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We investigate a tight-binding quantum walk on a graph. Repeated stroboscopic measurements of the position
of the particle yield a measured “trajectory,” and a combination of classical and quantum mechanical properties
for the walk are observed. We explore the effects of the measurements on the spreading of the packet on a one-
dimensional line, showing that except for the Zeno limit, the system converges to Gaussian statistics similarly
to a classical random walk. A large deviation analysis and an Edgeworth expansion yield quantum corrections
to this normal behavior. We then explore the first passage time to a target state using a generating function
method, yielding properties like the quantization of the mean first return time. In particular, we study the effects
of certain sampling rates that cause remarkable changes in the behavior in the system, such as divergence of the
mean detection time in finite systems and decomposition of the phase space into mutually exclusive regions, an
effect that mimics ergodicity breaking, whose origin here is the destructive interference in quantum mechanics.
For a quantum walk on a line, we show that in our system the first detection probability decays classically like
(time)−3/2. This is dramatically different compared to local measurements, which yield a decay rate of (time)−3,
indicating that the exponents of the first passage time depend on the type of measurements used.

DOI: 10.1103/PhysRevE.105.054108

I. INTRODUCTION

Quantum and classical walks are by now well studied. It is
well known (see details below) that a tight-binding quantum
walk on a line with nearest-neighbor jumps will spread ballis-
tically in the absence of decoherence, while the corresponding
classical walk will diffuse and arrive at a Gaussian distribu-
tion. However, if we add decoherence or measurements to the
quantum walk, it will converge to a classical random walk in
the long time limit [1–6]. At this stage, one should ask how the
convergence to the classical walk will behave. That is to say,
how quickly will the system converge to the classical behav-
ior, and more importantly, will the system truly converge to a
fully classical random walk or will some traces of the original
quantum behavior remain? The answer, as we demonstrate
in our research, is that while the random walk will behave
in a superficially classical manner, a closer examination will
reveal noteworthy quantum features. These are captured with
well-known tools in the statistical physics community, namely
the Edgeworth expansion and large deviation theory.

In classical random walks, the spreading packet, while
basic, does not yield full insight into the process. Instead,
the trajectory of the random walker, and features like first
passage times, occupation times, and other functionals of the
path, are typically studied as they are basic in many applica-
tions [7–13]. However, when switching to the quantum world,
the concept of paths is ill-defined. To better advance this issue,
we study quantum walks pierced by measurements of the
position operator. The results of measurements are random
and yield a measured path. As an example of path proper-
ties, we consider the statistics of first hitting times. Will they
resemble classical or quantum walks? We show that certain
features like the mean return times for quantum walks with

repeated measurements are universal, as they are quantized,
independent of the structure of the graph, and, except for
special measurement times, independent of the time interval
between measurements. This is vastly different if compared
with classical hitting times on a graph. Another noteworthy
example we considered is the probability distribution of a
particle on a one-dimensional lattice. Although, as expected,
we found that outside the Zeno limit the measurements induce
a Gaussian behavior, similar to what one would expect of a
classical random walk, a closer look at the problem using
large-deviation theory and an Edgeworth expansion reveals
the quantum nature of the process. These results and others
that we will explore in this paper demonstrate that although
the process becomes a mostly classical one as a result of the
repeated strong measurements, nontrivial quantum effects still
arise.

To more precisely define our model, we examine a closed
quantum system that is prepared in some definite initial state
and evolves unitarily for a predetermined time τ , at which
point we measure its position. The free evolution between
measurements is given by unitary dynamics determined by the
Hamiltonian of the system, typically described by the adja-
cency matrix of a graph. After the measurement is complete,
we log the location that we found the particle in and then allow
it to freely evolve for τ time once more, before repeating the
process, such as in the case presented in Fig. 1. Our goals
in this work are twofold: to better understand the statistical
properties of such a process were it to repeat indefinitely, and
to examine the first detection statistics when we are interested
in the amount of time it will take for the system to reach a
certain state under this measurement protocol.

The rest of the paper is organized as follows: In Secs. II
and III we define our model with regard to both the
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FIG. 1. A segment of the infinite line. For a particle starting at
the origin, we allow it to unitarily evolve for τ time, and then we
measure its position. The measurement localizes its wave function to
some single site on the lattice, which we record as being the location
of the particle at time τ . After this, we allow the particle to freely
evolve for τ time once more before we measure its position again.
By repeating this process many times, we generate a “path” that the
particle took. For the lattice shown here, an example of a path would
be {0, 2, 1, 0, −3, . . . }.

measurement-induced quantum random walk without ter-
mination and the first detection problem. In Sec. IV we
describe the mathematical framework we will be using, and
in Secs. V and VI we use it to derive several properties
of this type of random walk. In Sec. VII we apply the
aforementioned results and mathematical tools to study a
measurement-induced quantum random walk finite graph in
detail, and in Sec. VIII we do the same for an infinite
one-dimensional (1D) lattice. We follow this up in Sec. IX
with a comparison of our measurement scheme to a local
measurement model such as the one considered in [14], as
these models have seen extensive research in papers by Dhar
et al. [15,16], Krovi and Brun [17,18], and others. In particu-
lar, we will focus on directly comparing our results to those
found for the scheme considered in [19–21]. We close the
paper with discussions and a summary in Sec. X. Detailed
calculations and an additional example are presented in the
Appendixes.

II. MODEL

Our model can broadly be divided into two primary ele-
ments. The first is the quantum dynamics described by the
Schrödinger equation. The second is the measurement proto-
col, which yields the well-defined meaning for the position of
the particle. Beginning with a description of the first part, we
consider a single particle whose time evolution is described
by a time-independent Hermitian Hamiltonian H according
to the Schrödinger equation H |ψ〉 = ih̄ d

dt |ψ〉, where we set
h̄ = 1. The initial wave function is denoted |ψin〉. The H is
represented here with a graph where nodes describe states and
edges describe the hopping amplitudes between these states.
Our main focus considers an H that is described by some
adjacency matrix, though the theory presented below is more
general.

The Hilbert space we consider is discrete and is spanned
by X , which is the set of eigenvectors of the operator X̂ . X̂
can be any arbitrary Hermitian operator as long as all of its
eigenvalues are nondegenerate. In practice, in this paper, we
will assume that it is the position operator for the sake of
simplicity. The initial wave function |ψin〉 is localized to a
single site in this space, |ψin〉 ∈ X . For example, we consider
the tight-binding infinite line lattice Hamiltonian,

H = −γ

∞∑
x=−∞

(|x〉 〈x + 1| + |x + 1〉 〈x|), (1)

0 1

2
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5

FIG. 2. Schematic model of a benzene ring. The edges represent
jumps between nearest neighbors, all with the same amplitude. In
Sec. VII we examine the properties of a measurement-induced quan-
tum walk on this graph, as well as the first detection problem.

where |ψin〉 = |0〉. This Hamiltonian describes hops between
nearest neighbors on the infinite line with an amplitude γ

for the jumps, and hence for an initial condition set at the
origin these dynamics are sometimes called a tight-binding
quantum walk [22]. In this example, the space X is defined
with the vertices on the lattice |x〉, and as usual X̂ |x〉 = x |x〉.
A schematic representation of this Hamiltonian is given in
Fig. 1. Another example is presented in Fig. 2, where we have
a finite ring. It is well known that the statistical properties
of first detection time for finite and infinite systems differ
dramatically [8,19,23,24], so we will use these two models
as examples later in Secs. VII and VIII.

To establish the position of the particle at every step of the
random walk, we start by defining the measurement protocol
as follows: Position measurements are performed at discrete
times t = τ, 2τ, . . . , Nτ using the position operator X̂ . Be-
tween each measurement event the dynamics are unitary, as
described above. At every measurement, we obtain the exact
position of the particle causing the wave function to collapse
and be localized to that point on the graph. Of course, the
basic postulates of quantum mechanics mean that the outcome
of the measurement is random. Over the course of many
measurements, this process produces a list of the locations at
which the particle was detected. As the measurements com-
bined with the unitary time evolution given by the Schrödinger
equation act as the generators of this random walk, we shall
henceforth refer to this process as a measurement-induced
quantum walk. As an example of a particular instance of
this measurement-induced quantum walk, on the infinite line
Hamiltonian in Eq. (1) the eigenvalues of the position operator
are the integers X = Z, so for a walk whose initial state is the
origin (|ψin〉 = |0〉), one possible sequence of measurement
outcomes is {x1 = 1, x2 = 3, x3 = 1, x4 = −1, x5 = · · · }. For
a more general measurement-induced quantum walk, the
unitary time evolution followed by measurement-induced
wave function collapse repeats indefinitely, as is shown in
Fig. 3.

To be more precise concerning the exact mechanics of
the measurement-induced quantum walk, consider the first
measurement, which occurs at t = τ . Immediately before this
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FIG. 3. A measurement-induced quantum walk that begins at
|ψ (t = 0)〉 = |ψin〉. At every step of the walk, the particle is detected
at some point on the graph, |xn〉, and between each detection the wave
function evolves according to the Schrödinger equation with the
standard unitary time evolution operator U (τ ) = e−iτH . This process
can, in principle, continue indefinitely.

time at τ− = τ − ε(ε → 0), the wave function is given by

|ψ (τ−)〉 = e−iτ−H |ψin〉 . (2)

According to the standard interpretation of measurement in
quantum mechanics, the detection probability at t = τ at ev-
ery graph site x is given by

P1 = | 〈x|ψ (τ−)〉 |2. (3)

After the measurement, the particle will be localized to some
site which we will label as x1. This means that at time τ+ =
τ + ε, the wave function is given by

|ψ (τ+)〉 = |x1〉 . (4)

We then allow the system to freely evolve in time until 2τ− =
2τ − ε when it is |ψ (2τ−)〉 = e−iτ−H |x1〉. We then measure
the particle again, and the probability of detection for each
site x is given by

P2 = | 〈x|ψ (2τ−)〉 |2. (5)

The particle is then localized to a new state, which we will
label as x2. We continue to evolve the wave function and
measure its position in this manner, obtaining a list of its
positions in the process {x1, x2, x3, . . . }, which we treat as
being the positions that the particle traveled through over the
course of its random walk.

