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Color-flavor reflection in the continuum limit of two-dimensional lattice gauge theories
with scalar fields
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We address the interplay between local and global symmetries in determining the continuum limit of two-
dimensional lattice scalar theories characterized by SO(Nc ) gauge symmetry and non-Abelian O(Nf ) global
invariance. We argue that, when a quartic interaction is present, the continuum limit of these models corresponds
in some cases to the gauged nonlinear σ model field theory associated with the real Grassmannian manifold
SO(Nf )/(SO(Nc ) × SO(Nf − Nc )), which is characterized by the invariance under the color-flavor reflection
Nc ↔ Nf − Nc. Monte Carlo simulations and finite-size scaling analyses, performed for Nf = 7 and several
values of Nc, confirm the emergence of the color-flavor reflection symmetry in the scaling limit and support the
identification of the continuum limit.
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I. INTRODUCTION

Global and local symmetries are cornerstones of our
understanding of many different physical phenomena, rang-
ing from high energy physics to many-body systems in
condensed-matter physics [1,2]. Global symmetries character-
ize fundamental features of a physical model, like its phase
diagram and energy spectrum [3]. Gauge symmetries, instead,
constrain the form of the possible interactions, are respon-
sible for the presence of Higgs phases, and are necessary
to describe some emergent phenomena in condensed-matter
systems [4,5].

The nature of the interplay between local and global
symmetries at a phase transition is a long-standing issue
[6–10], which, however, is still not completely clarified. Two-
dimensional scalar models with local and global symmetries
are perfect playgrounds to investigate this topic, since their
critical properties can be studied by means of numerical
simulations requiring only a moderate computational effort.
In particular, recent works have considered two-dimensional
scalar models with orthogonal local symmetries [11,12]
and models with unitary local symmetries and scalar mat-
ter transforming in different representations of the gauge
group [13,14].

According to the Mermin-Wagner theorem [15], in two-
dimensional systems the critical behavior associated with the
breaking of a continuous global symmetry can be observed
only in the zero-temperature limit. This obviously remains
true also for gauge models, but in this case two different
classes of low-temperature behavior can a priori be expected
to emerge, depending whether the gauge degrees of freedom
are or are not critical at the transition.

For most of the two-dimensional gauge models studied
so far (see, e.g., Refs. [11–13]), gauge degrees of free-
dom do not develop long-range correlations at the transition.
In these cases gauge symmetry does not seem to play a

pivotal role in determining the low-temperature universal crit-
ical behavior: the size of the gauge group (i.e., Nc) does
not influence the critical low-temperature regime, just like
the specific matter field representation. Also in this case,
however, gauge symmetry plays in fact a fundamental role:
that of selecting the critical degrees of freedom, preventing
non-gauge-invariant observables from developing critical cor-
relations. Gauge fields are instead expected to become critical
for some values of the parameters of the model studied in
Ref. [14], where this fact was attributed to the presence of
quartic scalar field interactions (see Refs. [16–18] for the
analogous three-dimensional case).

The aim of this paper is to extend the results of
Refs. [11,14] by studying a lattice model characterized by
SO(Nc) local invariance, multicomponent scalar fields trans-
forming in the fundamental representation of the color group,
and non-Abelian O(Nf ) global symmetry together with a
quartic interaction. This field content is indeed better suited
than the one used in Ref. [14] to investigate a peculiar sym-
metry between Nc and Nf , that we expect to emerge in the
continuum limit. The origin of this symmetry is the following:
we will argue the continuum limit of the model studied in
this paper to be (at least in some regions of the parameter
space) the nonlinear σ model (NLσM) field theory asso-
ciated with the Grassmannian manifold SO(Nf )/(SO(Nc) ×
SO(Nf − Nc)). Since this manifold is clearly invariant under
the exchange Nc ↔ Nf − Nc, we expect this “color-flavor re-
flection symmetry” to characterize also the low-temperature
critical behavior of the gauge model. A numerical verifica-
tion of the emergence of this symmetry will strongly support
the identification of the continuum limit with the Grassmann
NLσM field theory.

