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Enhancing self-discharging process with disordered quantum batteries

Mohammad B. Arjmandi,1,2,* Hamidreza Mohammadi ,1,2,† and Alan C. Santos 3,4,‡

1Faculty of Physics, University of Isfahan, P.O. Box 81746-7344, Isfahan, Iran
2Quantum Optics Research Group, University of Isfahan, Isfahan, Iran

3Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905 São Carlos, SP, Brazil
4Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden

(Received 15 December 2021; revised 24 February 2022; accepted 5 April 2022; published 10 May 2022)

One of the most important devices emerging from quantum technology are quantum batteries. However, self-
discharging, the process of charge wasting of quantum batteries due to decoherence phenomenon, limits their
performance, measured by the concept of ergotropy and half-life time of the quantum battery. The effects of
local field fluctuation, introduced by the disorder term in the Hamiltonian of the system, on the performance of
the quantum batteries is investigated in this paper. The results reveal that the disorder term could compensate
disruptive effects of the decoherence, i.e., self-discharging, and hence improve the performance of the quantum
battery via “incoherent gain of ergotropy” procedure. Adjusting the strength of the disorder parameter to a
proper value and choosing a suitable initial state of the quantum battery, the amount of free ergotropy, defined
with respect to the free Hamiltonian, could exceed the amount of initial stored ergotropy. In addition harnessing
the degree of the disorder parameter could help to enhance the half-life time of the quantum battery. This study
opens perspective to further investigation of the performance of quantum batteries that explore disorder and
many-body effects.
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I. INTRODUCTION

Quantum mechanics holds the promise of a technolog-
ical revolution, in which the successive miniaturization of
electronics devices allow us to explore quantum effects such
as quantum coherence and entanglement. There is a huge
tendency to harness such effects in order to build quantum
devices which possibly demonstrate an advantage over their
classical counterparts. These devices range from quantum
transistors [1–6], diodes [7,8], and memories [9–11] to the
most popular field of nowadays, namely quantum comput-
ers [12,13]. So, one may ask whether it is also possible to
construct an energy storage quantum system, i.e., a quantum
battery (QB) as shown by Alicki and Fannes [14].

QBs are physical systems able to explore quantum effects
and properties in order to provide an enhanced performance
concerning their classical counterparts, in which an energy
conversion occurs from chemical energy to an electrical
one, by means of the so-called reduction-oxidation reactions
[15–17]. In a QB, its ergotropy (maximum amount of ex-
tractable energy by unitary operations [18]) can be stored as
entanglement [19] and/or coherence [20,21]. But, it is also
possible to explore these quantities in order to speed up the
charging process of such batteries [22–26]. However, it is
important to mention that the role of entanglement is not
positive in general [27], and it can lead to a destructive effect
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on the charging process, while quantum coherence seems to
be a useful resource for QBs. More recently, the study of
disordered QBs showed how disordered interactions between
quantum cells can be used to promote the rate of charging
power of QBs [28] by exploring many-body localization [29].
Through this paper, the performance of the QB is measured
by the concept of ergotropy and the notion of half-life time
of QB.

Decohernce arising from the inevitable interaction of a QB
(or any other quantum system) with its surrounding medium
tends to bring the system to a nonactive (passive) equilib-
rium state and hence deteriorates the performance of the QB
[30]. In this sense, the development of QBs which are robust
against decoherence is an achievement of interest to build
useful energy storing quantum devices. The charging process
of QBs can be made robust in the presence of decoherence
when some degree of control and reservoir engineering is
possible [31], or when the QB-environment interaction results
into a non-Markovian dynamics [32,33]. In addition, when the
battery is charged it is necessary to make sure that the stored
energy will not be lost to the environment, even when the
battery is not connected to any consumption hub via a process
called self-discharging [21]. The robustness of QBs against
such a kind of process has been investigated experimentally
in superconducting devices, suggesting that QBs exhibit a su-
percapacitorlike behavior during the self-discharging process
[21,34].

