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Accelerated Jarzynski estimator with deterministic virtual trajectories
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The Jarzynski estimator is a powerful tool that uses nonequilibrium statistical physics to numerically obtain
partition functions of probability distributions. The estimator reconstructs partition functions with trajectories
of the simulated Langevin dynamics through the Jarzynski equality. However, the original estimator suffers
from slow convergence because it depends on rare trajectories of stochastic dynamics. In this paper, we
present a method to significantly accelerate the convergence by introducing deterministic virtual trajectories
generated in augmented state space under the Hamiltonian dynamics. We theoretically show that our approach
achieves second-order acceleration compared to a naive estimator with the Langevin dynamics and zero variance
estimation on harmonic potentials. We also present numerical experiments on three multimodal distributions
and a practical example in which the proposed method outperforms the conventional method, and we provide
theoretical explanations.
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I. INTRODUCTION

The development of nonequilibrium statistical mechanics
has brought about a great many novel algorithms in compu-
tational physics and information science [1–5]. In particular,
in recent years substantial progress has been made in the
estimation of partition functions [1,4–7]. A partition function
Z is the normalizing constant of a probability density function
f (x) described as a Gibbs distribution:

f (x) = 1

Z
e−βE (x), (1)

Z :=
∫

e−βE (x)dx, (2)

where E (x) is the energy of the state x, and β is the inverse
temperature. This quantity is fundamental in both natural and
information sciences because it characterizes a system in equi-
librium: in statistical mechanics, it corresponds to free energy
that describes the stability of the system [8], and in machine
learning, it is known as the model evidence, which gives an
indicator to quantify the likelihood of models for observed
data [9,10]. Moreover, the partition function in Eq. (2) can
be regarded as a moment-generating function, which gives
moments of a system. Therefore, it is important to efficiently
calculate the partition function of a system.

However, it is challenging to obtain the partition function
or the free energy of a given system. In terms of thermody-
namics, the free-energy difference between the initial states
and the final states is determined by the work exerted on the
system during a quasistatic process, which is infeasible in fi-
nite time [11]. In terms of numerical computation, calculating
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the partition function in Eq. (2) requires numerical integration
over the entire conformation space, which is intractable, espe-
cially when the space has many dimensions.

The remarkable equality demonstrated by Jarzynski [1]
makes it possible to obtain partition functions efficiently. The
Jarzynski equality relates the free-energy difference �F to
work W defined by the trajectories of states in a nonequilib-
rium process, which is performed by changing the system’s
configuration in finite time. The equality is given by

〈
e−βW

〉 = e−β�F = Z

Z0
, (3)

where Z0 is the partition function of the initial distribution,
and the notation 〈·〉 is the expectation taken over all possible
trajectories during the process. Equation (3) holds for arbitrary
dynamics as long as the initial states are in equilibrium. From
Eq. (3), we can estimate Z/Z0 as an ensemble average of the
exerted work. Using this equality, for example, the free-energy
profile for a molecule was experimentally obtained by repeat-
edly pulling the molecule with laser optical tweezers [12].
Note that since Z0 is rarely accessible in physical systems, we
often obtain a relative value Z/Z0 to some reference value Z0,
rather than Z .

An estimator of Z or Z/Z0 can be calculated by simu-
lating the nonequilibrium process [13,14], and we focus on
a process modeled by the overdamped Langevin dynamics
in this work because the dynamics is commonly used for
systems in which the energy function E (x) of the target dis-
tribution is determined only by position, which is the case in
molecular-dynamics simulation or machine learning. Hence,
the estimator using the Jarzynski equality for Langevin dy-
namics is described as the Jarzynski estimator throughout this
paper.

In practice, however, convergence of the naive Jarzynski
estimator is notoriously slow [15,16]. That is because work W
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has a large variance, and the rare negative value of W , which
significantly contributes to the estimator, cannot be efficiently
sampled. To overcome such a problem, many methods have
been proposed. For example, Refs. [17,18] devised initial
states to alleviate sample bias by allowing almost any dis-
tribution for initial states using linear equations. References
[5,19] used a backward process in which the work distribution
can be used to estimate the partition function through Crook’s
fluctuation theorem [6]. Despite such important advances,
however, adopting the Langevin dynamics still has a conver-
gence problem: The variance of the estimator remains even
if the system is controlled by the optimal protocol unless the
distributions of the initial and final states are identical [20,21].
To overcome such inevitable variance, the authors in Ref. [7]
introduced an additional flow field and transformed dynamics.
They showed that the method achieves zero variance estima-
tion, which means one can obtain the true partition function
with only one trajectory, given an ideal flow field, although
such a flow field seems impossible to obtain in practical cases.

In this paper, we address the problem of the inevitable
error of Jarzynski estimators and significantly improve the
convergence in fundamental cases. The key idea of our work
is converting the stochastic process described by the Langevin
dynamics to a deterministic virtual one. Specifically, we in-
troduce auxiliary momentum and employ the Hamiltonian
dynamics to simulate a target system initially connected to
a heat bath. In contrast to simulating all particles constituting
a system and a heat bath with the Hamiltonian dynamics, the
dynamics employed in our method is virtual, viz. not physical,
because we transform a system initially coupled to a heat bath
to an isolated one and treat particles only in the system.

Our theoretical analyses reveal that our method achieves
second-order acceleration with respect to the duration of sim-
ulated dynamics, and furthermore it achieves zero variance
estimation at some conditions with harmonic potentials. This
property is realized when we employ parallel transport and
scaling of harmonic potentials, which are models of a mov-
ing laser trap and the time-dependent strength of the trap,
respectively [20]. Moreover, the proposed method mitigates
variance when the peaks of the target distribution are far
from those of the initial distribution. We conduct numerical
experiments on four model systems for which the proposed
method outperforms the conventional one, and we discuss the
results theoretically.

II. METHOD

Given a potential energy Uend(q), we aim to calculate the
partition function Z defined by

Z :=
∫

e−βUend (q)dq, (4)

where q is a position. Hereafter, we assume β = 1 without
loss of generality. The equilibrium probability distribution
corresponding to Uend(q) is f eq

end(q) = exp ( − Uend(q))/Z .
First, we select a probability distribution f eq

init (q) which is
arbitrary. Then, to connect these distributions, let us consider
a nonequilibrium process during time t ∈ [0, τ ] characterized
with a time-varying potential function U (q; t ) with bound-
ary conditions U (q; 0) = Uinit (q) and U (q; τ ) = Uend(q). The

process is also arbitrary as long as the boundary conditions are
satisfied.