III. DYNAMICS WITH MEASUREMENTS

The probability of detecting the particle at the state x at
time τn is given by the sum of the probabilities of all paths
that begin at the origin ψin and reach x after n steps. To
find these probabilities, we define a vector that we will call
the probability vector, which will contain the probabilities of
the possible outcomes of the measurements at times that are
integer multiples of τ plus an infinitesimally small positive
ε. Since this vector is just the main diagonal of the density
matrix describing the system, we will denote it as |ρ(τn)〉. It
is a non-negative vector whose dimension is the same as that
of the Hilbert space, but it is certainly not part of the Hilbert
space. Since the total probability that the particle will be found
somewhere on the graph is unity, the sum of the elements of
the probability vector equals 1.

At time t = 0, we define the probability vector to equal
|ψin〉, and we assume that it is an eigenstate of X̂ . In the
context of tight-binding walks on a graph, this means that the
system is initially localized to a node of the graph that we call

t=0 2 3 (N − 2) (N − 1) N

in tarx1 x2 x3 xN−2 xN−1
U( ) U( ) U( ) U( ) U( )

FIG. 4. A measurement-induced quantum walk which begins at
|ψ (t = 0)〉 = |ψin〉 and ends after time t = Nτ when the particle is
detected at |ψtar〉. The underlying physical process is the same as
the one that was described in Fig. 3, but in this process we stop the
random walk once it is detected at the target state |ψtar〉.

|ψin〉. We address the case in which it is not initially localized
in Appendix C. For the time evolution of |ρ(τn)〉 we define
the operator G such that it will contain the probabilities for
the particle to jump from any position in the system to any
other position:

G =
∑

x,x′∈X

| 〈x′|e−iτH |x〉 |2 |x′〉 〈x| . (6)

G is a stochastic matrix, meaning that it is used to describe
the transitions of a Markov chain. All of G’s eigenvalues are
real and have an absolute value less than or equal to 1, as is
shown in Appendix B. Evolving the system in time using this
matrix, the state of the system at time t = τn is described by
the probability vector

|ρ(τn)〉 = Gn |ψin〉 . (7)

This is a kind of discrete-time Master equation that takes into
consideration both the unitary time evolution and the periodic
measurements that collapse the wave function.

In addition to the measurement-induced quantum walk it-
self, another topic of interest we study in this paper is the first
detection problem, wherein rather than simply allowing the
system to continue evolving in time indefinitely, we define
a target state |ψtar〉 and we stop the random walk once the
particle is detected in this state. This state can either be the
same as the origin, in which case the random walk is referred
to as a return problem, or it can be any other state on the graph,
in which case we refer to it as a transition problem. The first
hitting time is Nτ , and it is a random variable whose statis-
tical properties depend on the Hamiltonian and the particular
choice of sampling interval τ . The modified process for this
random walk is described in Fig. 4. To account for the fact
that in this version of the measurement-induced quantum walk
the experiment stops when the particle is detected at ψtar, we
remove the probability that the particle was found at ψtar after
every τ since the continuation of the experiment necessarily
means it was not found there. This effectively removes any
paths that crossed through ψtar from our ensemble since those
paths would have resulted in the termination of the process.
Projecting the resulting probability vector unto the target state
gives us the following equation for the probability of first
detecting the particle at the target site at time t = τn, which
we denote as Fn:

Fn = 〈ψtar|[G(1 − D)]n−1G|ψin〉 , (8)

where D = |ψtar〉 〈ψtar| is a projecting operator. For exam-
ple, for n = 1, we obtain F1 = 〈ψtar|G|ψin〉. For n = 2, we
have F2 = 〈ψtar|G(1 − |ψtar〉 〈ψtar|)G|ψin〉 and so on. The full
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derivation of Eq. (8) is presented in Appendix A. We will now
further interpret Eq. (8) using a renewal equation approach.

IV. GENERATING FUNCTION

In Appendix A 3 we show that Eq. (8) is equivalent to

Fn = 〈ψtar|Gn|ψin〉 −
n−1∑
j=1

Fj 〈ψtar|Gn− j |ψtar〉 . (9)

This is a renewal equation typically found for these types of
problems [8,19,23]. One may obtain a simple physical inter-
pretation of this equation by moving the sum to the left-hand
side, which gives us

n∑
j=1

Fj 〈ψtar|Gn− j |ψtar〉 = 〈ψtar|Gn|ψin〉 . (10)

In doing so, we can see that the probability of arriving at the
target state after n steps 〈ψtar| Gn |ψin〉 (not necessarily for the
first time) is the same as the probability of arriving there for
the first time at some earlier point in time and then looping
back to return there.

To analyze Fn, we note that Eq. (9) has a convolution
structure, hence we use the Z transform, or discrete Laplace
transform, which is by definition [25]

F̃ (z) =
∞∑

n=1

Fnzn. (11)

Multiplying Eq. (9) by zn and summing over n, we get

F̃ (z) =
∞∑

n=1

〈ψtar|Gn|ψin〉 −
∞∑

n=1

n−1∑
j=1

Fj 〈ψtar|Gn− j |ψtar〉 .

(12)
The second term on the right-hand side of the equation is a
discrete convolution, so after evaluating the sums over n and
some rearrangement, we get

F̃ (z) = 〈ψtar|G̃(z)|ψin〉
1 + 〈ψtar|G̃(z)|ψtar〉

, (13)

where G̃(z) = ∑∞
n=1 znGn = zG/(1 − zG). By rearranging

the generating function, we are also able to present it in
a manner that better relates it to the underlying probability
vector:

F̃ (z) =
∑∞

n=1 zn 〈ψtar|ρin(τn)〉∑∞
n=0 zn 〈ψtar|ρtar(τn)〉 , (14)

where |ρin(0)〉 = |ψin〉 and |ρtar(0)〉 = |ψtar〉. In the return
problem where |ψin〉 = |ψtar〉, this expression can be further
simplified to just

F̃ (z) = 1 − 1∑∞
n=0 zn 〈ψin|ρ(τn)〉 . (15)

Using the generating function, we can calculate the first
detection probabilities, the survival probability, the expected
number of measurement attempts, and the variance in the

number of detection attempts. We formally find that they are
given by

Fn = 1

n!

dn

dzn
F̃ (z)|z=0 = 1

2π i

∮
C

F̃ (z)

zn+1
dz, (16)

Pdet =
∞∑

n=1

Fn = F̃ (1), (17)

〈n〉 =
∞∑

n=1

nFn = d

dz
F̃ (z)|z=1, (18)

〈n2〉 =
∞∑

n=1

n2Fn = d

dz

(
z

d

dz
F̃ (z)

)
|z=1. (19)

Here Pdet is the total detection probability after an infinite
number of measurement attempts. If Pdet is 1, Eqs. (18)
and (19) are the moments of the first detection event. Note that
like in classical random walks, the total detection probability
Pdet can be less than unity [8,19,23], in which case the first
and second moments can no longer be used to calculate the
average and variance of the first detection event as detection is
not guaranteed. They can still be used to compute the average
and variance conditioned on the event that the particle is
detected by dividing them by the total detection probability:
Average = 〈n〉 /Pdet and Variance = 〈n2〉 /Pdet − 〈n〉2 /P2

det.
So far, the results we have obtained seem to indicate that

the measurement-induced quantum walk behaves like a reg-
ular discrete-time classical random walk where other than
the fact that the transition probabilities are determined using
the Schrödinger equation, the process is completely classical.
By this, we mean that the basic structure of the renewal
equation is classical. This classical feature is related to the
repeated measurements, which help us define a discrete path
on the graph that the particle took, a classical feature. While
the aforementioned classical trait would seem to imply that
this process is purely classical, this ignores some interesting
effects that arise from the combination of the unitary time evo-
lution of the quantum wave function with the wave-function
collapse introduced by repeated measurements. First, G de-
pends of course on h̄, and in that sense it is still describing a
quantum-mechanical process. But more profoundly, we find
that for certain sampling rates which we label as exceptional,
the statistics of the system vary drastically compared to clas-
sical behavior, and that depending on the initial and target
states, certain sampling rates minimize the average time until
detection, whereas for others the average diverges to infin-
ity. Such features are different compared to classical walks
on similar structures and are related to periodicity, revivals,
and destructive interference of the underlying quantum dy-
namics. These underlying dynamics embedded in G through
the unitary time evolution of the wave function U (τ ) make
it fundamentally different from classical transition matrices
despite the superficial similarities.

V. EXPECTATION VALUES AND EXCEPTIONAL
SAMPLING RATES

In this section, we derive general expressions for Pdet, 〈n〉,
and �n2 in finite systems. We also observe interesting effects
in these values near exceptional sampling rates, examples of
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which are later shown in Sec. VII. We define these sampling
rates to be those that cause 1 to be a degenerate eigenvalue
of G. We postulate that these exceptional sampling rates sat-
isfy �Eτ = 2πn, where �E are the non-negative differences
between pairs of the Hamiltonians eigenenergies.

A. Total detection probability

As previously mentioned in Eq. (17), the total detection
probability is acquired by evaluating the generating function
at z = 1. In this section we derive a general expression for
this. Since G is a real Hermitian matrix, we can express the
initial and detection sites as superpositions of its eigenstates,

|ψin〉 =
∑

λ

gλ∑
k=1

〈λk|ψin〉 |λk〉 ,

|ψtar〉 =
∑

λ

gλ∑
k=1

〈λk|ψtar〉 |λk〉 , (20)

where G |λk〉 = λ |λk〉 and gλ are the degeneracies of the
eigenvalues. In addition to this general form of writing the
initial and target state, we also consider the state

|φ〉 = 1√|X |
∑
x∈X

|x〉 . (21)

This is an eigenstate of G with eigenvalue 1 at all sampling
rates. By the prior definition of exceptional sampling rates,
for nonexceptional sampling rates |φ〉 is the only G eigenstate
whose eigenvalue is 1. This state serves as a kind of a ground
state under the repeated measurements. In classical processes,
this would correspond to a high-temperature limit (in a Boltz-
mann sense) since the system is evenly populating all states.
The repeated measurements drive the system to this state [26].

