrivial multifractal behavior
[55]. However, according to [54], one may look at the ratio
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FIG. 5. Eigenstate statistics: Shannon entropy, S, and relative Rényi entropy of two types [R1,2 in Eq. (9)] for the β ensemble, RPE, and
1D disordered spin-1/2 Heisenberg model, as a function of system parameters for different matrix size, N , and chain length, L (values given
in the legends). The critical values of parameters indicating ergodic and localization transitions are marked with a dashed line in all plots. The
inset shows collapsed data following the ansatz in Eq. (7), where numerically obtained critical parameters and exponents are also given. The
inset of (c) shows collapsed data of S′ = S/ ln(0.48N ).

of Shannon entropies of the Heisenberg model and GOE, i.e.,
S′ = S/SGOE ≈ S/ ln(0.48N ), where N = ( L

L/2

)
is the Hilbert

space dimension of the Sz = 0 symmetry sector. The finite-
size scaling of S′ gives the numerical estimate of the MBL
transition point to be hMBL ≈ 2.77 for our choice of L =
8, 10, . . . , 16. This is the same critical point beyond which en-
ergy levels start to cluster [Fig. 3(d)]. Such a conclusion is also

FIG. 6. Inverse participation ratio: for β ensemble as a function
of γ for various system sizes, N . Inset shows collapsed data follow-
ing the ansatz in Eq. (7) along with critical parameter and exponent.

verified via studies of entanglement entropy and magnetiza-
tion fluctuations [55]. Thus unlike the β ensemble, eigenstates
start to localize as soon as energy levels begin to cluster
for both the RPE and 1D disordered spin-1/2 Heisenberg
model.

B. Ergodic to nonergodic transition

We now quantify the loss of ergodicity by computing the
relative Rényi (R) entropy between a pair of eigenfunctions
[76] having similar energy densities. Let |� j

i 〉 be the ith eigen-
vector of the jth disordered realization of an ensemble. We
define two kinds of R as follows:

R1 = −2 ln

(
N∑

k=1

∣∣� j
i (k)� j

i+1(k)
∣∣),

R2 = −2 ln

(
N∑

k=1

∣∣� j
i (k)� j′

i+1(k)
∣∣). (9)

Here R1 and R2 measure similarity among wave functions
obtained from the same and different samples, respec-
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tively. For eigenstates of GOE, R = −2 ln(
∑N

k=1 |zk|), zk =
xk × yk , where xk, yk are i.i.d. random variables and for
N 
 1, xk, yk ∼ N (0, 1/

√
N ) ∀ k assuming wave functions

are normalized. Then P(z) = NK0(N |z|)/π , where K0(x)
is the modified Bessel function of the second kind.
Then 〈|z|〉 = 2/Nπ and

〈R〉 = −2 ln

(
N∑

i=1

2

Nπ

)
= 2 ln

(π

2

)
≈ 0.9. (10)

Thus R ≈ 0.9 for any pair of completely extended wave
functions, and this value is used to benchmark our numerical
estimates. The relative Rényi entropy can be viewed as a
generalization of the Kullback-Leibler divergence exhibiting
critical behavior in the case of RPE [61]. We will investigate
R1 and R2 in the similar spirit with the premise of finding the
following:

(a) Ergodic regime: R ∼ O(1) for any pair of wave func-
tions, as both of them are uniformly extended

(b) Localized regime: R will diverge as different wave
functions localized at separate sites

(c) Nonergodic regime having two possibilities:
(1) If energy levels of |� j

i 〉 , |� j
i′ 〉 repel each other, then

such energy states come from the same symmetry sector, i.e.,
the same subspace of the Hilbert space. Thus |� j

i 〉 , |� j
i′ 〉 are

likely to hybridize if the governing Hamiltonian is sufficiently
dense [61], giving R ∼ O(1).

(2) In the absence of any level repulsion, the energy states
in the NEE phase are likely to be extended over different parts
of the Hilbert space, thus R will diverge.

Let us now illustrate the measures for the well-studied case
of RPE. For two nearby energy states |� j

i 〉 , |� j
i′ 〉 with compa-

rable energy densities, R1 ∼ O(1) for γ̃ < γ̃AT and R1 
 1
for γ̃ > γ̃AT as a chaotic-integrable transition occurs at γ̃AT.
On the other hand, the energy states from different samples,
say, |� j

i 〉 , |� j′
i′ 〉, are likely to have a different support set in

the NEE phase, as different governing Hamiltonians cannot
hybridize them even if their energy densities are compara-
ble, giving R2 
 1 for γ̃ > γ̃ET. In Figs. 5(e) and 5(h) we
show R1,R2 for RPE exhibiting second-order phase tran-
sitions clearly identifying the critical points γ̃AT and γ̃ET,
respectively.