In the naive Jarzynski estimator based on the Langevin
dynamics [13], which we call the Langevin Jarzynski estima-
tor (LJE) throughout this paper, we consider a trajectory q(t )
governed by the overdamped Langevin dynamics:

dq

dt
= −∂U (q; t )

∂q
+

√
2ξ (t ), (5)

where ξ (t ) is Gaussian noise such that its autocorrelation
function is a δ function 〈ξ (t )ξ (0)〉 = δ(t ). Then, we define
the work exerted during a process as

W :=
∫ τ

0

∂U (q; t )

∂t
dt . (6)

The Jarzynski equality in Eq. (3) holds as an exponential
ensemble average of the work of trajectories generated using
Eq. (5). We obtain an estimator of Z/Z0 by approximating the
left-hand side of the Jarzynski equality with a finite number
of samples. However, we need a significant number of trajec-
tories to obtain an accurate result because work W has a large
variance.

In the proposed method, which we call the Hamiltonian
Jarzynski estimator (HJE), we augment the state space with
virtual momentum p, which has the same number of dimen-
sions with q. Along with p, we introduce a kinetic energy with
a virtual time-dependent mass m(t ):

K (p; t ) = ‖p‖2
2

2m(t )
, (7)

where ‖·‖2 is the Euclidean norm. Then, we define the Hamil-
tonian of the system as

H (q, p; t ) := U (q; t ) + K (p; t ). (8)

Here the schedules of the Hamiltonian H and the mass m(t )
are arbitrary as long as the boundary conditions of U (q; t ) are
satisfied as well as the LJE.

Then, we consider a trajectory (q(t ), p(t )) under the
Hamiltonian dynamics

dq

dt
= ∂H (q, p; t )

∂ p
, (9)

d p

dt
= −∂H (q, p; t )

∂q
, (10)

and we define work consistent with Eq. (6) [1]:

W :=
∫ τ

0

∂H (q, p; t )

∂t
dt

= H (q(τ ), p(τ ); τ ) − H (q(0), p(0); 0). (11)

The second equation holds because the entire system is con-
sidered isolated throughout the process; that is, there is no heat
dissipation. Finally, we can apply the Jarzynski equality for
the set of trajectories and obtain the partition function Z with
respect to Uend(q):

〈
e−W

〉 =
∫

e−βH (q,p;τ )dq d p∫
e−βH (q,p;0)dq d p

= m(τ )
N
2 Z

m(0)
N
2 Z0

, (12)
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FIG. 1. Illustrations of (a) the proposed HJE method and (b) the conventional LJE method for estimating the partition function of a
target distribution. Both methods generate trajectories, which are depicted by solid curves, whose initial positions are given by some initial
distribution. A single trajectory for each method is colored in red (dark gray) for visibility. A protocol for each process is defined during time
t ∈ [0, τ ], and boundary values of the protocol are determined by the initial distribution and the target distribution. The main feature of the
HJE is that its trajectories are generated by the Hamiltonian dynamics with virtual momentum, which is deterministic given the initial states,
while the LJE adopts the Langevin dynamics, which is stochastic.

where N is the dimension of p. The second equation holds
because of Eq. (8). In addition to the LJE, we can estimate Z
by approximating the expected value on W in Eq. (12) with an
ensemble average of finite samples.

Because the HJE adopts deterministic trajectories de-
scribed by ordinary differential equations (ODEs), we can
take advantage of efficient and accurate ODE solvers. This
is superior to the case of the LJE, where stochastic differential
equations have to be solved. Illustrations of the HJE and the
LJE are shown in Figs. 1(a) and 1(b), respectively.

Our approach is inspired by the Hamiltonian Monte Carlo
method [22]. This is an efficient sampling algorithm for ac-
celerating transitions in state space by introducing auxiliary
momentum and the Hamiltonian dynamics to replace the
Langevin dynamics in the Metropolis-Hastings method [23].
In related work, another method introduced auxiliary momen-
tum and the underdamped Langevin dynamics for estimating
partition functions [24], but the trajectories in that method
are still stochastic and therefore cannot take advantage of
deterministic trajectories, in contrast to ours.

We note that the formation of the HJE is different from that
based on the Hamiltonian dynamics, which traces all particles
contained in the system and the connected heat bath. The HJE
is also different from the methods that accurately simulate
systems connected to thermostats, such as the Nosé-Hoover
method [25].

III. THEORETICAL ANALYSIS

Before testing the proposed method in practical examples,
we analytically calculated the properties of the HJE in linear
systems, where the partition functions are known and the
dynamics is analytically solvable. In particular, we focused on
parallel transport, rotation, and scaling of a potential because
linear systems are mainly composed of such transformations.

We compare the LJE and HJE in terms of their variance.
To analyze the variance of the estimators, we evaluate the
variance of work as a proxy using dissipative work Wdiss [16],

which is more feasible. Wdiss is defined by

Wdiss := 〈W 〉 − �F, (13)

where 〈W 〉 is the average work over all possible trajectories
and �F is the difference of free energy between boundary
distributions f eq

init and f eq
end satisfying �F = −ln(Z/Z0). Then

we use the following equation as the first-order approximation
of the variance of W , denoted by 〈〈W 〉〉 [16]:

〈〈W 〉〉 ≈ 2Wdiss. (14)

Moreover, we approximate the distributions during time
development with a Gaussian distribution when the initial and
final distribution of a protocol are Gaussian. This approxima-
tion is valid when the system is near equilibrium during the
process.

A. Parallel transport

First, we explore the parallel transport of a one-
dimensional (1D) harmonic potential. This is a model of
dragged Brownian motion, such as a molecule trapped and
pulled by an optical laser [20,26]. We let the protocol during
t ∈ [0, τ ] be

U (q; t ) =
(
q − μτ

τ
t
)2

2σ 2
, (15)

where μτ is the transportation distance and σ is the stan-
dard deviation. This protocol means the harmonic potential
is dragged from the origin to q = μt at a constant speed.
The corresponding partition functions are Z = Z0 = √

2πσ 2.
Then, we let the mass during the protocol be constant,

m(t ) = m0. (16)

With this setting, we can analytically obtain Wdiss for the LJE
and HJE, which are given, respectively, by

Wdiss = μ2
τ

τ
− μ2

τ σ
2

τ 2

(
1 − e− τ

σ2
)

(17)
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FIG. 2. Analytically obtained total dissipative work Wdiss of the HJE and LJE as a function of duration τ in linear systems. Wdiss of the
HJE and LJE are depicted by a red solid curve and a blue dashed curve, respectively. (a) Parallel transport of a harmonic potential, where
σ 2 = 1, μτ = 1, and m0 = 1. (b) Scaling of a harmonic potential, where σ 2

0 = 1, σ 2
τ = 4, and m(t ) = 1. (c) Scaling of a harmonic potential

with time-dependent mass for the HJE, where σ 2
0 = 1, σ 2

τ = 4, and α = 1. (d) Rotation of a harmonic potential, where a = 8, b = 2, and
m0 = 1. As a whole, the specific parameters do not change the results qualitatively.

and

Wdiss = m0μ
2
τ

τ 2

(
1 − cos

τ√
m0σ

)
. (18)

Derivations of Eqs. (17) and (18) are shown in Appendixes A
and B, respectively. Note that the result of Eq. (17) is consis-
tent with a previous analysis of dissipative work in Ref. [27].