The paper is organized as follows: In Sec. II we present
the lattice model. In Sec. III we discuss its minimum-energy
configurations controlled by the quartic interaction and iden-
tify the different continuum limits exhibited by the lattice
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model in the space of parameters. In Sec. IV we introduce
the observables and the finite-size scaling (FSS) theory used
in actual numerical analyses. In Sec. V we present our numer-
ical results, in Sec. VI we finally draw our conclusions and
present possible outlooks of our work. Some technical details
concerning the algorithms and the Monte Carlo simulations
are reported in the Appendix.

II. THE LATTICE MODEL

The matter field of the lattice model studied in this work is
a multicomponent real scalar field �iα

x , where i = 1, . . . , Nc

and α = 1, . . . , Nf stand for the “color” and the “flavor”
indices, respectively, and x = (x1, x2) denotes the position
on the lattice. For the sake of simplicity we will adopt the
unit-length (London limit) constraint Tr�t

x�x = 1, which is
not expected to alter the critical behavior of the model.

To define the lattice Hamiltonian, we start from the most
general quartic interaction for the field �iα compatible with
the O(Nc) × O(Nf ) global invariance, i.e., from the lattice
NLσM with Hamiltonian

Hσ = −Nf

∑
x,μ>0

Tr�t
x�x+μ̂ + w

∑
x

Tr�t
x�x�

t
x�x, (1)

where μ̂ = 1̂, 2̂ denotes a lattice vector, the coefficient of the
first term has been normalized to Nf , and periodic boundary
conditions in all directions are assumed. The lattice gauge
model is obtained by gauging the color degrees of freedom
of the matter field, coupling them to a link variable Ux,μ ∈
SO(Nc) following Wilson’s prescription [19].

The complete Hamiltonian can thus be written in the form

H = HK (�x,Ux,μ) + V (�x) + HG(Ux,μ). (2)

In this expression HK (�,U ) and V (�) represent the scalar
field kinetic energy and the quartic interaction, respectively,
which are defined as follows:

HK (�x,Ux,μ) = −Nf

∑
x,μ>0

Tr�t
xUx,μ�x+μ̂, (3)

V (�x) = w
∑

x

Tr�t
x�x�

t
x�x. (4)

The last term HG(Ux,μ) in Eq. (2) represents instead the kinetic
term of the gauge field, and it is written by means of the
plaquette operator �x in the usual Wilson form:

HG(Ux) = − γ

Nc

∑
x

Tr�x, (5)

�x = Ux,1Ux+1̂,2U
t
x+2̂,1U

t
x,2. (6)

The model is characterized by a gauge SO(Nc) invariance
under the local transformation

�x �→ Wx�x, Ux,μ �→ WxUx,μW t
x+μ̂, (7)

where Wx ∈ SO(Nc), and by a global O(Nf ) invariance under
�x �→ �xM, with M ∈ O(Nf ). The partition function of the
statistical model is finally defined by

Z =
∑
{�,U }

e−βH , (8)

where β plays the role of the inverse temperature.

The Hamiltonian in Eq. (2) has several limiting cases
which correspond to known and already studied models. For
w = 0 and γ = ∞ it trivially reduces to the standard O(NcNf )
model, while for w = 0 and finite γ it reduces to the model
studied in Ref. [11]. The case Nc = 2 for w = 0 is quite
peculiar, since the global symmetry is not O(Nf ) but U(Nf )
(see Ref. [20]). Finally, as will be clear from the analysis of
the minimum-energy configurations carried out in the next
section, when Nf > Nc the Hamiltonian reduces in the limit
w = ∞ and γ = ∞ to that of the so-called Stiefel models,
which are the NLσMs defined on the homogeneous spaces
SO(Nf )/SO(Nf − Nc) [21–23].

In this work we will mainly focus on the case γ = 0,
as we do not expect the gauge coupling to play a relevant
role at criticality in two dimensions (apart from crossover
effects in the limit γ → ∞), just as in all previously studied
cases [11–14].

III. MINIMUM-ENERGY CONFIGURATIONS AND
CONTINUUM LIMITS

In this section we identify the minimum-energy configu-
rations of the gauge model in Eq. (2), which are expected to
be the ones characterizing the low-temperature (β → +∞)
critical behavior of the model. The minimum-energy con-
figurations are selected by the quartic interaction, and their
determination uses arguments that partially retrace those used
in Refs. [14,18].