Recall that for the β ensemble chaotic-integrable transi-
tion occurs at γET = 0, hence R1 should show nonanalyticity
at the same point. Previously we argued that γET is also
the ergodic transition point, thus R2 should exhibit criti-
cality there as well. The critical behaviors of R1,R2 are
evident in Figs. 5(d) and 5(g), where scaling analysis gives
γc ≡ γET ∼ 0.

In the case of the 1D disordered spin-1/2 Heisenberg
model, we find that the scaling of R2 indicates a hc ≡ hET ≈ 2
in Fig. 5(i), while earlier we identified hMBL ≈ 2.77. This
indicates the existence of NEE in the 1D disordered spin-
1/2 Heisenberg model for an intermediate range of disorder
h ∈ (2, 2.77) in agreement with the existing studies on par-
ticipation entropy, survival probability [54], and momentum
distribution fluctuations [71]. Therefore one would expect
R1 to show criticality at hMBL since it is also the chaotic-
integrable transition point. However, the Hamiltonians of the

1D disordered spin-1/2 Heisenberg model are so sparse in that
they fail to completely hybridize the NEE eigenstates even
from the same subspace of the Hilbert space. As a result R1

shows criticality at hc ≈ 2.21 [Fig. 5(f)], a value in between
hET and hMBL. Below the critical values, R ≈ 0.9 in all three
models as expected from Eq. (10).

C. Localization length

In the previous section, we noticed that the spectral proper-
ties of the β ensemble and RPE have an important difference:
the chaotic-integrable transition occurs at γET for the β en-
semble and γ̃AT for RPE. The degree of level repulsion, β,
has been interpreted as the rescaled localization length in
various systems [77–80] though there are exceptions as well
[81]. Now we look at the entropic localization length w.r.t. the
Shannon entropy, dN ≡ 2.07eS , such that dN ≈ N or dN ≈ 1
for a fully ergodic or localized energy state, respectively [77].
In the case of RPE or the 1D disordered spin-1/2 Heisenberg
model, one can numerically fit the PDF of NNS with any phe-
nomenological model (e.g., Brody [18], Berry-Robnik [19],
etc.) to estimate the repulsion parameter, β. However, such a
numerical fit pertains to the global shape of the PDF of NNS
[77], without necessarily reflecting the behavior of P(s)s→0,
which is the true measure of level repulsion in a system.
Thus we exploit the one-to-one correspondence between β

and the mean value of RNNS. We observe a sublinear behav-
ior when β is small and dN/N converges to 1 when β → 1
[Figs. 7(b) and 7(c)]. Hence energy states are completely
extended whenever the energy levels repel each other, and this
justifies the coincidence of chaotic-integrable transition with
the delocalization-localization transition in RPE and the 1D
disordered spin-1/2 Heisenberg model.

We show dN/N as a function of β for various system
sizes in the case of the β ensemble in Fig. 7(a). Here
the relationship between the localization length and the de-
gree of level repulsion is superlinear throughout. Moreover,
dN/N becomes independent of β for β � β� � 1 while β� ∝
1/N as shown in the inset of Fig. 7(a). This implies that
the localization transition should occur roughly at β = 1/N
as the chaotic-integrable transition occurs at β = NγET =
1. This supports our earlier observation that γAT = 1 does
not coincide with the chaotic-integrable transition point in
the case of the β ensemble unlike RPE or the Heisenberg
model.

D. Scaling of eigenstate fluctuations

It is important to analyze the eigenfunction fluctuations,
which can be quantified via Rényi entropy, SR(q, N ) ∼ NDq ,
where Dq are fractal dimensions for different values of q
[82]. For q = 1, the Rényi entropy converges to the Shan-
non entropy, S ∼ D1 ln N . Similarly for q = 2, one obtains
the scaling in IPR ∼N−D2 . In the ergodic regime the frac-
tal dimensions, D1,2 = 1, as eigenstates occupy the full
Hilbert space volume, while D1,2 = 0 in the localized regime.
In the NEE phase, 0 < D1,2 < 1, which implies that the
eigenstates are extended over infinitely many but a zero
fraction of all possible sites in the thermodynamic limit
(i.e., ND1,2 → ∞ but ND1,2/N → 0 if N → ∞). Since dis-
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FIG. 7. Entropic localization length for (a) the β ensemble, (b) RPE, and (c) 1D disordered spin-1/2 Heisenberg model for various system
sizes and chain lengths as a function of the repulsion parameter β. We show the line dN/N = β with a dashed curve. The inset of (a) shows β�

below which dN/N becomes constant.