Given the role of disorder parameter, adjusted by applying
random magnetic fields on each QB, to the charging perfor-
mance of QBs, in this paper we wonder how the disorder
can affect the self-discharging process [21], which is an open
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question so far. To this end, we consider a XX spin-1/2
chain with random magnetic fields on each cell of the QB.
By considering two situations in which the initial amount of
ergotropy is stored as quantum coherence or populations of
classical states, our results show that in the presence of dis-
order the QBs are more robust against self-discharging when
ergotropy is stored as coherence, leading then to a quantum
advantage. The paper is organized as follows. In Sec. II, we
present our model, method, and figures of merit to investigate
the self-discharging of QBs in the presence of disorder. Then,
we show the results for two-cell batteries with different initial
cell states. In Sec. III we generalize our results to the case
of N-cell batteries and represent the scaling trend of maximal
ergotropy with the number of quantum cells and the degree of
disorder. Finally, we conclude our results in Sec. IV.

II. QUANTUM BATTERIES IN THE PRESENCE
OF DISORDER

In this paper we consider QBs as XX spin-1/2 chain in the
presence of the disorder realized by random local magnetic
fields �Bk applying on kth QB (along quantization axis z)
described by the total Hamiltonian H = H0 + Hint, where

H0 =
N∑

k=1

h̄ωk

2
σ z

k (1)

is the free Hamiltonian, used as reference Hamiltonian to
compute ergotropy, and

Hint =
N−1∑
k=1

h̄Jk,k+1

4

(
σ x

k σ x
k+1 + σ

y
k σ

y
k+1

)
, (2)

is the interaction Hamiltonian. Here, ωk ∝| �Bk| is the Larmor
frequency of the kth spin, Jk,k+1 is the spin-spin nearest-
neighbor interaction strength, and σα (α=x, y, z) are the
standard Pauli matrices. Thorough the paper we set h̄ = 1 and
assume the coupling strengths as Jk,k+1 = J . The disordered
property of the system is encoded into the magnetic fields
acting on the kth cell through the (dimensionless) strength of
disorder δ as Bk = random(B0 − δB0, B0 + δB0), where B0 is
the reference field.

In order to investigate the performance of our system in
keeping stored energy as ergotropy in a dissipative scenario, it
is necessary to determine the dynamics of the system. Trac-
ing out the environmental degrees of freedom over unitary
evolution of the whole QB+environment in the Born-Markov
approximation, leads to the Lindblad master equation for re-
duced state ρ of the QB:

dρ(t )

dt
= −i[H, ρ(t )] + �

2

N∑
k

2σ−
k ρ(t )σ+

k − {σ+
k σ−

k , ρ(t )},

(3)

where the dissipative nature of the environment such as
spontaneous decay is encapsulated in the dissipation rate
parameter, � and “{, }” denotes the anticommutator rela-
tion and σ−

k = (σ+
k )† = 11 ⊗ ... ⊗ 1k−1 ⊗ |g〉k〈e| ⊗ 1k+1... ⊗

1N are raising and lowering operators with |g〉 and |e〉 being
the ground and excited states of the system, respectively, and

1i denotes the 2 × 2 identity matrix. The physical meaning
of the above master equation depends on the physical system
we encode the quantum battery. If we have a spin quantum
battery, the above equation describes the spin relaxation along
quantization axis z [35]. In case the battery is given by atoms
inside a cavity [36], the dynamics above describes the sponta-
neous atom decay to the cavity modes [37]. In a more general
way, the above equation describes the dynamics of a system
embedded in an environment modeled by a low-temperature
bosonic bath, such that the temperature effects are negligible.
In order to keep our discussion as the most generic as pos-
sible, we will not particularize our discussion to a specific
quantum system. However, the validation regime of such an
equation has been discussed in different physical systems
[38–44]. Discussion about the validity of such an equation can
be found in Refs. [45,46].

A. Figures of merit

The performance of a quantum battery in a charging or
discharging process can be evaluated by means of various
figures of merit. Naturally, the first potential candidate is the
amount of stored energy. Consider a quantum battery with
density matrix ρ and Hamiltonian H . Then, the stored en-
ergy in this system with respect to its Hamiltonian is just
the expectation value of H given as U(ρ, H ) = tr(Hρ). In a
general case, however, this energy cannot be entirely extracted
through external extracting fields (i.e., applying unitary opera-
tions on ρ) [18,19]. In this regard, another important quantity
is ergotropy, originated from quantum thermodynamics for-
mulation of work extraction. The concept of ergotropy was
initially introduced by Allahverdyan et al. [18] and determines
the maximum amount of energy which can be extracted from
a quantum system by unitary operations. A quantum system
without the capability of unitarily energy extraction is called
passive. Then, ergotropy is defined as E(ρ, H ) = U(ρ, H ) −
U(ρ̄, H ), in which ρ̄ is the passive state associated with
ρ. By definition, it is not possible to extract energy from a
system that is in a passive state ρ̄. Hence, the most success-
ful energy extraction operations are those that transform the
quantum state ρ to ρ̄. As it was shown in Ref. [18], let ρ =∑d

k=1 pk|pk〉〈pk| and H = ∑d
k=1 εk|εk〉〈εk| be the spectral de-

composition of the battery state and Hamiltonian, with the
conditions p1 � p2 � ... � pd and ε1 � ε2 � ... � εd , where
d denotes the dimension of the Hilbert space, the ergotropy
can be obtained as