Equations (17) and (18) reveal prominent features of the
HJE: its Wdiss converges in the second order as a function
of the reciprocal of τ , while that of the LJE converges in
the first order, and furthermore the HJE achieves Wdiss = 0 at
τ = (2n + 1)π

√
m0σ for any n ∈ N and μτ ∈ R, while the

LJE never achieves Wdiss = 0 with finite τ [20]. Therefore,
Wdiss of the HJE converges faster than that of the LJE when
the duration of protocol τ is longer. We note that in the case of
τ → 0, both Eqs. (17) and (18) reduce to Wdiss = μ2

τ /(2σ 2),
which is equal to the case of importance sampling [23]. Im-
portance sampling is a widely used method to estimate an
expected value. We plot Eqs. (17) and (18) in Fig. 2(a), which
shows that while Wdiss of the HJE is larger than that of the
LJE when the duration τ is small, the HJE more significantly
reduces its Wdiss than the LJE as τ becomes large.

Additionally, we note that the HJE for parallel transport of
multidimensional harmonic potentials works as well as it does

for 1D because in that case the dynamics can be decomposed
into a set of independent 1D parallel transports.

B. Scaling

Next, we explore the scaling of a harmonic potential by
changing the variance of the corresponding distribution from
σ 2

0 to σ 2
τ through a protocol. This is a model of traps in

stochastic systems whose strength varies temporally [20]. The
initial distribution and the target distribution are given, respec-
tively, by

f eq
init (q) = 1

Z0
e
− q2

2σ 2
0 , (19)

f eq
end(q) = 1

Z
e
− q2

2σ 2
τ , (20)

where Z0 =
√

2πσ 2
0 and Z = √

2πσ 2
τ . Therefore, the cor-

responding potential functions are Uinit (q) = q2/(2σ 2
0 ) and

Uend(q) = q2/(2σ 2
τ ). Then we let a linear protocol during

t ∈ [0, τ ] be

U (q; t ) =
(

1 − t

τ

)
Uinit (q) + t

τ
Uend(q) (21)

and let the mass be constant, m(t ) = 1.
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We plot Wdiss of the HJE and LJE in Fig. 2(b). The details
of the calculation are shown in Appendixes C and D, respec-
tively. Figure 2(b) shows that Wdiss of the HJE converges to
some positive value while that of the LJE converges to zero as
a function of τ . This result of the HJE is consistent with the
well-known fact that an isolated system will generally not be
in equilibrium after some protocol, even if the protocol takes
infinite time.

However, we can overcome the limitation by recalling the
fact that the mass in our method is virtual and arbitrary. To
compensate for the difference of variance σ 2

0 and σ 2
τ , we adopt

a time-dependent mass. While such a mass protocol is almost
infeasible in reality, we can use it because our mass is virtual.

The initial and final distributions are the same as f eq
init (q)

and f eq
end(q), respectively, in the above analysis. Then, we let

the protocol during t ∈ [0, τ ] be

U (q; t ) = q2

2σ (t )2
, (22)

σ (t )2 = σ 2
0 e

γ

τ
t , (23)

where γ = lnσ 2
τ /σ 2

0 . For the protocol of a kinetic energy, let
the mass be time-dependent:

m(t ) = α

σ (t )2
, (24)

where α is a positive constant. In this case, we obtain Wdiss of
the HJE as

Wdiss = −1 + cos2 ωτ +
(

αω2

2
+ 1

2αω2
+ αγ 4

32ω2τ 4

+ αγ 2

4τ 2
+ γ 2

4ω2τ 2

)
sin2 ωτ, (25)

ω =
√

4τ 2/α − γ 2

2τ
, (26)

where τ >
√

α|γ |/2. Details of the derivation are shown in
Appendix D. Note that Wdiss of the LJE needs numerical inte-
gration, whose details are shown in Appendix C. We plot Wdiss

of the HJE and LJE in Fig. 2(c). As well as the case for parallel
transport, the HJE achieves Wdiss = 0 with ωτ = πn for any

n ∈ N, that is, τ =
√

γ 2

4 + π2n2, and it converges faster than
the LJE thanks to the virtual mass.

C. Parallel transport and scaling

Next, we investigate protocols that include both parallel
transport and scaling. In particular, we compare Wdiss of the
HJE and LJE as the distance of parallel transport changes
and the magnitude of scaling increases. The initial and final
distributions are N (0, σ 2) and N (μ, σ 2), respectively, where
N (μ, σ 2) denotes a Gaussian distribution with mean μ and
variance σ 2. Then we let the protocol during t ∈ [0, τ ] be

U (q; t ) = 1 + a t
τ

2σ 2

(
q − μ

t

τ

)2

. (27)

This protocol describes that the potential is dragged from the
origin to x = a and its strength is varied at a constant ratio
over time. Here, we adopt a constant mass of m(t ) = m0.

FIG. 3. Total dissipative work Wdiss exerted from a harmonic
potential that is dragged and scaled taking duration τ = 2π , where
the HJE and LJE are depicted by red (dark gray) and blue (light gray)
surfaces, respectively. μ is the dragged distance and a characterizes
how much the potential is scaled.

We plot Wdiss as functions of a and μ with fixed τ = 2π

in Fig. 3. The derivation of Wdiss for the protocol is shown in
Appendixes E and F. Figure 3 shows that Wdiss of the LJE
is smaller than that of the HJE when μ is small, which is
consistent with the analysis in Sec. III B for the case of μ = 0
in Eq. (27). However, Wdiss of the HJE is significantly smaller
than that of the LJE when μ is large. In addition, as described
in Sec. III A, Wdiss is zero for the HJE when a = 0. This
result suggests that as the dragged distance μ becomes larger,
the superiority of the HJE increases, even when the initial
distribution and the final distribution cannot be connected only
by parallel transport.