By means of the singular value decomposition, the scalar
field matrix �iα

x can be rewritten as follows:

�iα
x =

Nc∑
j=1

Nf∑
δ=1

Ci j
x D jδ

x Fαδ
x , (9)

where C and F are two square matrices in O(Nc) and
O(Nf ), respectively, D = diag{s1, . . . , sq} is an Nc × Nf ma-
trix with non-negative diagonal entries, and q ≡ min[Nc, Nf ].
The fixed-length constraint becomes

Tr�t
x�x =

q∑
i=1

s2
i = 1, (10)

and the the quartic potential term is equal to

Tr�t
x�x�

t
x�x =

q∑
i=1

s4
i . (11)

The explicit form of the minimum-energy configurations is
fixed by the sign of the quartic coupling w:

(1) s1 = 1, s2 = s3 = · · · = sq = 0 if w < 0.
(2) s1 = · · · = sq = 1/

√
q if w > 0.

The residual symmetry of these minima determines the
low-temperature critical behavior of the model, which is thus
expected to be different for positive or negative values of the
coupling w. The case w = 0 requires special attention and,
apart from a few cases in which analytical results can be
obtained (see Refs. [14,18]), we have to rely on numerical
simulations for the identification of the critical behavior when
w = 0.

When configurations of type (i) dominate the partition
function (i.e., for w < 0), the continuum limit is expected to
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be the same as the RPNf −1 model [11,14]. The simplest way
to understand this fact is to note that, by using configurations
of type (i), it is possible to construct the gauge-invariant
composite field Bx = �t

x�x, which behaves as a rank-1 real
space projector (i.e., B2

x = Bx = Bt
x and TrBx = 1). Indeed the

RPNf −1 model describes the dynamics of a rank-1 projector
Px in an Nf -dimensional space. By introducing the unit-length
vector Sx using the definition Pαδ

x = Sα
x Sδ

x, the action of the
RPNf −1 model can be written as [24–27]

HRP = −
∑
x,μ

TrPxPx+μ̂ = −
∑
x,μ

(Sx · Sx+μ̂)2, (12)

which displays the two main features of the RPNf −1 universal-
ity class: O(Nf ) global invariance and Z2 local invariance. We
thus expect the SO(Nc) symmetry not to play any significant
role in the continuum limit of the model for w < 0. Moreover,
in Ref. [11] it was numerically shown that the same is also true
for the case w = 0, and for all the values of γ investigated.

We can now discuss the case in which the dominant config-
urations are those of type (ii). Using an argument analogous
to that used for the unitary groups in Ref. [18], it is possible
to show that if Nf � Nc there is no residual global symme-
try for the field �x in this case; hence no critical behavior
at all is expected in the low-temperature limit when w > 0
(see Ref. [14] for a numerical check). For this reason, in the
following, we will assume Nf > Nc; hence q = Nc. As for
the case of type (i) minima, it is convenient to introduce a
gauge-invariant composite field, which is now B̃x = Nc�

t
x�x.

It is indeed simple to show, using the explicit form of the type
(ii) minima, that B̃2

x = B̃x = B̃t
x and TrB̃x = Nc; hence B̃x is

a rank-Nc real space projector. The lattice NLσM written by
using B̃x, whose Hamiltonian is

HG = −
∑
x,μ

TrB̃xB̃x+μ̂, (13)

is a possible discretization of the NLσM field theory associ-
ated with the real Grassmannian manifolds

SO(Nf )/(SO(Nc) × SO(Nf − Nc)), (14)

where we have neglected discrete subgroups that, as usual, are
not expected to play any role in the zero-temperature limit.

The same conclusion about the global symmetry breaking
pattern for w > 0 can be reached also in another way, by using
as an effective model the Hamiltonian HK (�x,Ux,μ), with
the field �x restricted to be of the form (ii). Introducing the
rescaled field �̃x = √

Nc�x, the effective model Hamiltonian
is written as

Hw→∞
K = −Nf

Nc

∑
x,μ

Tr�̃t
xUx,μ�̃x+μ. (15)

By using essentially the same arguments discussed in
Ref. [18] for the unitary group case, one obtains again for the
global invariance group of Hw→∞

K the expression in Eq. (14)
(again up to discrete groups).