tributions of Shannon entropy and IPR are quite broad and
skewed [Fig. 8(a)], the median instead of the mean has
been used to estimate such fractal dimensions [83]. The
numerically estimated D1,2 clearly identifies the ergodic,
NEE, and localized regimes for the β ensemble and RPE
as shown in Fig. 9 (D1,2 ≈ 1 − γ and 2 − γ̃ in the NEE
phase for the β ensemble and RPE, respectively). However,
for the Heisenberg model, D1,2 does not vanish for h >

hMBL resulting from nontrivial multifractality in the MBL
phase [55].

To probe finer details of the eigenstructure of β ensemble,
we look at the density of Shannon entropy. The distributions
from different system sizes collapse on top of each other
at γ = 0, 1 upon a rescaling S → S − D1 ln N . However,
in the NEE phase (0 < γ < 1), two peaks emerge in the
histogram of S: (1) a broad peak whose location roughly
scales as N−D1 and (2) a sharp peak at S = 0, whose height
decreases with N [Fig. 8(a)]. The existence of the second
peak [which is absent for RPE, Fig. 8(b), and Heisenberg
model, Fig. 8(c)] implies that a small albeit finite fraction
of eigenstates are localized for 0 < γ < 1. In Fig. 9(b) we
show ξ , the fraction of localized eigenstates as a function
of γ for various N . The inset of the same figure shows
αξ ≈ γ − 1, the system size scaling exponent of ξ , which
implies roughly ξ ∝ Nγ−1. Thus in the thermodynamic limit,
there will be an infinite number of completely localized
states in the intermediate regime of β ensemble (since
Nγ → ∞ for γ > 0), which constitutes a zero fraction of
all possible eigenstates (since ξ → 0 for γ < 1). By looking
at the median and mode of IPR of individual eigenstates for

different system sizes, we find that the high-energy states (i.e.,
the ones in the middle of spectrum) have a greater tendency
to be localized compared to the ones close to the ground
state in the NEE regime. Thus unlike to RPE, the β ensemble
offers two kinds of eigenstates in the NEE phase: Nγ number
of completely localized and (N − Nγ ) number of NEE
states.

IV. PROPERTIES OF DYNAMICS

So far we have looked at the statistical picture of the energy
level correlation, eigenstate localization, and ergodic proper-
ties of the β ensemble. Now we want to look at the dynamical
aspects of the β ensemble, revealing important time and en-
ergy scales. In this regard, one of the largest timescales is the
Heisenberg time, defined as the inverse of mean level spacing.
Beyond such a time, the energy level dynamics of a system
equilibrates, e.g., the spectral form factor attains a stationary
state [84]. Now we explicitly look at the time evolution of
an initially localized state and identify the relevant dynamical
timescales.

An important characterization of the dynamics of a quan-
tum mechanical system is often done by monitoring the time
evolution of a given wave function. We choose a unit vector
| j〉 having energy close to the spectrum center of H as our
initial state. Let (Ek, |φk〉) be the kth eigenpair of H such that
the time evolution of the initial state is given by

| j(t )〉 = e−iHt | j〉 =
∑

k

e−iEktφ
( j)
k |φk〉 , φ

( j)
k = 〈φk| j〉 .

(11)

FIG. 8. Density of Shannon entropy: for (a) the β ensemble, γ = 0.6 (b) RPE, γ̃ = 1.5, and (c) the Heisenberg model, h = 2.4, while
varying system sizes, N , and chain lengths, L, where S and S are the scaled and original Shannon entropies, respectively (D1 is the fractal
dimension obtained from system size scaling of S.)
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FIG. 9. (a) Phase diagram: The three distinct phases observed in the β ensemble, RPE, and 1D disordered spin-1/2 Heisenberg model are
demarcated against the critical parameter values. Markers indicate fractal exponents D1,2 as explained in the legend. (b) Fraction of localized
states: as a function of γ for the β ensemble for various system sizes. The inset shows αξ , the system size scaling exponent of ξ vs γ along
with a linear fit, αξ = aγ + b, where a = 0.9656 ± 0.0676 and b = −1.1618 ± 0.0370.