E(ρ, H ) =
d∑

k, j

pkε j (|〈pk|ε j〉|2 − δk, j ), (4)

where δk, j denotes the Kronecker delta function. It is known
that if ρ is a pure state, then the corresponding passive state is
its ground state [19]. Throughout this paper, we focus on the
free ergotropy which is calculated with respect to H0 given
by Eq. (1), namely, free ergotropy is defined as E(ρ, H0). In
this sense, the free ergotropy quantifies the amount of energy
that can be (individually) extracted from each cell, since any
contribution (positive or negative) of the interactions does not
affect E(ρ, H0).
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It is worth mentioning that, due to the random nature of
our model, all calculations should be repeated and then the
physical quantities shall be averaged over the number of re-
alizations Nr . In this sense, we define the average ergotropy
as

E(t ) = 1

Nr

Nr∑
n=1

E
(
ρn(t ), Hn

0

)
, (5)

where Hn
0 and ρn(t ) are, respectively, the free Hamiltonian and

time-depended state of the battery obtained for nth realization.
In addition, in order to avoid any misinterpretation in our
analysis, since the random aspect of local magnetic �Bk will
change the maximum amount of ergotropy in each random
realization, we define our figure of merit as

ε(t ) = 1

Nr

Nr∑
n=1

E
(
ρn(t ), Hn

0

)
E
(
ρn(0), Hn

0

) , (6)

which quantifies how the total ergotropy evolves concerning
the initially stored ergotropy in each realization E(ρn(0), Hn

0 ).

B. Quantum advantage against self-discharging process

In order to analyze the self-discharging process of a two-
cell QB in the presence of disorder and how the quantum
advantage arises in this process, we compare three differ-
ent initial states used to store an initial amount ergotropy.
First, we assume the fully charged scenario, where the initial
state of QB is ρfe =|ee〉〈ee|. We also consider the battery
in the state ρqu =| + +〉〈+ + |, where |+〉= (|g〉 + |e〉)/

√
2,

such that ergotropy is stored as local quantum coherence in
the basis {|g〉, |e〉} [20]. This state possesses local coherence
with respect to the basis {|g〉, |e〉}, then we call this state
the “coherent initial state” throughout this paper. Finally,
we also consider a classical mixture of the states |g〉 and |e〉
as ρcl = (α|e〉〈e| + β|g〉〈g|)⊗2, where we set α=3/4 to make
sure that the quantum version of the battery has the same
amount of stored ergotropy as its classical counterpart [21]. It
is worth mentioning that our model does not present any kind
of quantum supremacy. As shown in Ref. [21], any advantage
against self-discharging of quantum states can be lost if you
consider other kinds of decoherence. The results of numerical
calculation are depicted in Figs. 1–8.

In Fig. 1(a) we show the average normalized ergotropy
[Eq. (6)] in the absence of disorder (δ=0) and for the nonzero
degree of disorder (δ=5) in the case of the two-cell (N =2)

FIG. 1. The dynamics of averaged ergotropy of the two-cell QBs
(N = 2) with different initial state (a) in the absence of disorder and
(b) in the presence of disorder. The results are averaged over 102

realizations and Jk,k+1 = J = 10�.

quantum battery for each initial state aforementioned. In both
cases, the coherent initial state represents the best perfor-
mance in terms of self-discharging, compared to the classical
and full excited states. This advantage of the coherent initial
state over the two other ones is even increased in the presence
of disorder. Actually, the classical and full excited states are
not sensitive to disorder.