Two-dimensional Grassmannian NLσM field theories have
been introduced in Refs. [28,29], are known to be asymptot-
ically free [3,29], and their β functions are known up to four
loops in dimensional regularization [30]. Since Grassmann
manifolds are invariant under the color-flavor reflection Nc ↔

Nf − Nc, our study of the minimum-energy configurations
leads us to expect this symmetry to emerge in the critical
low-temperature behavior of the lattice model in Eq. (2) when
w > 0. We explicitly note that this symmetry is present also
when w < 0; however, in that case it is realized in a somehow
trivial way: the critical behavior is expected to always be that
of the RPNf −1 model, for all Nc values. In Sec. V we will
provide numerical evidence that, for w > 0, the universal FSS
curves of the lattice model considered in this paper do depend
on Nc and that the color-flavor reflection symmetry is realized.

We close this discussion by noting that the second ap-
proach used above to identify the invariance group when
w > 0, and in particular the effective Hamiltonian in Eq. (15),
is especially convenient to clarify the relation of the model
we are studying with the Stiefel models. In the limit γ → ∞
we have Ux,μ → 1 up to gauge transformations (at least in the
thermodynamic limit). Moreover, it is immediate to verify that
for type (ii) minima the following relation holds true:

�̃x�̃
t
x = 1Nc×Nc , (16)

where 1Nc×Nc denotes the Nc × Nc identity matrix (note that
this relation is gauge invariant although color indices are not
contracted). For γ → ∞ the Hamiltonian Hw→∞

K in Eq. (15)
thus reduces, up to an irrelevant multiplicative factor that can
be reabsorbed in the normalization of β, to that of the Stiefel
model V(Nf ,Nc ), which is usually written as [21–23]

HS = −Nf

∑
x,μ

Trπ t
xπx+μ, (17)

where πx are Nc × Nf real matrices (with Nf > Nc) satisfying
the constraints

πxπ
t
x = 1Nc×Nc . (18)

The continuum limit of this model is described by the NLσM
field theory having the manifold SO(Nf )/SO(Nf − Nc) as tar-
get space, and which is associated to the symmetry breaking
pattern SO(Nf ) → SO(Nf − Nc) (see, e.g., Ref. [21] for more
details).

A summary graph of the different low-temperature behav-
iors expected on the basis of the residual symmetry of the
minimum-energy configurations is shown in Fig. 1.

IV. OBSERVABLES AND FINITE-SIZE SCALING

To characterize the critical behavior of the lattice models
we use Monte Carlo simulations and FSS techniques [31–33].
We focus on the bilinear local operator Qx,

Bαβ
x =

Nc∑
i=1

�iα
x �iβ

x , Qαβ
x = Bαβ

x − δαβ

Nf
, (19)

and, more specifically, on some renormalization group (RG)-
invariant quantities associated to this operator. Starting from
the two-point correlation function

G(x − y) = 〈TrQxQy〉, (20)

we can define the second-moment correlation length

ξ 2 = 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (21)
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FIG. 1. Graphical representation of the different low-
temperature continuum limits expected from the study of the
minimum-energy configurations when Nf > Nc. Minima of type
(i) (w < 0) and type (ii) (w > 0) are associated to the RPNf −1 and
Grassmannian models, respectively. The case w = 0 is numerically
found to have the same asymptotic behavior of the w < 0 cases
(see Ref. [11]). For γ → +∞ we recover the O(Nf ) vector model
when w < 0, the O(NcNf ) vector model when w = 0, and the
Stiefel model V(Nf ,Nc ) when w > 0. If Nf � Nc no critical behavior
is expected for w > 0

where G̃(p) = ∑
x eipxG(x) is the Fourier transform of G(x)

and pm = (2π/L, 0) is the minimum momentum on the lat-
tice. The first RG-invariant quantity we consider is the ratio
between the second-moment correlation length and the lattice
size,

Rξ ≡ ξ/L, (22)

and lattices with equal extent along the two directions will
always be adopted. The second RG-invariant quantity we use
is the quartic Binder cumulant U , defined by

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 = 1

L4

∑
x,y

TrQxQy. (23)

Since Rξ is found to be a monotonic function of the tem-
perature, it is convenient to use Rξ instead of β to parametrize
the Binder cumulant U , writing U (β, L) = U (Rξ , L). Indeed,
since both Rξ and U are RG-invariant quantities, the curve
U (Rξ , L) is expected to approach in the FSS limit (i.e., for
L → ∞ at fixed Rξ ) a universal scaling curve

U (Rξ , L)
FSS−→ U (Rξ ), (24)

where U (Rξ ) depends on the universality class of the transi-
tion, the lattice boundary conditions, and aspect ratio. Scaling
corrections of the form L−2 logp L are expected, as for all
asymptotically free theories (see, e.g., Ref. [34] for a detailed
analysis of the O(N ) models).