D. Rotation

Finally, we employ a model of rotation protocol. The initial
distribution f eq

init and the target distribution f eq
end are

f eq
init (x, y) = 1

Z0
e−(ax2+by2 ), (28)

f eq
end(x, y) = 1

Z
e−(bx2+ay2 ), (29)

where a and b are positive values characterizing the variance
of x and y, respectively. These distributions are equal to each
other through π/2 rotation. The corresponding partition func-
tions are Z = Z0 = π/

√
ab.

Then, we let a potential function during t ∈ [0, τ ] be

U (x, y; t ) = ax′(t )2 + by′(t )2, (30)

where (x′, y′) is the rotation of (x, y):(
x′(t )
y′(t )

)
=

(
cos θ (t ) − sin θ (t )
sin θ (t ) cos θ (t )

)(
x
y

)
(31)

with θ (t ) = πt/(2τ ).
Under this configuration, we can calculate Wdiss analyti-

cally, and its derivation is shown in Appendixes G and H. We
plot Wdiss as a function of τ in in Fig. 2(d). From Fig. 2(d), we
find that although Wdiss of the LJE decreases monotonically,
that of the HJE oscillates and its local minima are much
smaller than Wdiss of the LJE at the same τ . Therefore, if we
can choose a τ value where Wdiss of the HJE is minimal, then
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it converges significantly faster than the LJE as the number of
trajectories increases.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the HJE
through four numerical experiments on model systems where
the LJE works poorly. We begin with a toy model to clarify the
efficacy of the proposed method. Then, we show the robust-
ness of our method under conditions where the conventional
method fails, and we verify that the HJE outperforms the LJE
for a distribution with a large number of peaks. In addition,
we conduct a polymer stretching experiment to clarify the
meaning of the virtual trajectories in our method. The result of
each experiment is explained based on the theoretical analysis
given in the previous section.

A. 1D double-well potential

In this experiment, we validate the efficiency of the HJE
through a simple but suggestive model. The target distribution
is characterized by a double-well potential function,

f eq
end(q) = 1

Z
e−kq4+q2

, (32)

where k is a positive parameter. Double-well potentials are
widely used to describe bistable states in stochastic systems
[28,29]. We use the standard Gaussian distribution as an ini-
tial distribution f eq

init . Then, we construct a protocol for the
potential energy during t ∈ [0, τ ] by linearly interpolating the
boundaries:

U (q; t ) =
(

1 − t

τ

)
q2

2
+ t

τ
(kq4 − q2). (33)

We plot the error of the estimators of Z/Z0 as a function of
τ in Fig. 4, which shows that, although the LJE has an error
smaller than that of the HJE when τ is small, the HJE has
substantially lower error than that of the LJE as τ becomes
large. Therefore, it is suggested that if we adopt a sufficiently
large duration τ , we can estimate the partition function of
the target distribution more efficiently by the HJE. Moreover,
the error of the HJE oscillates moderately as a function of
τ . These results can be explained by the theoretical analysis
in the previous section. The protocol of this experiment is
approximated with two independent parallel transports of a
harmonic potential: one a harmonic potential moving from
the origin to the right peak of the target distribution, and the
other one moving from the origin to the left peak of the target
distribution. Then, if the protocol is parallel transport, the
error of the HJE oscillates and decreases faster than that of
the LJE as a function of τ , which is shown in Sec. III A.

B. Gaussian mixture model

Next, we examine the robustness of the proposed method
against the arrangement of peaks in a target distribution
through a two-dimensional (2D) bimodal distribution. In par-
ticular, we explore a mixture of two Gaussian distributions
with various arrangements. The partition functions for the
Gaussian mixture models are Z = 1 regardless of specific

100 101

Duration τ

10−1

100

E
rr

or
of

ln
(Z

/Z
0)

HJE

LJE

FIG. 4. Error of the estimated partition function for the HJE and
LJE, which are depicted by a red solid curve with dots and a blue
dashed curve with dots, respectively, as a function of τ for a 1D
double-well potential. The target distribution is characterized by k =
1/16 and its partition function is Z = 146.372, which is numerically
confirmed. We generated 10 trajectories at each τ to estimate the
partition function and repeated the procedure 100 000 times for both
the HJE and LJE. The adopted numeric schemes are the Runge-Kutta
fourth-order method for the HJE and the Euler-Maruyama method
[30] for the LJE. Applying a higher-order scheme for stochastic
differential equations, the order 1.0 strong stochastic Runge-Kutta
method [31], for the LJE makes no qualitative difference to the result
(not shown). We set the time step for numerical integration to be
�t = 10−3.

parameters, which is appropriate for comparing the results for
target distributions with different parameters.

The target distribution is a mixture of Gaussian distribu-
tions N (μP, σ 2) and N (μQ, σ 2) in state space q = (x, y),
where μP = (a, s) and μQ = (a,−s). That is,

f eq
end(x, y) = 1

Z
exp ( − Uend(x, y)), (34)

Uend(x, y) = − log

(
1

4πσ 2
e− (x−a)2+(y−s)2

2σ2

+ 1

4πσ 2
e− (x−a)2+(y+s)2

2σ2

)
. (35)

As shown in Fig. 5(a), the distribution given by Eq. (34) is
bimodal, and its peaks are located at points P = μP and Q =
μQ. Hereafter, we define the displacement s, which describes
how the two peaks are separated from each other. Then we
adopt a Gaussian distribution at the origin O as the initial
distribution, that is, Uinit (x, y) = (x2 + y2)/(2σ 2), and we let
the protocol between t ∈ [0, τ ] be

U (x, y; t ) =
(

1 − t

τ

)
Uinit (x, y) + t

τ
Uend(x, y). (36)

We sweep the displacement s to reveal how the arrange-
ment of the peaks of the distributions affects the HJE and LJE.
Moreover, we let τ = 2π

√
σ 2, where Wdiss of the HJE in the

parallel transport protocol given by Eq. (18) vanishes.
We plot the error of the estimated Z/Z0 as a function

of s in Fig. 5(b), which shows that the HJE has an error
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FIG. 5. Illustration of the target distribution and error of the estimated partition function. (a) Plot of the target distribution. The distribution
is a mixture of Gaussian distributions, and the peaks are located at points P = (a, s) and Q = (a, −s). We define the displacement s given by
the distance between the x-axis and the peaks of the target distribution so as to characterize their arrangement. (b) Error for the HJE and LJE,
which are depicted by a red solid curve with dots and a blue dashed curve with dots, respectively, as a function of s, where τ = 2π , σ 2 = 1,
and a = 10. We generated 10 trajectories at each s to estimate the partition function and repeated the procedure 1000 times for the HJE and
LJE. The settings for the numerical schemes are the same as in Sec. IV A.