As one can see from Fig. 1(b), when the available work
is stored as coherence in the system it presents a robustness
against the spontaneous loss of ergotropy. Moreover, it is
worth highlighting the behavior of the ergotropy that, after
a small negative variation, presents a slight positive variation
in the presence of disorder before its monotonic decreasing
(expected) behavior. Since the ergotropy variation in our sys-
tem is due to the spontaneous decay considered in our system,
and no external field is acting on the system, we call this be-
havior incoherent gain of ergotropy of the quantum battery. In
addition, it is possible to show that this behavior is associated
with the degree of disorder and it can be explained as follows.
Let us consider the free ergotropy written in the following
form E(ρ, H0)=U(ρ, H0) −U0(ρ, H0), where U0(ρ, H0)=∑

k pk (t )εk and the free internal energyU(ρ, H0)= tr(ρH0) is
computed concerning the free Hamiltonian H0 [47]. Then, by
taking the time variation of E(ρ, H0) in an infinitesimal time
interval dt �0, we get

dE(ρ, H0) =
[

dU(ρ, H0)

dt
− dU0(ρ, H0)

dt

]
dt . (7)

From the above equation we can identify different situations
where we get dE(ρ, H0) > 0, independent of the process we
are dealing with, which leads to the increasing behavior of the
ergotropy. All these cases can be unified in a single condition
given by U̇(ρ, H0)>U̇0(ρ, H0). In order to give a physical
meaning to this condition, let us write the temporal derivative
of the internal energy as

U̇(ρ, H0)= tr(ρ̇H0) = −itr(ρ(t )[H0, Hint]) + tr(L[ρ(t )]H0),

(8)

where L[ρ(t )] is the dissipative part of Eq. (3). Then the
system evolves and the above quantity is such that we get
U̇(ρ, H0)>U̇0(ρ, H0); then we have a gain of ergotropy.
Therefore, any property of the system which positively con-
tributes to U̇(ρ, H0), can be helpful to charge the battery. In
our system of interest, it is possible to conclude that in the
absence of disorder we have [H0, Hint]=0, which means only
the dissipative term contributes to the inequality U̇(ρ, H0)>
U̇0(ρ, H0). Otherwise, when we turn ON the disorder in
our system, the first term of Eq. (8) is not vanishing and it
may positively (or negatively) contribute to achieve a regime
in which U̇(ρ, H0)>U̇0(ρ, H0). The results of Fig. 1 sug-
gest that, in average over many realizations, the disorder
is positively contributing to get the inequality U̇(ρ, H0)>
U̇0(ρ, H0). As shown in Fig. 1(b), it is possible to identify
situations in which the instantaneous (average) ergotropy be-
comes bigger than the initial stored ergotropy, which means
that the battery is charged due to the interaction with its
surrounding. As we shall see, this behavior becomes even
more significant when we have many-cell QBs, where the
positive contribution of the first term of Eq. (8) to achieve the
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FIG. 2. (a) The percentage of spontaneous deposited charge and
(b) half-life time of the three batteries versus the degree of disorder.
The other parameters are the same as Fig. 1.

inequality U̇(ρ, H0)>U̇0(ρ, H0) is stronger for N = 7 than
the case N = 2. In addition, in Fig. 2(a) we show the amount
of spontaneously charged ergotropy (as a percentage of the
initial stored ergotropy) as a function of the disorder, which is
mathematically defined as (in percentage terms)

η =
[

1

ε(0)

(
max
t>0

ε(t )
)

− 1

]
× 100. (9)

While classical and fully excited states do not present a
time interval where the incoherent gain of ergotropy appears,
the quantum version can be benefited in a disordered system.
It is worth highlighting that this result has no any contradic-
tion with energy conservation, since the ergotropy increasing
process is associated with the free Hamiltonian H0. In fact,
for the case where the reference Hamiltonian is given by
H =H0 + Hint, we expect that the available work as ergotropy
follows a monotonically decreasing behavior in time during
the self-discharging process.

As a second figure of merit, we explore the disorder effects
in the half-life time of the quantum battery. By definition,
we refer to the half-life time of a battery as the longest time
interval t : [0, τht] for which the battery retains at least 50%
of its initial charge value. Our definition is based on the fact
that a quantum battery does not decay following an Ohmic
behavior [21,34]; then the ergotropy is not well described by
an exponential decay. Figure 2(b) shows the half-life time
of three quantum batteries against disorder. As a result, we
can see that quantity half-life time scales with the degree of
disorder for the quantum battery in the coherent initial state,
and a fitted curve is provided to clarify the scaling trend. From
the fitting function, defined here as τ fit

ht (δ)/�=α + βe−γ δ ,
we get the set of fitting parameters as α≈5.05, β ≈−1.24,
and γ ≈0.61. In this form, we can determine the half-life
time for a strongly disordered system (δ	1) as τ

stg
ht =α�. It

shows that the disorder can broaden the time scale for which
E(t )�E(0)/2, with a threshold bounded (in average) by τ

stg
ht ≈

5.05�. In conclusion, the classical and fully excited batteries
are deprived of such advantage, although the performance of
the fully excited battery is better than the classical one.