Returning to the subject of the derivation of a general
formula for Pdet, we plug Eq. (20) into Eq. (13) to obtain

F̃ (z) =
∑

λ

∑gλ

k=1
〈ψtar|λk〉〈λk |ψin〉λz

1−λz

1 + ∑
λ

∑gλ

k=1
|〈λk |ψtar〉|2λz

1−λz

. (22)

Using Eq. (17), we take the limit z → 1, all of the eigenstates
whose eigenvalues are less than 1 disappear, and we are left
with

Pdet = F̃ (1) =
∑g1

k=1 〈ψtar|1k〉 〈1k|ψin〉∑g1

k=1 | 〈1k|ψtar〉 |2 , (23)

where the summation is only over the set of eigenstates whose
eigenvalue is 1, G |1k〉 = |1k〉. This equation is general and
valid for all sampling rates.

We can see from this expression that in the return problem,
where we set 〈ψin|ψtar〉 = 1, the total detection probability
Pdet is always 1 in a finite system. We can also see that
for nonexceptional sampling rates, i.e., sampling frequencies
where 1 is a nondegenerate eigenvalue of G, i.e., g1 = 1, Pdet

is 1 for the transition problem as well in finite systems, since
in that case the only eigenstate which will go into the sum
in Eq. (23) is the uniform state given in Eq. (21). Thus, for
nonexceptional sampling rates, the total detection probability
is unity just like a regular classical random walk on a finite
graph. This is very different from the case in which we only

measure locally at the target site, where due to destructive
interference we may get Pdet < 1 [27–29]. We address this
subject and the more general comparison between global and
local measurements in Sec. IX.

B. The mean and variance in the return problem

The mean 〈n〉 for a measurement-induced quantum walk on
a finite graph is the average number of attempts needed until
the particle is first found at the state |ψtar〉. It is equal to the
average time from the beginning of the walk until the particle
is detected at the target state, divided by the time between
measurements τ . Similarly to the derivation of Eq. (23), we
express the initial and detection site as superpositions of G’s
eigenstates, plug those into Eq. (18), and take the limit as
z → 1 to find that in the return problem 〈ψin|ψtar〉 = 1 this
average is

〈n〉 = 1∑g1

k=1 | 〈ψin|1k〉 |2 . (24)

For nonexceptional sampling rates, |φ〉 is the only state in
the sum, and we can simplify Eq. (24) to obtain

〈n〉 = |X |. (25)

This means that the mean 〈n〉 is quantized and independent
of the details of the system besides the dimension of the
Hilbert space. Namely, recall that for any tight-binding walk
on a graph X is the set of vertexes, and |X | is the number of
vertices.

In essence this is similar to the Kac formula for the mean,
which applies for classical walks and reads 〈n〉 = 1/peq(x),
where peq(x) is the equilibrium state and x is the vertex [30].
However, what is remarkable here is that the effective steady
state is uniform (like a high-temperature limit in classical sta-
tistical mechanics), so the corresponding equilibrium measure
is 1/|X |. Under the condition that g1 = 1, we can interpret the
resulting Eq. (25) as the measurements driving the system to
a high-temperature classical limit [26].

One exceptional sampling rate that we can see in all sys-
tems is the Zeno limit (τ → 0). In this limit of Eq. (24),
G becomes the identity matrix, which causes the sum in the
divisor to evaluate to 1, and we get 〈n〉 = 1. This is expected
if we start at the target node and immediately measure the
particle in the first attempt. What is remarkable is that if τ

is very small but finite, we still get 〈n〉 = |X |. So close to
the Zeno limit we get a drastic jump in 〈n〉 when plotted as
a function of τ . This means that the fluctuations of the first
detection time Nτ close to this limit are gigantic. We can also
see these fluctuations in that the variance �n2 diverges at this
limit as shown in Eq. (26). This nonanalytical behavior is also
found for other exceptional sampling times, discussed below.

To find the variance in the number of measurements �n2 =
〈n2〉 − 〈n〉2, we repeat the aforementioned process for Eq. (19)
and find that for nonexceptional sampling rates, the variance
of the number of measurements in a finite system is given by

�n2 = |X |2 − |X | + 2|X |2
∑
λ 	=1

gλ∑
k=1

| 〈ψin|λk〉 |2 λ

1 − λ
. (26)
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We see here that as any of G’s eigenvalues λ approach 1, such
as in the Zeno limit, the variance diverges, which is indica-
tive of the large fluctuations in the first detection probability,
which are observed near exceptional sampling rates. Keep
in mind that Eqs. (24) and (26) are only valid in the return
problem 〈ψin|ψtar〉 = 1. In Appendix H we present the full
derivation of these two equations in detail, as well as a more
general form of the equation for �n2, which also works for
exceptional sampling rates.

Note that the quantization of the mean return time,
Eq. (25), is not unique to the protocol under study. In Sec. IX
we discuss other measurement schemes that yield quantiza-
tion of the mean return time.

C. The mean in the transition problem

We now turn our attention to the transition problem. Sim-
ilarly to the previous derivation of Eq. (24), we plug Eq. (22)
into Eq. (18). After simplifying, we arrive at the following
equation for 〈n〉 in the transition problem:

〈n〉 =
∑g1

k=1 〈ψtar|1k〉 〈1k|ψin〉(∑g1

k=1 | 〈ψtar|1k〉 |2
)2 + limz→1 g(z)( ∑g1

k=1 | 〈ψtar|1k〉 |2
)2 .

(27)
The function g(z) is

g(z) =
∑

λ

gλ∑
k=1

g1∑
j=1

λz

1 − λz
f (|λk〉 , |1 j〉),

f (|λk〉 , |1 j〉) = 〈ψtar|1 j〉 〈1 j |ψin〉 | 〈ψtar|λk〉 |2

− 〈ψtar|λk〉 〈λk|ψin〉 | 〈ψtar|1 j〉 |2, (28)

where the sums in Eq. (27) are all only over eigenstates whose
eigenvalue is 1 and G |1 j〉 = |1 j〉. In g(z), the summation
over λk includes all of G’s eigenstates, whereas the sum over
j is over only the eigenvectors whose eigenvalue is 1. For
nonexceptional sampling rates, the sum over j is just |φ〉, and
since ∀x ∈ X : f (|x〉 , |x〉) = 0, Eq. (27) reduces to

〈n〉 = |X |
[

1 +
∑
λ 	=1

gλ∑
k=1

λ

1 − λ
(| 〈ψtar|λk〉 |2

− 〈ψtar|λk〉 〈λk|ψin〉)

]
. (29)

If λ → 1, 〈n〉 can diverge. However, it should be noted that
〈n〉 does not necessarily diverge close to exceptional sampling
rates since the expression in the inner brackets can equal zero.
If it does not diverge, it often jumps discontinuously to a
different finite value. We address this issue in Appendix D.
It should also be noted that if |ψin〉 = |ψtar〉, the sum reduces
to zero and we get Eq. (25), since it is just a special case of
this equation.

VI. SLOW RELAXATION OF THE SURVIVAL
PROBABILITY NEAR EXCEPTIONAL SAMPLING RATES

In Sec. V we already showed that in finite systems, as the
number of measurements goes to infinity, the total detection
probability Pdet converges to 1 for nonexceptional sampling

rates. In this section, we show that this relaxation is consid-
erably slower for sampling rates that are close to exceptional
ones.

Starting with Eq. (8), we will define a new operator Gtar =
G(1 − |ψtar〉 〈ψtar|) and rewrite the formula with it:

Fn = 〈ψtar|Gn−1
tar G|ψin〉 . (30)

This new operator is non-Hermitian, but much like the original
G all of its eigenvalues are real and less than or equal to 1.
Similarly to the way we used G’s eigenbasis, we will expand
the initial probability vector G |ψin〉 using Gtar’s eigenbasis.
We will denote Gtar’s eigenvalues as μ and its right and left
eigenstates as |μR〉 and 〈μL|, where Gtar |μR〉 = μ |μR〉 and
〈μL| Gtar = 〈μL| μ; as usual, the left and right eigenvectors
have the same eigenvalues [31]. With these, we can express
the first detection probability like what we did in Eq. (20),
with a minor complication made by the fact that rather than
span |ψin〉 using this eigenbasis, we need to span G |ψin〉
instead, where we assume that Gtar has no degeneracies. The
aforementioned expansion gives us an equation for the first
detection probability:

Fn =
∑

μ

μn−1 〈μL|G|ψin〉
〈μL|μR〉 〈ψtar|μR〉 . (31)

Equation (31) is a formal solution of the problem. It shows
that Fn decays exponentially as a function of n provided that
the sampling rate is nonexceptional.

Using Eq. (31) and the insight from Eq. (23) that the total
detection probability for nonexceptional sampling rates is 1,
we can derive the following equation for the survival probabil-
ity SN = 1 − ∑N

j=1 Fj , which is the probability that in a finite
system the particle was not detected, namely that it survived.
We find

SN =
∑

μ

eN ln μ

1 − μ

〈μL|G|ψin〉
〈μL|μR〉 〈ψtar|μR〉 . (32)

Based on this equation, we can see that we should expect
the survival probability to exponentially decay to zero for
nonexceptional sampling rates and that the decay rate should
slow down considerably when one or more of Gtar’s eigen-
values approaches 1 since the decay rates are given by ln μ.
As we will now show using an interlacing technique [32], this
happens close to every exceptional sampling rate.