significantly smaller than that of the LJE for any displacement
s. Moreover, although the error of the LJE increases rapidly as
a function of s, that of the HJE increases only slightly. These
results can be explained by the analysis of parallel transport
in Sec. III A. When s = 0, the target distribution is a Gaussian
distribution, as explained by the analysis in Sec. III A, which
demonstrates that the error of the HJE vanishes regardless
of the distance between the peaks of the initial and final
distributions. This suggests that the significantly small error
of the HJE in this experiment is due to the protocol being
approximately decomposable into two independent parallel
transports: on a harmonic potential moving from O to P and
the other one moving from O to Q. As displacement s grows,
the peaks of the target distribution separate from each other
and the distance becomes large between the points P or Q,
which are the means of the peaks, and the origin O, which
is the mean of the initial distribution. If the protocol can be
considered as a parallel transport, the distance between O and
P or Q has no effect on the performance of the HJE, while the
error of the LJE increases as a function of the distance. These
are the reasons why the qualitative difference appears in the
experiment shown in Fig. 5(b).

C. Multimodal distribution

In this experiment, we employ a distribution with many
peaks to demonstrate the effectiveness of the HJE for mul-
timodal distributions. We let the dimension of the state space
q be 16 and the target distribution defined over q is

f eq
end(q) = 1

Z
exp ( − U (q; τ )), (37)

Uend(q) = −ln

{
N∑

i=1

exp(− cosh ‖q − μi‖2)

}
, (38)

where N is the number of peaks and μi is the location of the
ith peak.

We use a zero-mean Gaussian distribution with a variance
σ 2 as the initial distribution:

f eq
init (q) = 1

2πσ 2
exp

(
−‖q‖2

2

2σ 2

)
. (39)

Then we let the protocol during t ∈ [0, τ ] be

U (q; t ) =
(

1 − t

τ

)‖q‖2
2

2

+ t

τ

(
−ln

{
N∑

i=1

exp
(
− cosh

∥∥∥q − μi
t

τ

∥∥∥
2

)})
.

(40)

We sweep the number of peaks N from 1 to 256 in order
to reveal how the performance of the HJE scales as the target
distribution has more peaks. For each N , we test 20 sets of
{μi}N

i=1, which are randomly sampled from a Gaussian distri-
bution N (0, 25).

We plot the error of the estimators of Z/Z0 in Fig. 6 as
a function of N , which shows that the error of the HJE is
substantially smaller that that of the LJE for all N . Roughly
speaking, the HJE accurately estimates the order of the ground
truth, while the LJE differs by two digits. This result can be
explained by the theoretical analysis in Sec. III and the pre-
vious experiment on a Gaussian mixture model in Sec. IV B.
The protocol in this experiment can be approximated by in-
dependent parallel transport from the initial distribution to
peaks in the target distribution, where the HJE has been
demonstrated to perform well. On the other hand, the peak
in the initial distribution and those in the target distribution
have different shapes in terms of the second- or higher-order
moments, which results in the increment of the variance of the
estimator as shown in the theoretical analysis of the scaling
protocol in Sec. III B. Then we conclude that the reason for the
success of the HJE in this experiment is because the contribu-
tion of parallel transport is more substantial than deterioration
by scaling, which is suggested by the theoretical analysis of
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FIG. 6. Error of the estimated partition function for the HJE and
LJE, which are depicted by red dots and blue circles, respectively,
as a function of N characterizing multimodal distributions in 16-
dimensional space. Points at each N correspond to different sets of
{μi}. The ground truth of Z is numerically obtained as in Appendix I.
We tested 20 sets of {μi}. Then, we generated 1000 trajectories
for each set to estimate the partition function, and we repeated the
procedure 10 times for the HJE and LJE. The duration of the process
is τ = 4π . The settings for the numerical schemes are the same as in
Sec. IV A.

the protocol that includes both parallel transport and scaling
in Sec. III C.

D. Stretching polymer chain in a solvent

Finally, we clarify the meaning of the virtual dynamics of
our method and its efficacy through an experiment using the
stretching Rouse model, which is an ideal polymer chain in a
solvent [32,33]. In the model, a polymer chain is split into
subsections that show rubberlike behavior. The subsections
are considered beads with no volume and connected to ad-
jacent elements with harmonic springs. The beads follow the
Langevin dynamics. Note that each bead in the Rouse model
corresponds not to a molecule but to a segment of a molecular
chain.

We conduct a numerical experiment stretching the chain
with two optical traps. One trap grabs one end point of the
chain and is fixed at its initial position, and the other grabs
the other end point of the chain and moves to the target
position. The interaction between the traps and the grabbed
beads is also modeled as harmonic springs [34]. To formulate
the system, we consider a series of elements: an optical trap,
N beads, and the other trap, each connected with springs. We
represent the position of the ith element by the scalar value
qi: q0 for the first trap, q1, . . . , qn for beads, and qN+1 for the
other trap. The system is illustrated in Fig. 7(a).

Note that in the proposed method, the beads are consid-
ered to be free particles, which have no physical counterparts
because the subsection-dividing coarse-graining in the Rouse
model is valid only when the polymer is in a solvent or other
similar circumstances, but not in a vacuum.

100 101 102

Duration

(b)

(a)

τ

100

101

102

E
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or
of

ln
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/Z
0)

HJE

LJE

FIG. 7. Illustration of the stretched Rouse model and the error
of the estimated partition function. (a) Model description. A Rouse
model consists of N beads of positions q1 to qN and harmonic springs
connecting them with spring constants k2 to kN . Each end point of
the chain is held by optical laser traps with positions q0 and qN+1

and spring constants k0 and kN+1, respectively. The right trap moves
at a constant velocity v = μ/τ . (b) Error of the estimated partition
function with the protocol of the stretching Rouse model for the
HJE and LJE, depicted by a red solid curve with dots and a blue
dashed curve with dots, respectively, as a function of τ . The model is
characterized by N = 100, μ = 20, and kn = 1 for n = 1, . . . , N . We
generated 10 trajectories at each τ to estimate the partition function
and repeated the procedure 2000 times for both the HJE and LJE.
The settings for the numerical schemes are the same as in Sec. IV A.

The potential energy of the chain is given by

U (q; t ) =
N+1∑
n=1

kn

2
(qn − qn−1)2, (41)

where kn is the strength of the nth spring connecting elements
n and n + 1.