In the next section we will use Eq. (24) to investigate
whether two different lattice systems share the same uni-
versality class. We will also present some numerical results
obtained for the Stiefel models in Eq. (17). The observables
used for the Stiefel models can be obtained from the ones
defined in this section by the replacement �x → πx/

√
Nc.

0.1 0.2 0.3
Rξ

1.05

1.1

U

L=16
L=32
L=64

Nc=5, Nf =7, w=10

Nc=2, Nf =7, w=10

0.1 0.2 0.3
Rξ

1.05

1.1

U

L=16
L=32
L=64
L=128

Nc=2, Nf =7, w=10

FIG. 2. Top: Binder cumulant U versus Rξ for the case Nc = 2,
Nf = 7 and quartic coupling w = 10 (γ = 0). The solid line is a
polynomial interpolation of the L = 64 and L = 128 data, and it is
our estimate of the asymptotic curve U (Rξ ) for the Grassmannian
SO(7)/(SO(2) × SO(5)) (note that L = 64 and L = 128 data are
consistent with each other). Bottom: Binder cumulant U versus Rξ

for the case Nc = 5, Nf = 7 and quartic coupling w = 10 (γ = 0).
The solid line is the estimate of U (Rξ ) obtained from Nc = 2 data.

V. NUMERICAL RESULTS

In this section we discuss the numerical results obtained
by simulating the model defined in Eq. (2). We carried out
Monte Carlo simulations and FSS analyses for fixed Nf = 7
and several values of Nc, to check the emergence of the color-
flavor reflection symmetry Nc ↔ Nf − Nc in the asymptotic
low-temperature critical behavior when w > 0. Technical de-
tails concerning Monte Carlo simulations are postponed to the
Appendix.

In Fig. 2 we present our results for U (Rξ , L) in the models
with Nc = 2 and Nc = 5, with quartic coupling fixed to w =
10 and γ = 0. For Nc = 2 we observe that FSS corrections
are quite small, and results coming from lattice sizes L = 64
and L = 128 are consistent with each other. We thus used a
polynomial interpolation of L = 64 and 128 data to estimate
the universal scaling curve U (Rξ ) of this model. This universal
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0.1 0.2 0.3
Rξ

1.05

1.1

U
L=32
L=64
L=128

Nc=3, Nf =7, w=10

Nc=2, Nf =7, w=10

0.1 0.2 0.3
Rξ

1.05

1.1

U

L=32
L=64
L=128

Nc=4, Nf =7, w=10

Nc=3, Nf =7, w=10

Nc=2, Nf =7, w=10

FIG. 3. Top: Binder cumulant U versus Rξ for the case Nc = 3,
Nf = 7 and quartic coupling w = 10 (γ = 0). The solid line is
a polynomial interpolation of the L = 64 and L = 128 data. The
dashed line is our estimate of U (Rξ ) for the Nc = 2, Nf = 7 model.
Bottom: Binder cumulant U versus Rξ for the case Nc = 4, Nf = 7
and quartic coupling w = 10 (γ = 0). The solid line is our estimate
of U (Rξ ) for the Nc = 3, Nf = 7 model.

curve is then compared, in the bottom panel of Fig. 2, with
the results obtained for the Nc = 5 model. In this case we
observe scaling corrections larger than the ones obtained for
Nc = 2; however, data for the model with Nc = 5 are clearly
converging to the same asymptotic curve as the Nc = 2 model.
The different approaches to the asymptotic curve observed for
Nc = 2 and Nc = 5 show that color-reflection symmetry is not
a generic symmetry of the model, but an emerging symmetry
in the critical domain.