To see this, we first note that Gtar’s eigenvalues satisfy the
equation

Eigenvalues(Gtar ) = {0} ∪ Eigenvalues(G′), (33)

where G′ is the principal submatrix of G, where the row and
column corresponding to ψtar have been removed. Note that
G′ is Hermitian and also a principal submatrix of Gtar. This
is significant thanks to the Cauchy Interlace Theorem [33],
which states the following:

For any pair of Hermitian matrices A and B of order N and
N − 1, respectively, where B is a principal submatrix of A, the
eigenvalues of the two matrices interlace. This means that if
we label A’s eigenvalues as an such that an−1 � an and label
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- 1 0 1

FIG. 5. A simple illustration of the eigenvalue interlacing theo-
rem. The eigenvalues of G and G′ for the Hamiltonian (35) plotted
on a segment of the real number line. G’s eigenvalues are depicted
as blue circles, whereas the eigenvalues of G′ are depicted as blue
disks. We find that the eigenvalues of G′ always interlace between
G’s eigenvalues just as the theorem predicts.

B’s eigenvalues as bn such that bn−1 � bn, then

a1 � b1 � a2 � b2 � · · · � bN−2 � aN−1 � bN−1 � aN .

(34)
To show how this affects our problem using an example

we examine a transition from |0〉 to |2〉 on a simple three-site
line graph, which is described by the following tight-binding
Hamiltonian:

H = −γ (|0〉 〈1| + |1〉 〈0| + |1〉 〈2| + |2〉 〈1|). (35)

After using Eq. (6) to find G and G′, we evaluate them at the
nonexceptional sampling rate γ τ = π/

√
8 and then calculate

their eigenvalues. We find that the eigenvalues of the two
matrices interlace just like the theorem predicts, as is shown
in Fig. 5.

Except for zero, which is always an eigenvalue of Gtar, this
interlacing occurs for all values of γ τ , meaning that there is
always a μ between every pair of λ’s. As τ approaches an ex-
ceptional sampling rate, one of G’s eigenvalues will approach
unity. Since λ = 1 is always an eigenvalue of G, the μ that is
interlaced between it and the aforementioned eigenvalue must
also coalesce on unity as it is squeezed between the two G
eigenvalues. This causes the survival probability decay to slow
down considerably since, as mentioned in Eq. (32), μ → 1
implies slow relaxation. To show this, we plot the eigenvalues
of G and Gtar together as a function of γ τ in Fig. 6. We
can see that near every exceptional sampling point, as one
of G’s eigenvalues approaches 1, the Gtar eigenvalue trapped
between it and 1 is forced to also converge to 1 to preserve the
interlacing property.

To see how this affects the survival probability, we plot it as
a function of N for the two almost exceptional sampling rates
γ τ = ε and π/

√
2 − ε, where ε = 10−1. We also plot along

side them the survival probability for the nonexceptional sam-
pling rate γ τ = π/

√
8 for comparison. As can be seen in

Fig. 7, the decay rate is considerably slower for the two almost
exceptional sampling rates compared to the nonexceptional
one. To summarize, the slow decay of the survival proba-
bility near-certain sampling rates can be understood using the
eigenvalue interlacing theorem. We do this by searching for
sampling rates that cause an eigenvalue of G to approach unity
(besides |φ〉’s eigenvalue, which is always 1). In general, this
can be done using any parameter of the Hamiltonian, not just
the sampling rate. This in turn implies that an eigenvalue μ

will also approach unity, and hence using Eqs. (31) and (32)
the relaxation rate is reduced drastically unless prefactors van-
ish as well. This analysis using Gtar is in some sense redundant
as we have already analyzed G. However, in examining both

0
2 2 2

3

2 2
2

−1.0

−0.5

0.5

1.0

,

FIG. 6. The eigenvalues of G (denoted λ) and Gtar (denoted μ)
plotted in blue and orange, respectively. For all values of γ τ there
is always a μ between every pair of λ aside from zero which does
not interlace. The eigenenergies of the system are 0, ± √

2γ . The
exceptional sampling rates are γ τ = 0, π/

√
2, and

√
2π plus integer

multiples of
√

2π . In the figure these are marked by dashed lines,
and all of them satisfy �Eτ = 2πk. Near each of the exceptional
sampling rates, we can see that at least one of the μ’s is squeezed
between a pair of λ’s until it equals 1.

matrices and their properties, we can gain various insights
into the behavior of the system that would be more difficult
to notice in analyzing just one or the other.

VII. BENZENELIKE RING

As an example of how our formalism can be used, we study
the measurement-induced quantum walk, and we solve the
return problem as well as a transition problem for a six-site

200 400 600 800 1000
N10−10

10−8

10−6

10−4

0.01

1

SN

FIG. 7. The survival probability in the transition from |0〉 to |2〉
on the graph whose Hamiltonian is described in Eq. (35). The orange
and blue lines correspond to the almost exceptional sampling rates
γ τ = ε and π/

√
2 + ε, where ε = 10−1. The green line corresponds

to the nonexceptional sampling rate π/
√

8. As explained in the text,
the interlacing theorem predicts the slow decay of the survival prob-
ability close to the exceptional sampling rates through the analysis of
the eigenvalues of G. Whenever two eigenvalues of G merge, we get
a slow relaxation of the survival probability.
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FIG. 8. The eigenvalues of G vs γ τ for the benzenelike ring.
As with every other system, one of the eigenvalues is a constant
one while the others are sinusoidal functions of γ τ . Interesting
effects that are shown in the following figures are observed when
λ = 1 becomes degenerate. The exceptional sampling rates of this
Hamiltonian are as follows: γ τ = 0, 2π/3, π , 4π/3, 2π plus every
integer multiple of 2π . These sampling rates all satisfy �Eτ = 2πk,
where �E are the non-negative differences between eigenenergies of
the Hamiltonian given in Eq. (36). The eigenvalues plotted in orange
and green have twofold degeneracy each.

ring graph (see Fig. 2). In this solution, we omit some of the
simpler steps of the process to focus instead on the results
and their implications. In Appendix E we solve the first detec-
tion problem for a two-level system giving the full technical
details. The graph is described by the following tight-binding
Hamiltonian with cyclical boundary conditions (|6〉 = |0〉):

H = −γ

5∑
x=0

(|x〉 〈x + 1| + |x + 1〉 〈x|). (36)

We diagonalize the Hamiltonian to obtain G and then diago-
nalize it to obtain the eigenstates and eigenvalues, the latter
of which we plot as a function of γ τ in Fig. 8. Having
found G’s eigenstates and eigenvalues, the latter of which we
plotted as a function of γ τ in Fig. 8, we can now easily solve
any measurement-induced quantum first detection problem on
the hexagonal graph. Before we do that, however, we first
look at the time evolution of the probability vector free of
absorbing boundary conditions |ρ(τn)〉, which we can easily
obtain using

|ρ(τn)〉 =
∑

λ

gλ∑
k=1

λn 〈λk|ψin〉 |λk〉 . (37)

Doing this, we find that the projection of the probability vector
unto every graph site equals 1/6 plus an exponentially decay-
ing sum of sinusoidal functions of γ τ , meaning that in the
long time limit the system decays to the state |φ〉 as expected.
We also find that at exceptional sampling rates, some of said
sinusoidal functions equal zero. We explain this phenomenon
and its physical implications near the end of this section.

Returning to the topic of the first detection problem, in this
section we will solve the return problem from |ψin〉 = |0〉 to
|ψtar〉 = |0〉 and the transition problem from |ψin〉 = |0〉 to
|ψtar〉 = |3〉. Note that the choice to examine the transition
problem from |0〉 to |3〉 as opposed to other less symmetric
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6

n

FIG. 9. 〈n〉 for the return problem for a model ring with six sites
whose Hamiltonian is given by Eq. (36). As predicted by Eq. (25),
〈n〉 = 6 for nonexceptional sampling rates. We find that at every
exceptional sampling rate, 〈n〉 jumps discontinuously to a different
integer smaller than 6. In the text we show that this happens because
at those values of γ τ the connectivity of the graph is broken, which
separates it into several fragmented graphs.

transitions is arbitrary, and similar effects are observed for
|0〉 to |1〉 and |0〉 to |2〉 as well. We briefly address the other
transitions at the end of this section.

In both the return and all of the possible transitions, we find
that the total detection probability Pdet is 1 for nonexceptional
sampling rates. In the return problem, we find that 〈n〉 is
discontinuous at the exceptional sampling rates, and in the
transition problem we find that it often diverges. In both,
we find that the variance diverges at these sampling rates.
In Figs. 9–12 we plot these values as a function of γ τ , and
we denote the exceptional values of γ τ with dashed vertical
lines.
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FIG. 10. �n2 = 〈n2〉 − 〈n〉2 for the return problem on a model
ring with six sites whose Hamiltonian is given by Eq. (36). As
predicted in Eq. (26), we find that the variance diverges at every
exceptional sampling rate, namely whenever a pair of λ’s in Fig, 8
coalesce on unity.
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FIG. 11. 〈n〉 for the transition problem from |ψin〉 = |0〉 to
|ψtar〉 = |3〉 on a model ring with six sites whose Hamiltonian is
given by Eq. (36). In the text we explain why it diverges at γ τ = πn
but only jumps discontinuously at the other sampling rates.

To better understand these discontinuities and divergences,
we evaluate the stochastic matrix describing the process G
at the exceptional values of γ τ and observe that at those
points the ergodicity of the system is broken. In Fig. 13, we
graph the system for various values of γ τ based on the G
we obtain for the sampling rate. This shows us what possible
transitions exist in the system at these sampling rates. We
can see that the exceptional sampling rates are ones where
the graph “breaks apart” into several disconnected sub-graphs,
whereas for nonexceptional sampling rates every transition is
possible with some nonzero probability. This effect is some-
what similar to fragmentation of the Hilbert space [27–29]
and the formation of quantum many-body scars [34,35], and
it results in analogous behavior of the system. Note that in
Fig. 13 the lines denote nonzero transition probabilities after
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FIG. 12. �n2 = 〈n2〉 − 〈n〉2 for the transition problem from
|ψin〉 = |0〉 to |ψtar〉 = |3〉 on a model ring with six sites whose
Hamiltonian is given by Eq. (36). We find that the variance diverges
at every exceptional sampling rate, including 2πn/3, in spite of
the fact that the average does not diverge there and only jumps
discontinuously.