We consider a linear protocol moving the trap position
from 0 to μ at a constant velocity μ/τ . That is, the initial
and final distributions are

f eq
init (q) = 1

Z0
exp ( − U (q; 0)), (42)

f eq
end(q) = 1

Z
exp ( − U (q; τ )), (43)

and the position of the moving trap is described by qN+1(t ) =
tμ/τ . The exact solution of Z for this model is characterized
by the position of the moving trap qN+1:

Z (qN+1) =
√

(2π )n

det A
exp

(
−1

2
k̄q2

N+1

)
, (44)
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where A is a trigonal matrix with elements An,n = kn + kn+1,
An,n+1 = −kn+1, and An,n−1 = −kn, and k̄ is the harmonic
mean of kn satisfying 1/k̄ = ∑N+1

n=1 1/kn [34]. The initial dis-
tribution f eq

init (q) is a Gaussian distribution with a mean of zero
and a covariance matrix A−1.

We sweep the duration of the process τ and plot the error
of the estimated Z/Z0 for N = 100 in Fig. 7(b), in which the
error for the HJE decreases faster and becomes smaller than
that for the LJE as τ increases. Therefore, for large enough τ ,
the HJE outperforms the LJE in terms of fast convergence.

We now provide a theoretical explanation for the result.
The distribution of positions during the time development is
Gaussian, and its mean and variance are given as follows [34]:

〈q〉 = A−1h, (45)

〈(q − 〈q〉)(qT − 〈qT 〉)〉 = A−1, (46)

where hT = (0, 0, . . . , 0, kN+1qN+1(t )) is time-dependent.
Therefore, the protocol can be considered to represent parallel
transport of the peak in a distribution of positional states.
Then, as we showed theoretically in Sec. III A, the HJE
achieves faster convergence than the LJE for parallel trans-
port. Thus, the HJE works well for this experiment.

V. CONCLUDING REMARKS

In this paper, we have addressed the problem of slow
convergence of Jarzynski estimators for partition functions
by introducing deterministic virtual trajectories instead of the
original stochastic trajectories. We proved that our method
achieves second-order acceleration with respect to the du-
ration of simulated dynamics and furthermore zero-variance
estimation in the case of harmonic potentials. Then, we nu-
merically showed that the HJE outperforms the LJE in four
examples, and we provided theoretical explanations of why
the HJE exhibits better performance in the examples. In short,
it is suggested that if the protocol can be approximated by
some independent parallel transport protocols, the error of
the HJE decreases faster than that of the LJE as the duration
τ grows. We suggest that probability distributions modeling
multistable systems would satisfy this requirement.

The HJE uses the Hamiltonian dynamics to make the
simulated trajectories deterministic. Theoretical analysis of
parallel transport, scaling with a constant mass, and rotation
of potentials implies that if the eigenfrequency of the initial
distribution is preserved through the process, as in the cases
of parallel transport and rotation, each trajectory of the HJE
is less dissipative than when the frequency varies, which is
the case of scaling. Furthermore, the HJE can compensate
for the variation of the eigenfrequency during a process if an
appropriate time-dependent mass is employed, as is the case
of scaling with a time-dependent mass.

In addition to the above advantages, our work enables the
employment of efficient and accurate ODE solvers when sim-
ulating the nonequilibrium process. Considering that the LJE
needs to solve stochastic differential equations, this property
makes the present method easier to apply.

Despite the fact that there are cases where Wdiss of the HJE
does not converge to zero even in the case of τ → ∞, like

the scaling protocol shown in Sec. III B, our work has the
potential to be a dramatically efficient estimator of partition
functions, especially for multistable systems. The HJE is a
fundamental improvement of the LJE, so various future works
based on the HJE could be expected to address its limitations,
as many efficient methods have been developed based on the
LJE. We presume that time-dependent mass, which we used
in the scaling protocol in Sec. III B, is particularly promising
for the HJE.
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APPENDIX A: Wdiss OF THE LJE FOR PARALLEL
TRANSPORT

We derive Wdiss of the LJE for the parallel transport pro-
tocol. When a state q of a system satisfies the Langevin
dynamics, the time development of the probability distri-
bution of the system f (q, t ) is described by following the
Fokker-Planck equation [35] under the condition of the in-
verse temperature β = 1:

∂ f (q, t )

∂t
= ∂

∂q

[
∂U (q; t )

∂q
+ ∂

∂q

]
f (q, t ). (A1)

Using Eq. (A1), we obtain the time derivative of the average
and variance of position, which are denoted as 〈q(t )〉 and 〈〈q〉〉
at time t :

d〈q(t )〉
dt

= −
∫

∂U (q; t )

∂q
f (q, t )dq, (A2)

d〈〈q(t )〉〉
dt

= −2
∫

q
∂U (q; t )

∂q
f (q, t )dq + 2 − 2μ(t )

dμ(t )

dt
.

(A3)

With the setting in Sec. III A, by solving Eqs. (A2) and (A3),
we obtain

〈q(t )〉 = μτ

τ

[
t − σ 2

(
1 − e

− t
σ2

0

)]
, (A4)

〈〈q(t )〉〉 = σ 2
0 . (A5)

We can verify that the distribution of the states at time t is
a Gaussian distribution with mean μ(t ) and variance σ 2(t ) by
substituting f (q, t ) into Eq. (A1). Finally, with the definitions
of work W [Eq. (6)] and Wdiss [Eq. (13)] we obtain Eq. (17).

APPENDIX B: Wdiss OF THE HJE FOR PARALLEL
TRANSPORT

We derive Wdiss of the HJE for the parallel transport
protocol. To obtain the dissipative work Wdiss, we calculate
the Kullback-Leibler (KL) divergence between the equilib-
rium distribution f eq

end corresponding to the final Hamiltonian
H (q, p; τ ) and the realized distribution fend at the end of the
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process because the following equality holds [36]:

Wdiss = DKL
(

fend

∥∥ f eq
end

)
:=

∫
fend(q(τ ), p(τ ))ln

fend(q(τ ), p(τ ))
f eq
end(q(τ ), p(τ ))

dq(τ )d p(τ ).