The spread of the initial state | j〉 over all other states is
controlled by the off-diagonal terms in H and is quantified
by the survival probability [85]

R(t ) = |〈 j| j(t )〉|2 =
∣∣∣∣∣

N∑
k=1

∣∣φ( j)
k

∣∣2
e−iEkt

∣∣∣∣∣
2

. (12)

In general, the survival probability decays till t = tTh, known
as the Thouless time [86]. This is the time required for | j〉
to maximally spread over the Hilbert space. For example, in
disordered (ergodic) metals, a particle diffuses to the sample
boundaries within tTh. The inverse of tTh gives the Thouless
energy, ETh, below which the spectral correlations are similar
to those of Wigner-Dyson ensemble. Moreover, a finite-sized
closed quantum system always equilibrates [87], and the
equilibrium value of survival probability is given by

R̄ = lim
t→∞

1

t

∫ t

0
dτ R(τ ) =

N∑
k=1

∣∣φ( j)
k

∣∣4
. (13)

Thus R̄ is the IPR of initial state | j〉 in the eigenbasis {|φk〉}.
The time required to reach R̄ is known as the relaxation time,
tR. The gap between tTh and tR is known as the correlation
hole, thole. A finite thole is a direct manifestation of the spectral
rigidity, i.e., the presence of long-range correlation among
energy levels [54,88,89].

The time evolution of survival probability for β ensemble
is shown in Figs. 10(a) and 10(b) for various system sizes and
γ values. Tuning γ , we observe three qualitatively different
behaviors as follows:

1. Ergodic regime (γ � 0). The correlation hole is always
present with easily identifiable Thouless and relaxation times.
tTh exhibits an approximately

√
N scaling close to γET [inset

of Fig. 10(a)], which can be understood from sparsity of the
Hamiltonian. Contrarily in the ergodic regime of RPE, tTh is
independent of system size due to the presence of all to all
coupling [56,90]. We also observe that within thole, R(t ) is
nonmonotonic unlike the 1D disordered spin-1/2 Heisenberg
model [85].

2. NEE phase (0 < γ < 1). We show thole as a function of
γ for different system sizes in Fig. 10(c) where thole ≈ 0 for
γ � γ �. The inset shows that γ � → γET = 0 as N increases.

Recall that the chaotic-integrable transition occurs at γET, be-
yond which long-range correlation among energy levels (e.g.,
see power spectrum) is lost. The spectral rigidity is necessary
for the existence of thole [88], which explains the absence of
the correlation hole in the NEE regime in the thermodynamic
limit. On the other hand, a finite thole exists in the NEE phases
of RPE and the 1D disordered spin-1/2 Heisenberg model,
as the chaotic-integrable transition occurs at γ̃AT and hMBL

respectively.

FIG. 10. Survival probability for β ensemble: (a) time evolution
for γ = −0.3 and various system size, N . We show Thouless (tTh)
and relaxation time (tR) with markers and the correlation hole (thole)
with a dashed line in each case. The inset shows tTh and tR as a
function of N along with linear fit in log-log scale with a solid line,
indicating a

√
N dependence. (b) N = 1024 varying γ (c) correlation

hole vs γ for various N . The inset shows γ � vs N in log-log scale
(thole ≈ 0 for γ � γ �). (d) Asymptotic value of survival probability
vs γ for different N . The inset shows system size scaling (R̄ ∝ NαR̄ )
where αR̄ ≈ γ − 1 for γ � 1 and 0 for γ > 1.
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3. Localized phase (γ � 1). Exactly at γ = γAT, we ob-
serve survival probability curves from different system sizes
to collapse on top of each other, showing a critical behavior
similar to RPE. In the localized regime (i.e., γ > 1), thole is
completely absent, while R(t ) converges to 1 upon increasing
either γ or N .

We show the equilibrium value of survival probability, R̄,
as a function of γ in Fig. 10(d). We observe that R̄ ≈ 1 for γ >

1, which is expected as the initial state, | j〉, is an eigenstate
in the localized regime. The inset of Fig. 10(d) shows system
size scaling of R̄, indicating that R̄ ≈ Nγ−1 in the NEE regime
denoting the extent of spread over the Hilbert space for an
initially localized state.