(a) γτ = 2πn (b) γτ = 2πn
3

(c) γτ = πn (d) Any other τ

FIG. 13. The possible transitions for various sampling rates on a
model ring with six sites whose Hamiltonian is given by Eq. (36).
In the text we explain how this result relates to the behavior of the
system, and in particular Pdet and 〈n〉. Note that in (c), n is odd.

a measurement, unlike in Fig. 2, where the lines denoted
interactions between pairs of adjacent sites. Looking at these
graphs, we can also clearly see that the reason 〈n〉 in the
transition problem diverged at γ τ = π , but only discontin-
uously jumped to a different finite value at γ τ = 2πn/3, is
that whereas for γ τ = 2πn/3 the point |3〉 remains reachable
from |0〉, for γ τ = πn it becomes completely unreachable as
demonstrated in Fig. 13. Using Fig. 13, we can also see that
in the return problem the average is still equal to the size of
the graph even for exceptional sampling rates, and the reason
it jumps discontinuously from 6 to a smaller integer is that the
graph itself is effectively split apart at the exceptional sam-
pling rates. For example, for γ τ = 2πn the effective size of
the graph is not 6 but rather 1 [as shown in Fig. 13(a)]. Hence
for these sampling times, 〈n〉 = 1 for the return problem.

Based on Fig. 13, we can also see that similar behavior will
occur for other transitions. In the transition |0〉 to |1〉, 〈n〉 will
diverge at every exceptional sampling rate, since |1〉 becomes
unreachable at all of them, whereas in the transition from |0〉
to |2〉, 〈n〉 will diverge at γ τ = 2πn/3, since |2〉 becomes
unreachable at this value and it will jump discontinuously at
γ τ = π .

Looking back at the probability vector |ρ(τn)〉, we can
also see that as expected at exceptional sampling rates, rather
than decaying to |φ〉, which is evenly distributed across the
entire graph, it decays to an even distribution across only the
subgraph to which |ψin〉 belongs.

VIII. UNBOUNDED QUANTUM WALKER
IN ONE DIMENSION

In this section, we consider a measurement-induced quan-
tum walk for a free particle on an infinite lattice. In classical
random walk theory, this is the problem of first passage time
for a particle diffusing without bias on a lattice in one dimen-
sion, which is of course a well-studied problem [8,23].

We use the tight-binding Hamiltonian,

H = −γ

∞∑
x=−∞

|x〉 〈x + 1| + |x + 1〉 〈x| . (38)

A schematic description of this system is given in Fig. 1.
We start by first examining the behavior of the proba-

bility vector without absorbing boundary conditions, which
is given by Eq. (7). The solution of the Schrödinger equa-
tion for the Hamiltonian (38) is |ψ (t )〉 = ∑∞

x=−∞ Bx |x〉,
where the amplitudes satisfy iḂx = −γ (Bx+1 + Bx−1). Using
the Bessel function identity 2J ′

v (z) = Jv−1(z) − Jv+1(z) [36]
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and the initial condition Bx(t = 0) = δx,0, we find that without
measurement, the wave function is

|ψ (t )〉 =
∞∑

x=−∞
ixJx(2γ t ) |x〉 . (39)

From this it is clear that the time evolution operator G will be

G =
∞∑

x,x′=−∞
|Jx−x′ (2γ τ )|2 |x〉 〈x′| . (40)

Using this, we find that the Fourier transform of the probabil-
ity vector at time t = τn is given by

P̃k,n =
∑

k

e−ikx 〈x|ρ(τn)〉 = J0

(
4γ τ sin

(
k

2

))n

. (41)

We present the exact derivation of this expression in
Appendix F. We can obtain the moments of the random walk
using derivatives of this Fourier transform. The first moment
〈x〉 is zero from symmetry and the second moment, which
corresponds to the unitless variance in position of the random
walk, is

�x2 = 2nγ 2τ 2. (42)

The probability vector after the first four measurements is
shown for reference in Fig. 14.

A. Edgeworth series

We will start by examining the region of the random walk
close to the origin. As one might expect, in this region the
probability vector quickly converges to a Gaussian, which can
be shown with a cumulant expansion up to the second order.

J0

(
4γ τ sin

(
k

2

))n

∼ e−nγ 2τ 2k2
. (43)

Under this simple approximation, the probability vector
equals

〈x|ρ(τn)〉 = Px,n ≈
exp

(− x2

4nγ 2τ 2

)√
4πnγ 2τ 2

. (44)

We can reintroduce h̄ to Eq. (44) and add a lattice size a,
which we define to be the distance between different sites on
the lattice, to get

Px,n ≈
exp

(− h̄2x2

4na2γ 2τ 2

)√
4πna2γ 2τ 2/h̄2

. (45)

To find the corrections to the Gaussian near the origin, we
will use an Edgeworth series [37], which is given by

Px,n = exp
(− x2

2c2

)
√

2πc2

(
1 +

∞∑
l=2

(−1)l c2l

(2l )!(2c2)l
H2l

(
x√
2c2

))
, (46)

where Hm(x) are the Hermite polynomials, and cl is the lth
cumulant of the random walk. These can be obtained using

cl = il lim
k→0

dl

dkl
ln (P̃k,n) = iln lim

k→0

dl

dkl
ln (P̃k,1). (47)

Since the cumulants are linearly proportional to n, the cor-
rections to the Gaussian in Eq. (46) disappear over time,

n=1
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FIG. 14. The probability vector on the infinite line Hamiltonian
given in Eq. (38) after the first four measurements plotted as a
function of the lattice site x with γ τ = 10. The shape after the first
measurement matches the results obtained in experimental imple-
mentations of this type of random walk [38], indicating that the
Hamiltonian we use [Eq. (38)] can accurately model such a system.
We tested many values of the sampling rate and found that excluding
γ τ � 1, the general shape of the distribution after the first few mea-
surements is the one presented here. The scale of the shape depends
on the sampling rate, and we find that the “width” equals 2nγ τ ,
as can be seen in this figure. More generally, we can say that the
maximum group velocity of the wave packet when evolving without
measurement is 2γ , and this is reflected here in the distance at which
we can detect the particle. From the fifth measurement onward, the
probability vector typically converges to a simple Gaussian shape
near the center, as expected. We study the behavior of the tails of the
distribution separately later in this section.

as expected. A short list of some of the cumulants is given
in Table I. The Edgeworth series gives us a more accurate
approximation of the probability vector near the origin than
just the Gaussian, which is its first term. One way to see this is
that we can retrieve the Hermite polynomials from the random
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TABLE I. The first ten cumulants of the random walk on the
infinite line, which are the coefficient of the series expansion of
the natural log of Eq. (41) at k = 0. It should be noted that the
special value of γ τ , which causes the Kurtosis c4/σ

4 to go to zero,
has no particular significance with regard to the Gaussianity of the
distribution, and is just coincidental.

n cn

0 0

2 2nγ 2τ 2

4 2nγ 2τ 2(1 − 3γ 2τ 2)

6 2nγ 2τ 2(1 − 15γ 2τ 2 + 40γ 4τ 4)

8 2nγ 2τ 2(1 − 63γ 2τ 2 + 560γ 4τ 4 − 1155γ 6τ 6)

10 2nγ 2τ 2(1 − 255γ 2τ 2 + 5880γ 4τ 4 − 34 650γ 6τ 6 + 57 456γ 8τ 8)

walk itself. To obtain the fourth Hermite polynomial, which
is the second term of the series, we can divide Px,n by the
Gaussian term to get

H4

(
x√
2c2

)
≈ (4)!(2c2)2

c4

(
Px,n

Nx,n
− 1

)
, (48)

where Nx,n is a Gaussian (Normal distribution) with μ = 0
and σ 2 = c2. In Fig. 15 we demonstrate this using a numerical
simulation of the random walk.

B. Saddle point

While the Edgeworth series is useful for studying the
probability vector near the origin, its accuracy decreases
drastically as we move towards the tails of the distribution,
to the point that it can sometimes give negative values for
the probabilities. For these regions, we use a saddle point
method [39] to approximate the probabilities for large values
of n; full details of the derivation are given in Appendix G.
While our focus with this method is the tails of this distri-
bution, it should be noted that using it to approximate the
distribution near the origin gives a Gaussian distribution as

−20 −10 10 20
x

−20

20

40

60
Px,10

FIG. 15. A plot of the expression given in Eq. (48) for γ τ = 1
and n = 10. The probabilities of detection that were obtained via
numerical integration are plotted as blue dots, and the fourth Her-
mite polynomial is plotted as an orange line. Numerical simulations
indicate that typically the two overlap almost completely for 10 � n.
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FIG. 16. The rate function I (x/n) = n−1 ln(Px,n) on the infinite
1D line plotted in blue as a function of the lattice site x. The small
l approximation (Gaussian) is plotted in orange, and the large l
approximation [Eq. (49)] is plotted in green. We tested many values
of the sampling rate, and we found that, excluding γ τ � 1, the
distribution fits the Gaussian approximation up to around |x| = 2nγ τ

and then almost immediately fits the large l approximation.

expected (Appendix G 1). For the far tails of the distribution,
which we define as the region where 2nγ τ � x, we find in
Appendix G 2 that the probabilities are given by

Px,n ≈ 1

2πnγ τ

√(
x

2γ τn

)2 − 1

I0
(
4γ τ

√(
x

2γ τn

)2 − 1
)n

exp
[
2x arccosh

(
x

2γ τn

)] , (49)

where I0(x) is the zeroth modified Bessel function of the first
kind. In the region after x = 2nγ τ , we find that the probabil-
ities decay rapidly, much faster than a Gaussian, as shown in
Fig. 16.