(B1)

With the setting in Sec. III A, by solving the Hamiltonian
dynamics with an initial condition (q0, p0) we have the final
state (q(τ ), p(τ )) as

q(τ ) =
(

p0√
m0

− μτ

τ

)
σ sin

τ√
m0σ

+ q0 cos
τ√
m0σ

+ μτ ,

(B2)

p(τ ) =
(

p0√
m0

− μτ

τ

)
cos

τ√
m0σ

−
√

m0q0

σ
sin

τ√
m0σ

+ m0μτ

τ
. (B3)

Then, Liouville’s theorem [37], which describes that the
Hamiltonian dynamics preserves the density of states along
each trajectory, is used to obtain the final distribution as

fend(q(τ ), p(τ )) = f eq
init (q0, p0). (B4)

Finally, we can calculate the KL divergence as

DKL
(

fend

∥∥ f eq
end

)
=

∫
f eq
init(q(τ ), p(τ ))ln

f eq
init(q(τ ), p(τ ))

f eq
end(q(τ ), p(τ ))

dq(τ )d p(τ )

=
∫

f eq
init(q(τ ), p(τ ))ln

f eq
init(q(τ ), p(τ ))

f eq
end(q(τ ), p(τ ))

dq0d p0

= m0μ
2
τ

τ 2

(
1 − cos

τ√
m0σ

)
, (B5)

where the second equality holds because the Jacobian for the
variable transformation q(τ ) → q0 and p(τ ) → p0 is 1. With
Eqs. (B1) and (B5) we obtain Eq. (18).

APPENDIX C: Wdiss OF THE LJE FOR SCALING

We derive Wdiss for the scaling protocol. We obtain a
differential equation on the variance of position 〈〈q(t )〉〉 by
substituting U (q; t ) given by Eq. (21) for Eq. (A3):

d〈〈q(t )〉〉
dt

= σ 2
τ (τ − t ) + σ 2

0 t

σ 2
0 σ 2

τ τ
〈〈q(t )〉〉 + 2. (C1)

Then, the average work exerted during the process is

〈W 〉 =
〈∫ τ

0

∂U (q; t )

∂t
dt

〉

=
∫ τ

0

σ 2
0 − σ 2

τ

2σ0σ 2
τ τ

〈〈q(t )〉〉dt . (C2)

We can calculate Eq. (C2) by solving Eq. (C1) numerically.
Finally, we obtain Wdiss by subtracting �F = −ln[στ /σ0].

Next, we derive Wdiss for the scaling protocol given by
Eq. (22). The derivative of the variance of position is

d〈〈q(t )〉〉
dt

= 2(1 − e− γ t
τ )〈〈q(t )〉〉. (C3)

Then, the average work exerted during the process is

〈W 〉 =
∫ τ

0
− γ

2σ 2
0 τ

e− γ t
τ 〈〈q(t )〉〉dt . (C4)

We can calculate Eq. (C4) by solving Eq. (C3) numerically.
Finally, we obtain Wdiss by subtracting �F = −ln[σ 2

τ /σ 2
0 ].

APPENDIX D: Wdiss OF THE HJE FOR SCALING

We derive Wdiss of the HJE for the scaling protocol. The
distribution during the process is not Gaussian in this case,
but we approximate the distribution with a Gaussian distri-
bution. This approximation is valid when the system is near
equilibrium during the process.

When a state (q, p) of a system satisfies the Hamiltonian
dynamics, the time development of the probability distribution
of the system f (q, p, t ) is described by Liouville’s equa-
tion [37]:

∂ f

∂t
+

n∑
i=1

(
∂ f

∂qi

dqi

dt
+ ∂ f

∂ pi

d pi

dt

)
= 0, (D1)

where n is the dimension of q and p.
Similar to the case of the Fokker-Planck equation in Ap-

pendix A, we use Eq. (D1) to obtain the time derivatives of
states’ variance 〈〈 · 〉〉 and covariance 〈〈·, ·〉〉 at time t under the
protocol given by Eq. (21):

d〈〈q(t )〉〉
dt

= 2〈〈q(t ), p(t )〉〉, (D2)

d〈〈p(t )〉〉
dt

= −2〈〈q(t ), p(t )〉〉σ
2
τ τ + (

σ 2
0 − σ 2

τ

)
t

σ 2
0 σ 2

τ τ
, (D3)

d〈〈q(t ), p(t )〉〉
dt

= 1

σ 2
0 σ 2

τ τ

([〈〈p(t )〉〉σ 2
0 − 〈〈q(t )〉〉]σ 2

τ τ

−〈〈q(t )〉〉(σ 2
0 − σ 2

τ

)
t
)
. (D4)

By solving Eqs. (D2)–(D4), we can calculate 〈W 〉 given by
Eq. (C2).

Next, we derive Wdiss of the HJE for the scaling protocol
with time-dependent mass. With the setting in Sec. III B, by
solving the Hamiltonian dynamics with an initial condition
(q0, p0), we have the final state (q(τ ), p(τ )) as

q(τ ) = e
γ

2 (c1 cos ωτ + c2 sin ωτ ), (D5)

p(τ ) = 1

σ 2
0

e− γ

2

{
γ

2τ
(c1 cos ωτ + c2 sin ωτ )

+ (−c1ω sin ωτ + c2ω cos ωτ )

}
, (D6)

where

ω =
√

4τ 2/α − γ 2

2τ
, (D7)

c1 = q0, (D8)

c2 = 1

ω

(
σ 2

0

α
p0 − γ

2τ
q0

)
(D9)
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for τ >
√

α|γ |/2. Then we have the distribution at t = τ and
we obtain Wdiss in Eq. (25) by calculating the KL divergence
in the same way as in Appendix B.

APPENDIX E: Wdiss OF THE LJE FOR PARALLEL
TRANSPORT AND SCALING

We derive Wdiss of the LJE for the protocol that includes
both parallel transport and scaling. We obtain differential
equations for the average and variance of position 〈q(t )〉 and
〈〈q(t )〉〉 by substituting U (q; t ) in Sec. III C for Eqs. (A2) and
(A3):

d〈q(t )〉
dt

= aμt2 − [a〈q(t )〉 − μ]τ t − τ 2〈q(t )〉
τ 2σ 2

, (E1)

d〈〈q(t )〉〉
dt

= −2
a〈〈q(t )〉〉t + [〈〈q(t )〉〉 − σ 2]τ

τσ 2
. (E2)

Then, the average work exerted during the process is

〈W 〉 =
〈∫ τ

0

∂U (q; t )

∂t
dt

〉

=
∫ τ

0

[
a

2στ

{
〈〈q(t )〉〉 + 〈q(t )〉2 − 2μt

τ
〈q(t )〉 +

(μt

τ

)2
}

− 1 + a t
τ

σ 2

μ

τ

(
〈q(t )〉 − μt

τ

)]
dt . (E3)

We can calculate Eq. (E3) by solving Eqs. (E1) and (E2)
numerically. Finally, we obtain Wdiss by subtracting �F =
1/2ln(1 + a) from 〈W 〉.