III. N-CELL QUANTUM BATTERIES
IN THE PRESENCE OF DISORDER

In this section, we extend our previous results to the case
of the N-cell quantum battery, in order to see whether the
disorder-based advantage also exists in larger quantum batter-
ies. After such an analysis, one can verify the way by which

FIG. 3. The dynamics of averaged ergotropy of the multicell QBs
(N = 7) with different initial state (a) in the absence of disorder and
(b) in the presence of disorder. The results are averaged over 102

realizations and Jk,k+1 =J =10�.

this advantage scales when the system is enlarged enough.
By changing the battery size from N =2 to N =7, we can
see an enhancement concerning the spontaneous incoherent
charging. This result is shown in Fig. 3, where we present
a comparison between our three initial states for ordered
(δ = 0) and disordered (δ = 5) cases (similar to Fig. 1 with
N =7). By focusing on the case without disorder, although
the coherent initial state again appears to have the best per-
formance among all the initial states, its performance against
spontaneous decay is almost similar to its two-cell counter-
part. It can be seen by a direct comparison between Figs. 3(a)
and 1(a). In fact, in spite of the identical spontaneous decay
rate, the number of intracell interactions increases when we
have N =7 compared to N =2, so they experience a slightly
different dynamics from each other. By intracell interaction
we refer to the number of interactions between the cells of the
quantum battery.

On the other hand, by implementing an appropriate amount
of disorder, the behavior becomes different. As shown by
Fig. 3(b), we can make the battery more robust against the
self-discharging process by implementing a certain amount of
disorder in the system. This advantage is even more evident if
one considers the amount of spontaneous ergotropy charging
of the initially coherent battery (in comparison with its N = 2
counterpart). This suggests that both the disorder parameter
and number of intracell interactions play an important role in
the performance of the system in keeping ergotropy stored.
Then, in order to present a more adequate approach to this
claim, Fig. 5 presents two graphs that show the relative gain of
ergotropy concerning the initial amount of ergotropy, as given
by Eq. (9).

Now, in order to explain the incoherent generation of er-
gotropy, we show the contribution of each quantity defined in
Eqs. (7) and (8). As observed from Fig. 4(a), the first term
of Eq. (8) grows considerably when disorder exists in the
system, while in the absence of disorder it vanishes over the
time interval. On the other hand, the dissipative part of the
dynamics presents a negative contribution, which is expected
since such term describes the loss of energy from the system
to the environment. As a result of the behavior of these two
terms, a positive value of the quantity U̇(ρ, H0) is achieved
[Fig. 4(c)], which subsequently leads to the gain of ergotropy
since it satisfies U̇(ρ, H0) > U̇0(ρ, H0) [Fig. 4(d)]. In conclu-
sion, under disorder effects the first term of Eq. (8) provides a
strong contribution to the gain of ergotropy.
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FIG. 4. (a) The first and (b) second term of Eq. (8), (c) time
derivative of the internal energy, and (d) U̇0(ρ, H0 ) for N = 7 and
three degrees of disorder. The other parameters are the same as Fig. 1.

For a fixed degree of disorder, by increasing the number
of intracell interactions (N) the relative gain is enhanced
[Fig. 5(a)]. In fact, if the spontaneous ergotropy generation
is associated with the individual emission of each partition
of the system, it is reasonable to envision such an increasing
behavior of η as N increases. In addition, in order to shed
more light into the role of disorder regarding this incoherent
ergotropy generation, in Fig. 5(b) we present a scenario in
which the number of quantum cells is fixed (N = 7) and the
degree of disorder is varied. Here, without disorder (δ = 0)
or with a slight amount of disorder (δ = 1), the maximal
ergotropy is just equal to the initial value before the energy
leakage into environment, leading to η = 0. However, rais-
ing the degree of disorder (δ > 1) results in a growth of the
maximum amount of ergotropy (approximately) scaling with
disorder. As a general conclusion of Fig. 5, it is possible to
achieve an incoherent production of ergotropy of, at least, 5%
compared to the initial amount of stored ergotropy ε(0) in
disordered quantum batteries.