C. Zeno limit

Another topic of interest in this random walk is the Zeno
limit, where we take τ → 0. We can gain some simple insight
into the behavior of the probability vector in this limit by
taking the limit of G, which gives us

G ≈
∞∑

x=−∞
(1 − 2γ 2τ 2) |x〉 〈x| + γ 2τ 2(|x + 1〉 〈x| + |x〉

× 〈x + 1|). (50)

Since the prefactors of the probability of transition are
quadratic in τ , even if we consider the actual time t = τn as
opposed to the number of steps, the particle is still forced to re-
main at the origin and has a very low probability of escaping.
Another way of seeing this is that the diffusion coefficient of
this random walk is proportional to τ 2. We can better quantify
this effect by examining the Kurtosis of the probability vector.
The Kurtosis is a measure of the Gaussianity of the system, it
is zero for Gaussian distributions and expected to be small
for distributions that are very similar to Gaussians. In our
previous discussion of the Edgeworth series, we mentioned
that we expect the probability vector to converge to a Gaussian
fairly quickly, and using the Kurtosis, we can quantify how
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TABLE II. The first five first detection probabilities for the re-
turn problem on the infinite line lattice. In this table, we denoted
(2π )−1

∫ 2π

0 (J0(4γ τ sin (k/2)))ndk as An for the sake of readability.

n Fn

1 A1 = |J0(2γ τ )|2
2 A2 − A2

1

3 A3 − A1A2 + A3
1

4 A4 + 3A2
1A2 − 2A1A3 − A2

2 − A4
1

5 A5 + 3A2
1A3 + 3A1A2

2 − 2A1A4 − 4A3
1A2 − 2A2A3 + A5

1

quickly this happens. The Kurtosis for this random walk is

κ = c4

(c2)2
= (γ τ )−2 − 3

2n
≈ (γ τ )−2

2n
(51)

(the −3 is negligible in the Zeno limit). To obtain a Kurtosis
smaller than ε where ε � 1, we can rearrange Eq. (51) to get

1
2ε−1 � n(γ τ )2, (52)

meaning that n must be at least of the order of (γ τ )−2 for the
probability vector to converge to a Gaussian shape.

D. First detection time

Turning our attention to the first detection time for the
return problem on this lattice, we can easily obtain the gen-
erating function by plugging the inverse Fourier transform of
Eq. (41) into Eq. (15) and perform the summation with respect
to n to get

F̃ (z) = 1 − 2π∫ 2π

0
dk

1−zJ0

[
4γ τ sin

(
k
2

)] . (53)

Since the integral in Eq. (53) diverges for z → 1, using
Eq. (17) we know that for all τ , Pdet = 1. The small n first de-
tection probabilities can be obtained using Eq. (9) or Eq. (16)
by expanding Eq. (53) around z = 0 and numerically solving
the resulting integrals. The exact form of the first few of these
is presented in Table II. We can also continue with such a
process with a program like MATHEMATICA to obtain Fn, which
we plot versus n in Fig. 17.

To obtain the asymptotic behavior of the probabilities for
large n we can solve the integral in Eq. (53) in the limit 1 −
z � 1. In this limit, most of the contribution to the integral is
in the region of k = 0, so we will expand the Bessel function
around this point up to the second-order J0[4γ τ sin(k)] ≈
1 − 4γ 2τ 2k2. This approximation is accurate in the region that
contributes the most to the integral and quickly decays to zero
in the region that by comparison contributes very little.

With this approximation, we obtain

F̃ (z) ≈ 1 − 2γ τ
√

1 − z. (54)

From the expansion of the function about z = 1 using the
Tauberian theorem [8], we can see that the asymptotic big n
behavior is

F1�n ≈ π−1/2γ τn−3/2. (55)

=10
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=0.1

1 10 100 1000 104
n10−8
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FIG. 17. Fn of the return problem on the infinite 1D line for vari-
ous values of γ τ plotted as dots alongside their respective asymptotic
limits, which were plotted as lines. The choice of sampling rate
has a strong effect on the first few first detection probabilities, but
after those, they all converge to π−0.5γ τn−3/2. This convergence is
generally faster for smaller values of γ τ , but it slows down close to
the Zeno limit.

The asymptotic n−3/2 behavior is of course similar to the
well-known result from one-dimensional first passage times
(classical) on a line [8,23]. We show the convergence of the
first detection probabilities to this limit in Fig. 17. The prefac-
tor we find here is the new element of this research.

In addition to the example we have considered here, an
examination of the effects of Anderson localization on this
kind of random walk would be interesting, as the combination
of the localization caused by the measurements with the lo-
calization of the Hamiltonian eigenstates caused by disorder
in the lattice might result in unique effects.

IX. COMPARISON WITH TARGET SITE MEASUREMENT

One last subject to consider is alternate definitions for a
quantum first detection problem. In this paper, we considered
a quantum first detection problem where every τ time we
measure the position of the particle until it reaches the target
site. One other possible definition of a quantum first detection
problem is one where every τ time we just measure if the
particle reached the target site or not using the projection
operator |ψtar〉 〈ψtar| as opposed to the position operator X̂ .
This issue was considered in [19–21]. In the latter case, the
outcome of each measurement is either yes or no, hence we
can claim that the measurement is local. The basic renewal
equations—Eq. (9) here and Eq. (17) in [19]—are fundamen-
tally different, as here we describe a probability Fn and the
latter describes an amplitude of first detection. In the classical
world, the two protocols give the same first passage time
statistics, but in quantum mechanics this is not the case. The
current problem is more classical, but some traces of quantum
mechanics are still present in the features of G, such as the
exceptional sampling rates, the Zeno limit, etc.

For a more quantitative examination, we compare some of
the general results obtained for both measurement protocols
to highlight the differences between the two. Of particular
interest are Pdet and 〈n〉 for a finite Hilbert space, since we
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have general results for both in both measurement protocols
that apply for all time-independent Hamiltonians at nonex-
ceptional sampling rates. Note that in general the exceptional
sampling rates in the position measurement protocol and the
target site measurement protocol are different, though some
can be the same (such as the Zeno limit, which exists in every
system and for both protocols).

For the return problem, we found in this paper that the
total detection probability is always 1. This is similar to the
case when measurements are performed only at the target
site, which in this case is also the initial location of the wave
function. The total detection probability is 1 in a finite Hilbert
space with a discrete energy spectrum [14]. We found that
〈n〉 equals the size of the graph in our measurement protocol,
whereas when only measuring at the target site, it was found
that 〈n〉 equals the effective dimension of the Hilbert space,
which is the number of distinct energy levels of the system,
provided that the corresponding eigenstates have a nonzero
overlap with the detected state. This effective dimension is
always less than or equal to the size of the graph, so the
target site measurement protocol results in faster detection
on average. Note that this is true typically in ordered systems
where we have some symmetry and hence degeneracy in the
energy levels, whereas in disordered systems the number of
energy levels is typically the same as the dimension of the
Hilbert space, causing the two averages to be the same. Sim-
ilar results are found also for non-Hermitian descriptions of
the system [40].

For the transition problem, we found in this paper that
the total detection probability is also always 1, whereas for
the target site measurement protocol Pdet can be bounded
numbers smaller than unity depending on the symmetry of
the system, as was shown in [27–29]. In general, for systems
with symmetry, the repeated local measurements yield states
that are called dark states [27–29], and here we did not find
such generic states (except for the exceptional sampling rates,
which are related to the stroboscopic protocol under study).

Although comparing 〈n〉 in the transition problem is not
as easy, as we do not have a simple way of determining
which measurement scheme is slower on average for it in
general, we feel that the probability of not detecting the
particle at all in the target site measurement scheme makes
the location measurement scheme preferable for reliable de-
tection of the particle in the transition problem. However,
for specific target states, the target site measurement ap-
proach can be extremely fast, as the motion is essentially
ballistic [17].

While in this section, and this paper in general, we focused
on comparisons to the results found for the detection protocol
considered in [19–21], we would be remiss in not mention-
ing other works in the field of quantum random walks that
make use of other measurement protocols and the broader ef-
fects of measurements on quantum-mechanical systems, such
as [15,17,41–47].

X. SUMMARY

In this paper, we developed a theoretical framework for the
study of quantum walks with repeated measurements of the
position operator, which we have termed the measurement-

induced quantum walk. In particular, we have focused on
studying the first detection problem within this framework.

As shown in [1–6], both decoherence and measurements
may induce classical features in a quantum walk. Our research
both verifies and expands upon this known result, as we have
shown that upon closer inspection of these classical features,
nontrivial quantum effects can still be found. In the case of the
infinite line, these effects can be seen using a large deviation
theory and Edgeworth expansion. Additional nonclassical ef-
fects can be seen in this system by analyzing the Zeno limit
using Kurtosis. Furthermore, while decoherence processes are
important in the context of measurements and the transition
between quantum and classical worlds, they are not sufficient
to define a measured path of the particle. Thus monitoring is
essential in the basic definition of quantum functionals such
as the first hitting time, which we have studied in depth in our
work. It will be interesting to study our model in the presence
of decoherence.

One remarkable feature that we found of the return prob-
lem in a finite graph is that the mean 〈n〉 is quantized and
equal to the size of the graph. This breaks down at exceptional
sampling rates when the effective size of the system is smaller
than the actual size, due to ergodicity breaking (see Fig. 13).
Importantly, it remains an integer, and so does 〈n〉. For the
transition problem, we have a very different behavior as 〈n〉 is
certainly not an integer. Instead, it typically diverges close to
exceptional sampling rates, but not always, as can be seen in
Fig. 11. Although the discontinuities in 〈n〉 (such as those seen
in Fig. 9) are very difficult to measure directly as any slight
change in the sampling rate or noise from the environment
will ruin this exceptional sampling rate, we can still observe
the effect of these sampling rates in the divergence of the
variance as is seen in Figs. 9 and 12. Hence to study the effects
of exceptional sampling rates, one does not need to tune the
system very precisely, and one may instead simply focus on
the fluctuations. Furthermore, we have shown that in finite
systems the convergence to the functionals of the walk, such
as the survival probability or the mean number of detection at-
tempts, slows down drastically close to exceptional sampling
rates for both the return and transition problem.