V. CONCLUSIONS

In this work we study the spectral properties of β ensemble
with a motivation that the competition between diagonal and
off-diagonal terms may lead to a NEE phase. As customary
in random matrix theory, we discuss the DOS and short-range
spectral correlations, namely, NNS and RNNS, and observe
a transition from chaos to integrability at γ = 0. The next
pertinent question is whether this transition can be associated
with the ergodic and/or localization transitions. A simple
analysis of the power spectrum of noise in the eigensequence
identifies two critical points: ergodic transition at γET = 0
and Anderson transition at γAT = 1, separating three distinct
phases: the ergodic (γ � 0), NEE (0 < γ < 1), and localized
(γ � 1) phase. Thus similar to RPE [56], related ensembles
[91,92] and certain Floquet systems [93–95], the β ensemble
is another matrix model where the NEE phase exists over a
finite interval of system parameters.

The above observations can be consolidated from the
eigenfunction properties as both Shannon entropy and IPR
show criticality at γAT = 1, confirming it to be the Anderson
transition point. The system size scaling of the above quan-
tities gives us the fractal dimensions D1,2 ≈ 1 − γ , clearly
demarcating the three phases. For relative Rényi entropies of
type 1 and 2, criticality is seen at γET = 0, thus confirming
it to be the chaotic-integrable as well as the ergodic transition
point. Moreover, the distribution of Shannon entropy indicates
that in the NEE phase, there is a coexistence of Nγ number of
a completely localized and (N − Nγ ) number of NEE states.

Finally, we identify the relevant dynamical timescales from
the time evolution of the survival probability, R(t ) of an ini-
tially localized state and find that the correlation hole, thole,
is always present in the ergodic regime and absent in the
NEE phase for N 
 1 as energy levels become uncorrelated.
Moreover R(t ) → 1 for N 
 1 and γ > γAT as expected in
a localized phase. The NEE phase in the β ensemble is quite
distinct from that in RPE, where the energy levels repel each
other since integrability breaks down at the Anderson tran-
sition point. Again the chaotic-integrable transition point is

energy density dependent, and ergodicity breaks at a lower
disorder strength in the case of the 1D disordered spin-1/2
Heisenberg model. We calculate the entropic localization
length to explain why chaotic-integrable transition in the β

ensemble does not coincide with the localization transition
point. These subtle differences imply that the β ensemble
is not a suitable model for spin systems like the 1D disor-
dered spin-1/2 Heisenberg model. The proposition that the
β ensemble can model Heisenberg chain [62] has also been
contradicted in [96,97] via analyses of higher order level spac-
ings and spectral form factor (SFF) and in [65] by studying
RNNS crossover. However, in the ergodic regime of the β

ensemble, Thouless time scales with the system size similar
to sparse Hamiltonians [85]. Thus our analyses suggest that
the β ensemble can imitate the spectral properties of various
Hamiltonians provided ergodicity breaks down at the chaotic-
integrable transition point in such systems.
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APPENDIX: NUMERICAL DETAILS

a. Unfolding. For fixed values of system parameters and
size, we obtain F (E ), the cumulative density of eigenvalues
from all disordered realizations. Next we smooth F (E ) using
a moving average filter. Then for the original eigenvalue Ei,
unfolding implies the interpolation of F (Ei ) [10].

b. Scaling of crossover curves. Let us look at an observ-
able y for a system parameter x. If we observe nonanalytical
behavior of the corresponding crossover curves from different
system sizes, we assume y to behave according to Eq. (7).
So we take an array of parameters �x = (x(1), x(2), . . . , x(m))
and measure y for two system sizes N1 and N2, giving
us two arrays, �yi = (yi(1), yi(2), . . . , yi(m)), i = 1, 2. Fol-
lowing Eq. (7), we take the function g(x; xc, ν, N ) ≡ (x −
xc)(ln N )1/ν . Now we define the function �xi ≡ �xi(xc, ν) =
g(�x; xc, ν, Ni ) for i = 1, 2. For the correct choice of xc and ν,
�y1 vs �x1 and �y2 vs �x2 should behave similarly. The observed
nonanalyticity of the curves �y1 vs γ and �y2 vs γ gives a
good idea of the initial value of xc, and we take ν = 1 as
the starting value. For these initial choices of xc and ν, we
interpolate �y1 vs �x1 w.r.t. �x2 to create a new array �y′

1. Next

we calculate the residual sum of squares (RSS) between �y′
1

and �y2, defined as
∑

k (y′
1(k) − y2(k))2. Since RSS should be

0 for the correct choice of xc and ν, we iteratively change xc

and ν to minimize the RSS, which gives us the desired values
of xc and ν for N1 and N2. We repeat this exercise for all
pairs of system sizes and report the average of the obtained
parameters.