This discussion allows us, in principle, to conjecture a
strong dependence of the self-discharging performance on the
disorder and number of intracell interactions. We highlight
here the term “in principle,” since the many-body properties
of quantum systems can lead us through nontrivial dynamics

FIG. 5. The percentage of maximal spontaneous deposited
charge of the coherent battery for (a) fixed degree of disorder (δ = 5)
and different numbers of quantum cells and (b) fixed number of
quantum cells (N =7) and various degrees of disorder. The number
of realizations for N =3, 4, 5, 6, 7 are 5000, 3000, 1000, 500, 100,
respectively, and Jk,k+1 =J =10�.

FIG. 6. (a) The percentage of spontaneous deposited charge and
(b) half-life time of multicell batteries (N =7) versus the degree of
disorder over 50 realizations. Here also Jk,k+1 =J =10�.

when the system is large enough. For example, it is perfectly
possible to get an asymptotic behavior of η for some larger
values of N . Again, we stress that such a generation of er-
gotropy does not violate any physics law. For example, from
Eq. (7) one can see that ergotropy can be generated from a
nonzero amount of internal energy, and it can be converted
into ergotropy during our dynamics.

Finally, let us consider the effect of disorder on the max-
imum ergotropy and half-life time of N-cell batteries with
different initial states. Figure 6 shows similar quantities as
Fig. 2, but for N = 7. From Fig. 6(a) it can be understood
that smaller values of disorder (δ > 2) are able to promote
the maximal ergotropy, compared to the two-cell quantum
battery. It means that for a multicell quantum battery with
initial coherence, a moderate degree of disorder can lead to
an increment in deposited ergotropy though being exposed
to a dissipative environment. But this is not the case for the
quantum batteries prepared in classical and/or fully excited
initial states, as there is no dependence on disorder for these
states. The half-life of the battery is shown in Fig. 6(b), where
we again take the aforementioned fitting function to estimate
the behavior of τ fit

ht (δ). For the N-cell QB one finds the set of
fitting parameters as α≈5.54, β ≈−2.44, and γ ≈0.34, such
that we get the higher disorder threshold bounded by τ

stg
ht ≈

5.54� than the two-cell case. More precisely, it represents an
enhancement of 9.6% with respect to the two-cell case.

It is important to mention that in our model we assume
that the ergotropy of the battery is computed with respect to
H0 as the reference Hamiltonian [14,23,29,30,36,48–51], such
that intracell interaction needs to be turned OFF before the
ergotropy extraction process. The energy cost to disable the
intracell interaction depends on the physical system used to
store ergotropy. For example, when we have a spin-based QB
such a cost has been considered in Refs. [52,53] in different
scenarios, where the energy required to do that is bigger than
the available amount of ergotropy, since we need strong local
external fields to make the interaction negligible. However,
when this interaction between the quantum cells is generated
by light-mediated interactions the energy cost to turn OFF the
interaction does not need to be taken into account. For exam-
ple, in a Dicke quantum battery [36,54], where N two-level
systems interact with each other mediated by a single cavity
mode, the intracell interaction is suppressed by eliminating
the field inside the cavity [55,56]. In the best scenario, the
energy cost of our battery can be considered the same as the
Dicke QB model [36,54].
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IV. CONCLUSIONS

In this paper we study a quantum battery (QB) that can
be mapped into any physical system constituted of two-level
systems modeled by a XX Heisenberg model under spon-
taneous emission, in which disorder can be applied using
random external local fields. In particular, we considered the
role of disorder effects on the performance against the self-
discharging process of QBs. In order to explore quantum
advantages, the ergotropy has been initially stored as quantum
coherence and classical populations (from a classical mixed
state and a fully excited one). Although the classical and
fully excited initial states are insensitive to disorder effects,
when ergotropy is initially stored as coherence, a considerable
disorder-induced enhancement arises in the performance of
the QB. We identify two main effects, where (i) the dis-
order can make the coherent quantum battery more robust
against self-discharging, and (ii) a gain of ergotropy of the
QB even under decoherence. It has been shown that degree
of disorder and the number of quantum cells both contribute
in this enhancement, where our results suggest that disorder
can extend the half-life time of the battery with initial coher-
ence. It implies that with an appropriate amount of disorder,
one can significantly prolong the self-discharging process of
the QB.