For a particle on a one-dimensional infinite lattice, we
found that Fn decays like n−3/2. This is different from what
was found in [19] for the same Hamiltonian when measuring
only at the origin where the decay rate was found to be Fn ∼
n−3 with superimposed quantum oscillation. Hence the value
of the exponent of the first detection probabilities depends on
the observable used to define the problem. In our case, the
exponent 3/2 is the same as the one obtained for a regular
classical random walk. Of course, this does not imply that the
problem itself is classical, only that the exponent 3/2 is. This
finding is augmented by the fact that the rate at which the
first detection probabilities converge to this asymptotic limit
is highly dependent on the sampling rate, as very fast or very
slow sampling delay the convergence, while for intermediate
sampling rates the probabilities converge almost instantly.

In examining the shape of the probability vector on this lat-
tice, we found that, outside of the Zeno limit, it takes the form
of a Gaussian distribution, as expected. However, a closer
examination using an Edgeworth expansion near the origin
and a large-deviation theory near the tails of the distribution
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revealed noteworthy corrections to this classical behavior. For
example, the large deviation theory reveals the ballistic scal-
ing, which is the hallmark of quantum walks in the absence of
measurements, while the central part of the packet is Gaussian
and hence diffusive in the classical sense.
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APPENDIX A: DERIVATION OF Fn

In this Appendix, we present all of the steps leading to the
derivation of Eq. (9) in detail.

1. The time evolution operator

We will start by showing that using G as the time evolu-
tion operator of the probability vector does in fact cause it
to behave as we have described in Sec. III. We will prove
G |ρ(τn+)〉 = |ρ[τ (n + 1)−]〉 by induction.

For n = 0 we get G |ρ(0)〉 = ∑
x | 〈x|e−iτH |ψin〉 |2 |x〉,

which is simply the probability that the wave function col-
lapsed to each of those sites. For 0 < n, we have |ρ(τn)〉 =∑

x Pτn
x |x〉, where by the induction hypotheses Pτn

x is the
probability that the wave function is localized to |x〉 at t = τn.
The probability that |ψ〉 is localized to some arbitrary site |y〉
at t = τ (n + 1) is

∑
x Pτn

x Px→y, where Px→y is the probability
that a wave function starting at |x〉 collapses to |y〉 after be-
ing operated on by e−iτH , which is given by | 〈y|e−iτh|x〉 |2.
Operating on |ρ(τn)〉 with G, we get

G|ρ(τn)〉 =
∑

x

[∑
x′

Pτn
x′ Px′→x

]
|x〉 =

∑
x

Pτ (n+1)
x |x〉. (A1)

∑
x Pτ (n+1)

x |x〉 equals |ρ[τ (n + 1)]〉 by the definition of Pt
n, so

the proof is complete.

2. Evolution of the probability vector

In this subsection, we will derive Eq. (8). Note that in this
subsection we use Pn to refer to the conditional probability
that the wave function is localized to |ψtar〉 at τn after having
not been detected at ψtar in the past n − 1 attempts, as opposed
to Fn, which is the probability of first detecting the particle at
ψtar on the nth measurement. The relation between the two is
Fn = Pn�

n−1
j=1(1 − Pj ). We will also be making frequent use of

the operator D = |ψtar〉 〈ψtar|.
For n = 1, Eq. (8) follows directly from the defining prop-

erty of G, which was proven in the previous subsection of
this Appendix, and the probability that the wave function is
localized to ψtar is F1 = P1 = 〈ψtar|G|ψin〉. If the system was
not measured to be in the state ψtar, then at t = τ + ε (ε ∈
R+, ε → 0+) the probability vector is |ρ(τ + ε)〉 = N (1 −
D) |ρ(τ )〉, where N is the normalization of the probability,
which in this case is N = (1 − P1)−1. Continuing to evolve
the vector in time, we find that |ρ(2τ )〉 = G(1−D)G|ψin〉

1−P1
. If the

system was not found at ψtar again, then the probability vector
is |ρ(2τ + ε)〉 = (1−D)G(1−D)G|ψin〉

(1−P1 )(1−P2 ) .
This iteration procedure is repeated, with the operator

G(1 − D) removing the component that was not detected at
the target site and evolving the probability vector in time
and the normalization (1 − Pj )−1 being added with each such
failed detection attempt. After continuing in this manner for
τn time, we have

|ρ(τn)〉 = [G(1 − D)]n−1G |ψin〉
�n−1

j=1(1 − Pj )
. (A2)

Applying 〈ψtar| to both sides and multiplying by �n−1
j=1(1 −

Pj ), we have

Pn�
n−1
j=1(1 − Pj ) = 〈ψtar|[G(1 − D)]n−1G|ψin〉 . (A3)

The left-hand side of this equation is the probability that the
nth measurement attempt succeeded and all previous attempts
failed, which is how we defined Fn. Hence, the derivation of
Eq. (8) is complete.

3. Renewal equation derivation

In this section, we will show by induction that

[G(1 − D)]n−1G|ψin〉 = Gn|ψin〉 −
n−1∑
j=1

FjG
n− j |ψtar〉. (A4)

For n = 1, it is easy to see that both are just G |ψin〉. We
will now assume that the equation is correct for n, and we
prove that it follows for n + 1.

Operating on the left-hand side of Eq. (A4) with G(1 − D),
we get [G(1 − D)]nG |ψin〉. Operating on the right-hand side
with G(1 − D), we get

Gn+1|ψin〉 −
n−1∑
j=1

FjG
n+1− j |ψtar〉

−
[
〈ψtar|Gn|ψin〉 −

n−1∑
j=1

Fj〈ψtar|Gn− j |ψtar〉
]

G|ψtar〉. (A5)

Notice that the segment in square brackets in Eq. (A5)
is Fn. After applying this change and making the rightmost
expression part of the sum, we get

[G(1− D)]nG|ψin〉 = Gn+1|ψin〉 −
n∑

j=1

FjG
n+1− j |ψtar〉. (A6)

This equation is the same as (A4) but for n + 1. Hence, the
proof is complete. To get the equivalence of Eqs. (8) and (9)
from this, simply operate on Eq. (A6) with 〈ψtar|.

APPENDIX B: EIGENVALUES AND EIGENSTATES OF G

To complete the derivations of the general formulas for the
moments of the generating function, some general properties
of G’s eigenvalues and eigenstates are necessary.

1. All eigenvalues of G are � 1

According to the Gershgorin circle theorem [48], all of G’s
eigenvalues lie within “Gershgorin disks” D(Gii, Ri ), which
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are disks in the complex plane where Gii is the center of the
disk and Ri = ∑

i 	= j |Gi j | is the radius of the disk. Since G is
Hermitian, we can replace the statement of the theorem with
∀λ∃i : |Gii − λ| � Ri, where λ are the eigenvalues of G. Since
the total probability of a particle to jump to some other site
from any initial site is 1, we can replace Ri with 1 − Gii and
use that to rewrite the previous equation as follows: ∀λ∃i :
|Gii − λ| � 1 − Gii. If Gii � λ, it easily follows that ∀|λ| � 1.
Otherwise, if λ < Gii, then it is also less than or equal to 1
since ∀iGii � 1.

2. The vector |φ〉 = 1√|X |
∑

x |x〉 is an eigenstate of G

G |φ〉 = 1√|X |
∑

x

[∑
x′

| 〈x|e−iHτ |x′〉 |2
]

|x〉 = |φ〉 . (B1)

The term in the square brackets is the total probability of the
particle to be detected anywhere after the detection attempt,
which is just 1 from the normalization of the wave function.

APPENDIX C: NONLOCAL INITIAL CONDITIONS

Throughout the paper, we have assumed that |ψin〉 is a
localized state for the sake of simplicity, however it should
be noted that our method also works for nonlocal initial wave
functions after some slight modifications which will be de-
tailed in this Appendix. The first and most important of these
modifications is that rather than simply setting |ρ(0)〉 = |ψin〉,
we will first need to localize the wave function using the mea-
surement at time τ . This step is needed since the stochastic
matrix G can only be used to evolve the system in time if the
wave function is localized,

|ρ(τ )〉 =
∑
x∈X

| 〈x|e−iHτ |ψin〉 |2 |x〉 . (C1)

After finding the probability vector at time τ , we will subtract
the first detection probability F1 = 〈ψtar|ρ(τ )〉 from it,

|ρ(τ+)〉 =
∑

x∈X/{ψtar}
| 〈x|e−iHτ |ψin〉 |2 |x〉 . (C2)

Once this process is done, the wave function is localized
to some site x1 and we can simply continue to evolve this
probability vector in time using G as if it were the initial state
of our system. However, it should be noted that if we simply
calculate the generating function from this probability vector
as it is, the indices of the probabilities will be shifted,

F̃ (z)
′ =

∞∑
n=1

Fn+1zn = 〈ψtar|G̃(z)|ρ(τ+)〉
1 + 〈ψtar|G̃(z)|ψtar〉

. (C3)

We can compensate for this by multiplying the generating
function by z and adding zF1 to it,

F̃ (z) = zF1 + zF̃ (z)
′
. (C4)

Once this step is done, we can use the generating function in
just the same manner as we would in the case where |ψin〉 is
localized. However, it should also be noted that the general
results we have derived in Sec. V no longer apply.