APPENDIX F: Wdiss OF THE HJE FOR PARALLEL
TRANSPORT AND SCALING

We derive Wdiss of the HJE for the protocol that includes
both parallel transport and scaling. In the same manner as in
Appendix D, we obtain the time derivatives of states’ average
〈 · 〉, variance 〈〈 · 〉〉, and covariance 〈〈·, ·〉〉 at time t with the
setting in Sec. III C:

d〈q(t )〉
dt

= 〈p(t )〉, (F1)

d〈p(t )〉
dt

= aμt2 − [a〈q(t )〉 − μ]tτ − τ 2〈q(t )〉
τ 2σ 2

, (F2)

d〈〈q(t )〉〉
dt

= 2〈〈q(t ), p(t )〉〉, (F3)

d〈〈p(t )〉〉
dt

= −2〈〈q(t ), p(t )〉〉(at + τ )

τσ 2
, (F4)

d〈〈q(t ), p(t )〉〉
dt

= −at〈〈q(t )〉〉 − [σ 2〈〈p(t )〉〉 − 〈〈q(t )〉〉]τ
τσ 2

. (F5)

Then, the average work 〈W 〉 is described by Eq. (E3), which
is the same as that used for the LJE. This is because the work
exerted during a process only depends on a potential energy
function.

We can calculate 〈W 〉 by solving Eqs. (F1)–(F5) numeri-
cally and finally obtain Wdiss by subtracting �F = 1/2ln(1 +
a) from 〈W 〉.

APPENDIX G: Wdiss OF THE LJE FOR ROTATION

We derive Wdiss of the LJE for the rotation protocol. In the
same manner as in Appendix C, we obtain the time derivatives
of states’ average 〈 · 〉, variance 〈〈 · 〉〉, and covariance 〈〈·, ·〉〉 at
time t with the setting in Sec. III D:

d〈〈x(t )〉〉
dt

= −4〈〈x(t )〉〉(a cos θ (t )2 + b sin θ (t )2)

+4〈〈x(t ), y(t )〉〉(a − b) cos θ (t ) sin θ (t ) + 2,

(G1)

d〈〈y(t )〉〉
dt

= −4〈〈y(t )〉〉(b cos θ (t )2 + a sin θ (t )2
)

+ 4〈〈x(t ), y(t )〉〉(a − b) cos θ (t ) sin θ (t )+2,

(G2)

d〈〈x(t ), y(t )〉〉
dt

= 2[〈〈x(t )〉〉 + 〈〈y(t )〉〉]
×(a − b) × cos θ (t ) sin θ (t )

−2〈〈x(t ), y(t )〉〉(a + b). (G3)

Then, the time derivative of U (x, y; t ) given by Eq. (30) is

∂U (x, y; t )

∂t
= 2

dθ

dt
{(a − b) sin θ (t ) cos θ (t )(−x2 + y2)

− (a − b)(cos2 θ − sin2 θ )xy}. (G4)

We describe Wdiss by x, y, and θ with the expected value of
Eq. (G4):

Wdiss =
〈∫ τ

0

∂U (x, y; t )

∂t
dt

〉

=
∫ τ

0

〈
∂U (x, y; t )

∂t

〉
dt

=
∫ τ

0
2

dθ

dt
{(a − b) sin θ (t ) cos θ (t )(−〈x2〉 + 〈y2〉)

− (a − b)(cos2 θ (t ) − sin2 θ (t ))〈xy〉dt}. (G5)

The expected values in Eq. (G5) can be obtained by numeri-
cally solving Eqs. (G1)–(G3).

APPENDIX H: Wdiss OF THE HJE FOR ROTATION

We derive Wdiss of the HJE for the rotation protocol. In the
same manner as in Appendix D, we obtain the time derivatives
of states’ average 〈 · 〉 at time t under the setting in Sec. III D:

d〈x2〉
dt

= 2〈xpx〉, (H1)

d〈y2〉
dt

= 2〈ypy〉, (H2)

d〈p2
x〉

dt
= −4[a cos2 θ (t ) + b sin2 θ (t )]〈xpx〉

+ 4(a − b) sin θ (t ) cos θ (t )〈ypx〉, (H3)

d
〈
p2

y

〉
dt

= −4[b cos2 θ (t ) + a sin2 θ (t )]〈ypy〉
+4(a − b) sin θ (t ) cos θ (t )〈xpy〉, (H4)
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d〈xpx〉
dt

= −2[a cos2 θ (t ) + b sin2 θ (t )]〈x2〉
+2(a − b) cos θ (t ) sin θ (t )〈xy〉 + 〈

p2
x

〉
, (H5)

d〈xy〉
dt

= 〈xpy〉 + 〈ypy〉, (H6)

d〈xpy〉
dt

= −2[b cos2 θ (t ) + a sin2 θ (t )]〈xy〉
+2(a − b) sin θ (t ) cos θ (t )〈x2〉 + 〈px py〉, (H7)

d〈ypx〉
dt

= −2[a cos2 θ (t ) + b sin2 θ (t )]〈xy〉
+2(a − b) sin θ (t ) cos θ (t )〈y2〉 + 〈px py〉, (H8)

d〈px py〉
dt

= −2(a〈xpy〉 + b〈ypy〉) cos2 θ (t )

+2(a − b) sin θ (t ) cos θ (t )(〈xpx〉 + 〈ypy〉)

−2(a〈ypx〉 + b〈xpy〉) sin2 θ (t ), (H9)

d〈ypy〉
dt

= −2[b cos2 θ (t ) + a sin2 θ (t )]〈y2〉
+2(a − b) sin θ (t ) cos θ (t )〈xy〉 + 〈

p2
y

〉
. (H10)

The expected values 〈W 〉 given by Eq. (G5) can be ob-
tained by numerically solving Eqs. (H1)–(H10).

APPENDIX I: Z FOR A MULTIMODAL DISTRIBUTION

We calculate the partition function Z of the target dis-
tribution given by Eq. (39) in Sec. IV C. Considering the
superposition of distributions, Z is given by

Z = N
∫ ∞

−∞
e− cosh ‖q‖2 dq. (I1)

Therefore, we focus on the integration on the right-hand side.
Let SD−1 be the surface area of the (D − 1)-dimensional unit
sphere:

SD−1 = 2πD/2

�(D/2)
, (I2)

where �(x) is the Gamma function. In D-dimensional polar
coordinates, Eq. (I1) is

Z = NSD−1

∫ ∞

0
e− cosh rrD−1dr. (I3)

We can obtain Z for D = 16 and arbitrary N by numerically
calculating Eq. (I3).
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