In Fig. 3 we report data for U (Rξ , L) in the models with
Nc = 3 and Nc = 4, still with quartic coupling w = 10 and
γ = 0. We can immediately note that the critical behavior
found in this case is different from the one observed when
Nc = 2 (and Nc = 5), whose universal curve U (Rξ ) is repre-
sented in Fig. 3 by the blue dashed curve. This fact provides an
indication that color degrees of freedom actively participate
to the critical behavior when w > 0. We remind the reader
that a completely different behavior was found in Ref. [11]

0.1 0.2 0.3
Rξ

1.05

1.1

1.15

1.2

U

L=32
L=64
L=128

0 0.2 0.4
Rξ

0

0.5

1

1.5

(U
O

(7
)-

U
)L

Nc=6, Nf =7, w=10

O(7)

FIG. 4. Binder cumulant U versus Rξ for the case Nc = 6, Nf =
7 and quartic coupling w = 10 (γ = 0). For reference we also report
our estimate of U (Rξ ) for spin-2 observables in the vector O(7)
model, obtained by a polynomial interpolation of data coming from
L = 32 and L = 64 lattices (consistent with each other within statis-
tical uncertainties). In the inset, scaling corrections are shown to be
roughly consistent with an L−1 behavior.

for w = 0. In that case the low-temperature critical behavior
was the same as the RPNf −1 model for all the values Nc > 2
studied. As discussed in Sec. III the same is expected to
happen for negative values of the quartic coupling for any Nc.

We have thus seen that color-reflection symmetry is real-
ized for Nc = 2 and 5, and that this symmetry is not trivially
realized in the low-temperature phase (i.e., there is a depen-
dence of the critical behavior on Nc). The same procedure
adopted to compare the results obtained for Nc = 2 and Nc =
5 can now be applied to analyze also the cases Nc = 3 and
Nc = 4. The red solid curves in Fig. 3 are obtained by poly-
nomially interpolating data corresponding to L = 64 and 128
with Nc = 3 (residual corrections to scaling are visible be-
tween L = 64 and 128, but they are smaller than two standard
deviations). The same curve is seen to consistently describe
the critical behavior of the model also for Nc = 4, as expected
on the basis of the emergent color-reflection symmetry.

Finally, in Fig. 4, we discuss the extreme cases Nc = 1 and
Nc = 6, once again for w = 10 and γ = 0. For Nc = 1 the
model studied reduces to the standard O(7) model (although
we use spin-2 observables instead of the usual vector ones),
and again an emergent color-flavor reflection symmetry is
observed: despite the presence of large scaling corrections,
the critical behavior of U (Rξ , L) for the model with Nc = 6 is
compatible with the one observed in the O(7) model. As often
happens for O(N ) models, corrections to scaling are roughly
compatible with an L−1 scaling [35]. The peak value of the
Binder cumulant (Umax ≈ 1.15) is already sufficient to show
that this critical behavior is different from the one seen for
Nc = 2 (Umax ≈ 1.125) and Nc = 3 (Umax ≈ 1.10).

We finally want to provide some indication that, for large
values of γ , data can be significantly affected by the crossover
between the Stiefel and the Grassmanian critical behaviors,
with color-flavor reflection symmetry that is absent in the
Stiefel case. For this purpose we have first of all determined
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0 0.1 0.2 0.3
Rξ

1.02

1.04
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1.08

1.1

U

L=16
L=32
L=64
L=128
L=16
L=32
L=64

V(7, 5)

V(7, 2)

FIG. 5. Binder cumulant U versus Rξ for the Stiefel models V(7,2)

and V(7,5).

the scaling curves U (Rξ ) for the Stiefel models V(7,2) and
V(7,5), shown in Fig. 5. These curves make evident the fact
that the color-reflection symmetry characterizing the critical
behavior of the gauge models is not present in the Stiefel
case. Data for the gauge model with Nc = 2, Nf = 7, quartic
coupling w = 20, and gauge coupling γ = 15 are reported in
Fig. 6, and clearly display a crossover behavior between two
different regimes. Results slowly converge to the expected
Grassmannian asymptotic curve when increasing the lattice
size, but on small lattices they are far from it and quite close
to the results of the Stiefel model V(7,2). Note, however, that
on a finite lattice the γ → ∞ limit of the gauge model does
not coincide with the Stiefel model with periodic bound-
ary conditions, due to the presence of nontrivial holonomies
(Polyakov loops) that cannot be gauged away. To obtain an
exact matching one should generalize to the non-Abelian case