[1] F. J. Dyson, The threefold way. Algebraic structure of symmetry
groups and ensembles in quantum mechanics, J. Math. Phys. 3,
1199 (1962).

[2] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes
in mesoscopic normal-superconducting hybrid structures, Phys.
Rev. B 55, 1142 (1997).

054121-10

https://doi.org/10.1063/1.1703863
https://doi.org/10.1103/PhysRevB.55.1142


NONERGODIC EXTENDED STATES IN THE β . . . PHYSICAL REVIEW E 105, 054121 (2022)

[3] D. A. Ivanov, Random-Matrix Ensembles in p-Wave Vortices
(Springer, Berlin, 2002), pp. 253–265.

[4] A. Dubbs, A. Edelman, P. Koev, and P. Venkataramana, The
beta-Wishart ensemble, J. Math. Phys. 54, 083507 (2013).

[5] A. Dubbs and A. Edelman, The beta-Manova ensemble
with general covariance, Random Matrices: Theory Appl. 03,
1450002 (2014).

[6] R. Killip and I. Nenciu, Matrix models for circular ensembles,
Int. Math. Res. Notices 2004, 2665 (2004).

[7] M. L. Mehta, Random Matrices, 3rd ed. (Elsevier Science,
Amsterdam, 2004).

[8] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Quan-
tum chaos and thermalization in isolated systems of interacting
particles, Phys. Rep. 626, 1 (2016).

[9] O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of
Chaotic Quantum Spectra and Universality of Level Fluctuation
Laws, Phys. Rev. Lett. 52, 1 (1984).

[10] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Random-matrix theories in quantum physics: Common con-
cepts, Phys. Rep. 299, 189 (1998).

[11] E. A. Yuzbashyan, B. L. Altshuler, and B. S. Shastry, The origin
of degeneracies and crossings in the 1d Hubbard model, J. Phys.
A: Math. Gen. 35, 7525 (2002).

[12] E. Corrigan and R. Sasaki, Quantum versus classical integra-
bility in Calogero–Moser systems, J. Phys. A: Math. Gen. 35,
7017 (2002).

[13] M. Berry and M. Tabor, Level clustering in the regular spec-
trum, Proc. R. Soc. London A 356, 375 (1977).
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Salasnich, M. Vraničar, and M. Robnik, 1/ f α Noise in Spectral
Fluctuations of Quantum Systems, Phys. Rev. Lett. 94, 084101
(2005).

[75] M. S. Santhanam and J. N. Bandyopadhyay, Spectral Fluctu-
ations and 1/ f Noise in the Order-Chaos Transition Regime,
Phys. Rev. Lett. 95, 114101 (2005).

[76] Á. Nagy and E. Romera, Relative Rényi entropy and fidelity
susceptibility, Europhys. Lett. 109, 60002 (2015).

[77] S. Sorathia, F. M. Izrailev, V. G. Zelevinsky, and G. L. Celardo,
From closed to open one-dimensional Anderson model: Trans-
port versus spectral statistics, Phys. Rev. E 86, 011142
(2012).

[78] F. M. Izrailev, Simple models of quantum chaos: Spectrum and
eigenfunctions, Phys. Rep. 196, 299 (1990).

[79] G. Casati, B. V. Chirikov, I. Guarneri, and F. M. Izrailev, Band-
random-matrix model for quantum localization in conservative
systems, Phys. Rev. E 48, R1613 (1993).

[80] J. Flores, L. Gutiérrez, R. A. Méndez-Sánchez, G. Monsivais,
P. Mora, and A. Morales, Anderson localization in fi-
nite disordered vibrating rods, Europhys. Lett. 101, 67002
(2013).

[81] E. Benito-Matías and R. A. Molina, Localization length versus
level repulsion in one-dimensional driven disordered quantum
wires, Phys. Rev. B 96, 174202 (2017).

[82] Y. Y. Atas and E. Bogomolny, Multifractality of eigenfunctions
in spin chains, Phys. Rev. E 86, 021104 (2012).

[83] A. D. Mirlin and F. Evers, Multifractality and critical fluc-
tuations at the Anderson transition, Phys. Rev. B 62, 7920
(2000).
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