We would like to stress that we cannot give a general
claim of this result due to the limited value of N we con-
sider here. In case our claim can be verified, it is possible
to say that the larger the battery is, the greater the maxi-
mum ergotropy will be. As an immediate question that arises
from our discussion, we wonder what would happen if we
explore the self-discharging using different kinds of many-
body effects. Given the recent experimental observation of
many-body localization in a quantum annealer [57], our re-
sults motivate the possibility to propose new kinds of quantum
batteries.
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APPENDIX A: PERFORMANCE OF THE QB
WITH RESPECT TO N

Here we provide complementary results corresponding to
performance of the QB with respect to N . Figure 7 shows the
dynamics of the averaged ergotropy for a different number of
quantum cells (N =3, 4, 5, 6). As previously claimed, when
the battery contains initial coherence its ergotropy tends to
be more robust against self-discharging, storing a long-lived
amount of energy in comparison to classical and fully excited
cases. The performance of the coherent battery is enhanced in
the presence of disorder. Moreover, the temporary growth of
ergotropy is evident again in the disordered coherent quantum
battery for all numbers of quantum cells. This result suggests
that ergotropy in this kind of battery is able to be enhanced no
matter how big the system is. Of course, as shown by Fig. 5
the amount of such enhancement scales with the size of the
quantum battery (at least up to seven cells).

FIG. 7. Dynamics of ergotropy of QBs in the absence (left) and
presence (right) of disorder with various numbers of quantum cells.
The results for N = 3, 4, 5, 6 are averaged over 5000, 3000, 1000,
and 500 realizations, respectively. Here we consider Jk,k+1 =J =10�.

APPENDIX B: STORED ENERGY VS EXTRACTABLE
ENERGY (STORED ERGOTROPY)

In this Appendix we present a complementary discussion
to the results shown in Figs. 1 and 3. The stored energy is
defined here as the internal energy of the system concerning
the reference Hamiltonian, i.e.,U(ρ, H0)= tr(ρH0), while the
extractable energy is given by the stored ergotropy defined in
Eq. (4). In order to quantify which portion of the stored energy
corresponds to the extractable one, we define the ratio,

�(t ) = 1

Nr

Nr∑
n=1

E
(
ρn(t ), Hn

0

)
U

(
ρn(t ), Hn

0

) , (B1)

where the quantities E(ρn(t ), Hn
0 ) andU(ρn(t ), Hn

0 ) are eval-
uated for each realization and we take the average of the ratio
E(ρn(t ), Hn

0 )/U(ρn(t ), Hn
0 ) over Nr realizations. In order to

get a comparative with the average stored energy, we define
the normalized internal energy,

u(t ) = 1

Nr

Nr∑
n=1

U
(
ρn(t ), Hn

0

)
U

(
ρn(0), Hn

0

) . (B2)

Figure 8 shows the internal energy and the ratio
of extractable energy for both ordered and disordered
cases. Without disorder (δ = 0) no difference between the

054115-6



ENHANCING SELF-DISCHARGING PROCESS WITH … PHYSICAL REVIEW E 105, 054115 (2022)

FIG. 8. The time evolution of internal energy and the ratio de-
fined by (B1) in the absence (a) and (c), and presence (b) and (d) of
disorder with N =7. The results are averaged over 100 realizations.
Here we consider Jk,k+1 =J =10�.

batteries with different initial states appears regarding the in-
ternal energy [Fig. 8(a)]. In other words, in this case the stored
energy in all of these considered batteries is dissipated by
environment with equal rates. However, as seen from Fig. 8(c)
the quantum battery with initial coherence possesses a larger
ratio of extractable energy during the time interval. Based
on previous results one could expect this behavior since the
coherent battery turns out with better performance in terms of
ergotropy even if no disorder exists. On the other hand, ex-
posing some degree of disorder results in a temporal increase
in internal energy of the coherent battery [Fig. 8(b)], just
similar to its ergotropy enhancement. However, no consider-
able advantage against self-discharging of the stored energy is
observed as the internal energy of the three batteries vanishes
at the same point. But this is not the case for the ratio of
extractable energy. As shown by Fig. 8(d), initial coherence
along with disorder can provide a larger ratio of extractable
energy defined by (B1) compared to the classical and fully
excited batteries.
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