0.1 0.2 0.3
Rξ

1.05

1.1

U

L=8
L=16
L=32
L=64
L=128

Nc=2, Nf=7, w=20, γ=15

Nc=2, Nf =7, w=10

V(7, 2)

FIG. 6. Binder cumulant U versus Rξ for the case Nc = 2, Nf =
7, quartic coupling w = 20, and gauge coupling γ = 15. The dashed
line represents our estimate of U (Rξ ) for the model with Nc = 2,
Nf = 7, w = 10, and γ = 0, while the dot-dashed line is an estimate
of U (Rξ ) for the Stiefel model V(7,2).

the fluctuating boundary conditions used in Ref. [24] for the
Abelian case.

VI. CONCLUSIONS

In this paper we have addressed the interplay of local
and global symmetries in determining the universal low-
temperature critical behavior of two-dimensional (2D) scalar
models. In particular, we have considered multiflavor lattice
models with SO(Nc) gauge symmetry and non-Abelian O(Nf )
global symmetry, in the presence of a quartic interaction
between the scalar fields, thus extending the results already
presented in Ref. [11].

By studying the minimum-energy configurations, we iden-
tified two different low-temperature regimes. If the coefficient
of the quartic coupling is negative (w < 0), the SO(Nc)-gauge
models share the same low-temperature critical behavior of
the RPNf −1 models, and color degrees of freedom do not
play any active role in the critical domain. In particular
the low-temperature effective theory is independent of the
number of colors, Nc. If instead w > 0, the nature of the
low-temperature regime crucially depends on the number of
colors and flavors. If Nf � Nc no global symmetry remains,
and no diverging correlation length and critical behavior are
present. If instead Nf > Nc, the low-temperature behavior is
expected to be described by the gauged nonlinear σ model
field theory associated with the real Grassmannian manifold
SO(Nf )/(SO(Nc) × SO(Nf − Nc)).

To support the identification with the Grassmannian
NLσM field theory of the critical behavior when Nf > Nc and
w > 0, we investigated the Nc dependence of the asymptotic
scaling curve U (Rξ ) and, in particular, the presence of the
color-flavor reflection symmetry Nc ↔ Nf − Nc in the critical
region. For this purpose we focused on the case Nf = 7,
studied for several values of Nc with w = 10 and γ = 0. We
numerically verified that gauge degrees of freedom do play
a role in the critical behavior, since the asymptotic scaling
curves obtained in the cases Nc = 1, 2, and 3 are different
from each other. Moreover, we provided robust evidence of
the emergence of color-reflection symmetry in the critical
domain, with the results obtained using Nc and Nf − Nc colors
that approach the same asymptotic curve in the FSS limit.

It is interesting to note that for some values of Nc and Nf

the Grassmannian models can have peculiar properties that
will be worth investigating. For example, the Nc = 2 model
admits instanton solutions analogous to that of the CPN−1

models, a fact already noted in the seminal work of Ref. [36].
However, to our knowledge the θ dependence of this model
has never been systematically investigated.

Another aspect that deserves to be further explored is
the stability of the results presented in this paper against an
explicit breaking of the gauge symmetry. It is tempting to
guess a gauge-breaking term to be relevant for w > 0 and
irrelevant for w < 0, based on the analogy with the case of
three-dimensional (3D) Abelian models with critical [37] or
noncritical [38] gauge modes. It is, however, not clear a priori
how far this analogy can be trusted, also because in a non-
Abelian theory we have much more freedom on the form of
the gauge-symmetry-breaking term, that could, for example,
leave a residual continuous subgroup exact.
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Finally, in this work we focused on real scalar models with
orthogonal gauge symmetry, but an extension to the case of
complex scalar models with unitary symmetry can be immedi-
ately carried out. In this latter case we can have, depending on
the sign of the quartic interaction, a CPNf −1 critical behavior
(for w < 0) or a complex Grassmannian SU(Nf )/(SU(Nc) ×
SU(Nf − Nc)) critical behavior (for w > 0).
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APPENDIX: MONTE CARLO SIMULATIONS

In this Appendix we present some technical details regard-
ing our Monte Carlo simulations, the algorithms adopted, and
the statistics accumulated.

For the gauge models the typical statistics used is of the or-
der of 107 “complete lattice sweeps” (defined in the following
section), while for the Stiefel models it is of the order of 106

complete lattice sweeps. To analyze data and estimate error
bars we used standard blocking and jackknife techniques, and
the maximum blocking size adopted was of the order of 105

and 104 data, for gauge and Stiefel models, respectively.
For lattice models with local gauge symmetry, we observed

that the value of the inverse temperature β has to be increased
to keep Rξ constant while increasing the value of Nc (at fixed
Nf = 7). Specifically, for the lattice size L = 128, we used for
the model with Nc = 2 inverse temperatures in the range β ∈
[1.7, 2.1], for Nc = 3 we used β ∈ [3.0, 3.5], and for Nc = 4
we used β ∈ [4.5, 5.0], while for the case Nc = 6 the range
β ∈ [7.5, 8.3] was adopted. For the case Nc = 5 our largest
lattice was L = 64, and in this case we used β ∈ [5.8, 6.3].
Using these inverse temperature intervals we got values of Rξ

in the range [0.05,0.3] in all the cases.

1. Algorithms: Gauge models

To update the field �x of the gauge models we use both
a Metropolis [39] and a pseudo-over-relaxation algorithm
[40,41]. In the Metropolis update, the trial field �′

x is gen-
erated from �x by rotating two random matrix elements by
an angle drawn from a uniform distribution in [−α, α]. The
value of α is chosen in such a way to have an average accep-
tance rate of about 30%. The pseudo-over-relaxation step is
performed by using as a trial field the reflection of �x with
respect to the force Fx defined by

Fx ≡
∑

μ

(Ux,μ�x+μ + Ut
x−μ,μ�x−μ), (A1)

thus

�′
x = 2Tr

(
�t

xFx
)

Tr
(
Ft

x Fx
) Fx − �x. (A2)

This trial field is then accepted or rejected by a Metropolis
test, which is unnecessary when w = 0 since in that case the
update is energy preserving.

The gauge field Ux,μ is updated using the Metropolis algo-
rithm, with the trial link U ′

x,μ generated by applying to Ux,μ

a random SO(2) matrix randomly embedded in SO(Nc). Also
in this case the parameters of the rotation are tuned in order to
maintain an average acceptance of approximately 30%.

A “complete lattice sweep” is defined to be a series of ten
update sweeps on the whole lattice for both scalar and gauge
fields. For the gauge field the Metropolis update is always
adopted, while for the scalar field a single Metropolis update
is followed by nine pseudo-over-relaxation steps.

2. Algorithms: Stiefel models

The Stiefel Hamiltonian is defined in Eq. (17) by using
the field πx, which is an Nc × Nf matrix subject to the con-
straint πxπ

t
x = 1Nc×Nc . Assuming for the sake of simplicity

that Nf > Nc, we represent πx by the first Nc rows of the
Nf × Nf orthogonal matrix π̃x; that will be our fundamental
field in the following. The update of π̃x is performed by
using the Metropolis algorithm [39] and the single cluster
algorithm [42].

The Metropolis update of the field πx is performed by using
the trial state π̃ ′

x = π̃xO, where O is an O(2) random rotation
embedded in a random way in O(Nf ). The rotation angle is
drawn from a uniform distribution in [−δ, δ], and the value of
δ is chosen to obtain an average acceptance of about 30%.

In the cluster update we start by generating the random
unit-length Nf vector vα and selecting a random lattice site.
The cluster construction is performed by activating the link
x − y with probability px,y given by

px,y = 1 − exp(min(0, 2βNf X )), (A3)

where

X =
Nc∑

i=1

[( Nf∑
α=1

π iα
x vα

)( Nf∑
β=1

π iβ
y vβ

)]
. (A4)

The whole cluster is then “flipped” using

(π̃x)αβ → (π̃x)αβ − 2vβ

Nf∑
λ=1

(π̃αλvλ), (A5)

which is easily seen to be an O(Nf ) matrix.
A “complete lattice sweep” is a series of ten Metropolis

updates on the whole lattice, each one followed by a cluster
update.
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