APPENDIX D: DISCONTINUOUS JUMPS OF 〈n〉
IN THE TRANSITION PROBLEM

In this Appendix, we derive a general formula for the
value of 〈n〉 at an exceptional sampling rate when it does
not diverge, and we demonstrate that when not diverging,
it often jumps discontinuously. We will start by examining
the behavior of the function g(z) defined in Eq. (27) in the
limit where z → 1 and τ → τex, where τex is an exceptional
sampling rate of the system. As a reminder, the function g(z)
is

g(z) =
∑

λ

gλ∑
k=1

g1∑
j=1

λz

1 − λz
f (|λk〉 , |1 j〉),

f (|λk〉 , |1 j〉) = 〈ψtar|1 j〉 〈1 j |ψin〉 | 〈ψtar|λk〉 |2

− 〈ψtar|λk〉 〈λk|ψin〉 | 〈ψtar|1 j〉 |2. (D1)

The problematic terms in the sum over λk are the terms
whose eigenvalue is 1. If the inner sum over j is nonzero for
any of them, then 〈n〉 will diverge. Assuming that it is zero and
then simplifying, we get the following equation for the value
of 〈n〉 at an exceptional point that does not cause it to diverge:

〈n〉ex = A−1 + A−2
∑
λ 	=1

gλ∑
k=1

g1∑
j=1

λ

1 − λ
f (|λk〉 , |1 j〉), (D2)

where A = ∑g1

k=1 | 〈ψtar|1k〉 |2. Although the assumption that
the inner sum is zero may seem unlikely, it is satisfied fairly
often. We show an example of this in Fig. 11, and this discon-
tinuous jump is fairly common in other systems as well.

One additional assumption we need to make is that for at
least one of the eigenstates whose eigenvalue is 1 besides |φ〉,
its projection onto the target state is nonzero: 〈ψtar|λk〉 	= 0.
Without this assumption, we will get 〈n〉ex = 〈n〉. We think
that this assumption is justified by the fact that the projection
of the target site onto the eigenstates of G appears in both the
denominator and numerator of the generating function, so if
the projections of all of these eigenstates are zero, this means
that this set of eigenstates did not influence the statistics of
the first detection time to begin with. It is fairly simple to
invent a Hamiltonian describing a graph where some parts of
the graph cannot be reached from others. For any such Hamil-
tonian, it is clear that the eigenstates describing one part of
the system will not affect the behavior of a walk on a different
part that cannot be reached, meaning that all the projections
would be zero. In such cases, our assumption is wrong and
the exceptional sampling rate in question will not affect the
statistics of the measurement-induced quantum walk. Keep in
mind that all that was shown in this section does not mean that
〈n〉 necessarily discontinuously jumps if it does not diverge, as
the two expressions can still equal each other. However, given
the assumption that the projection onto the set of exceptional
eigenstates is nonzero, there is also no particular reason why
the two expressions for 〈n〉 should equal each other, so more
often than not they will be different, as can be seen in Fig. 11.

APPENDIX E: TWO-LEVEL SYSTEM

In this Appendix, we solve the first detection problem for a
two-level system in detail to present the steps one would need

054108-15



A. DIDI AND E. BARKAI PHYSICAL REVIEW E 105, 054108 (2022)

to perform to use our formalism in practice. The Hamiltonian
of the two-level system is given by

H = −γ (|0〉 〈1| + |1〉 〈0|) + U |1〉 〈1| . (E1)

As previously mentioned in Sec. II, this Hamiltonian can
describe a particle hopping between two distinct sites or any
arbitrary two-state quantum system where one state has higher
energy than the other, such as a spin-1/2 particle in a mag-
netic field where the measurement is of the orientation of the
spin (X = {|L〉 , |R〉}), for example. Note that our method is
only applicable to this example if the axis of measurement is
not parallel to the orientation of the magnetic field, since in
that case the states being measured are the eigenstates of the
Hamiltonian, which would cause G to simply be the identity
matrix.

The first step to finding either the return or transition prob-
abilities is to diagonalize G. To do this, we first diagonalize
the Hamiltonian to obtain the time evolution of every initial
condition (|0〉 and |1〉) and then we use those results in Eq. (6)
to compute G:

G =
⎛⎝U 2+2γ 2[1+cos(τ

√
U 2+4γ 2 )]

U 2+4γ 2

2γ 2[1−cos(τ
√

U 2+4γ 2 )]
U 2+4γ 2

2γ 2[1−cos(τ
√

U 2+4γ 2 )]
U 2+4γ 2

U 2+2γ 2[1+cos(τ
√

U 2+4γ 2 )]
U 2+4γ 2

⎞⎠.

(E2)

After this step is done, we diagonalize G to find its eigenstates
and eigenvalues,

|λ1〉 = 1√
2

(|0〉 + |1〉) = |φ〉 , |λ2〉 = 1√
2

(− |0〉 + |1〉),

λ1 = 1, λ2 = U 2 + 4γ 2 cos(τ
√

U 2 + 4γ 2)

U 2 + 4γ 2
. (E3)

Notice that |λ2| � 1, as expected. Exceptional sampling rates
are found when the cosine found in λ2 equals 1, which causes
the eigenvalue itself to equal 1.

Using these we can now easily calculate the first detection
generating function Eq. (11) for any transition on the system
in the |0〉 , |1〉 basis using Eq. (13). Note that since the on-
site energy U only appears squared, both possible transition
problems on this graph behave identically, the same for the
two possible return problems. Using Eq. (E3) and the afore-
mentioned remark that the cosine should equal 1, we have

4π2k2

τ 2
= U 2 + 4γ 2, (E4)

where k is a nonzero natural number (assuming γ 	= 0).
Choosing values of τ , γ , and U , which satisfy Eq. (E4), causes
the transition matrix G to become the identity matrix. From
this, it is easy to see that for exceptional sampling rates, the
particle will be detected at the first attempt with certainty. For
nonexceptional sampling rates, we can use the general results
derived in Sec. V, which tell us that in the return problem,
Pdet = 1 and 〈n〉 = 2. These results can also be confirmed by
evaluating the generating function and its derivative directly.
We can obtain the variance using either Eq. (26) or by taking
the second derivative of F̃ (z). Either way, we will find that it
goes like �n2 ∼ (1 − λ2)−1. Note that although the variance
goes to infinity as λ2 goes to 1, when λ2 is 1 the variance

0 2 4 6 8 10 12
U

10

100

1000

104
n

FIG. 18. The average number of measurements until first detec-
tion in the transition from |ψin〉 = |0〉 to |ψtar〉 = |1〉 for the two-level
system model whose Hamiltonian is given in Eq. (E1) as a function
of the on-site energy U plotted in blue, where we set τ = π and
γ = 1. The average diverges at every exceptional value of U while
also tending to increase overall like U 2/4 (plotted in orange). The
exceptional energy differences are denoted by the dashed vertical
lines. The variance (not plotted) behaves very similarly.

becomes zero. This is because at those sampling rates the
particle is detected at the first attempt with probability 1.

Next, we will briefly examine the transition from |0〉 to |1〉.
Keep in mind that since | 〈0|e−iτH |1〉 |2 = | 〈1|e−iτH |0〉 |2, the
behavior of this transition is identical to the one from |1〉 to
|0〉, and the choice to examine one and not the other is arbi-
trary. As expected based on Sec. V, we find that Pdet is 1 for all
nonexceptional combinations of U , γ , and τ , and that for the
exceptional ones the particles are never detected. In addition,
we find that the average and variance both diverge near these
values, although at the values themselves they jump to zero
since all probabilities become zero. We plot the average as a
function of the on-site energy in Fig. 18.

APPENDIX F: INFINITE LINE RETURN PROBLEM
PROBABILITY VECTOR DERIVATION

In this Appendix, we derive the Fourier transform of the
probability vector for the return problem on the infinite line
lattice whose Hamiltonian is given by Eq. (38) and whose
initial condition is |ψin〉 = |0〉. We start with the general form
of the probability vector at time t = τn, which, for the time
evolution operator given in Eq. (40), is given by

|ρ(τn)〉 =
( ∞∑

x,x′=−∞
|Jx−x′ (2γ τ )|2 |x〉 〈x′|

)n

|0〉 . (F1)

Notice that the expression we have arrived at is the discrete
convolution of |Jx(2γ τ )|2 with itself n times with respect to x.
Using the discrete convolution theorem, its Fourier transform
equals the nth power of the Fourier transform of |Jx(2γ τ )|2.
To find the Fourier transform of |Jx(2γ τ )|2, we will start with
the generating function of the Bessel functions:

e
z
2 (t− 1

t ) =
∞∑

x=−∞
t xJx(z). (F2)
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Setting t = eiθ and integrating from zero to 2π , we get

1

2π

∫ 2π

0
eiz sin(θ )dθ = J0(z). (F3)

Next, we make two copies of the generating function. In one
copy, we set t = eiθ , and in the other copy we take the complex
conjugate and set t = ei(θ+k). We then multiply these two by
each other to obtain

eiz[sin(θ )−sin(θ+k)] =
∞∑

x,y=−∞
e−ikyeiθ (x−y)Jx(z)[Jy(z)]∗. (F4)

Dividing by 2π and integrating from zero to 2π with respect
to θ , we get

1

2π

∫ 2π

0
eiz[sin(θ )−sin(θ+k)]dθ =

∞∑
y=−∞

e−iky|Jy(z)|2. (F5)

To evaluate the integral on the left-hand side, we make use of
the fact that we can write sin(θ ) − sin(θ + k) as a sin(θ + b),
where a = 2 sin(k/2), and we do not need to find b since the
integral is over the whole cycle anyway,

1

2π

∫ 2π

0
e2iz sin(k/2) sin(θ+b)dθ =

∞∑
y=−∞

e−iky|Jy(z)|2. (F6)

Using Eqs. (F3) and (F6), we find that the Fourier transform
is

∞∑
y=−∞

e−iky|Jy(2γ τ )|2 = J0

(
4γ τ sin

(
k

2

))
. (F7)

Raising this expression to the nth power, we find that the
Fourier transform of the probability vector at time t = τn is

∑
k

e−ikx 〈x|ρ(τn)〉 = J0

(
4γ τ sin

(
k

2

))n

. (F8)

Taking the inverse Fourier transform, this shows that the prob-
ability vector is given by

〈x|ρ(τn)〉 = 1

2π

∫ 2π

0
eikxJ0

(
4γ τ sin

(
k

2

))n

. (F9)

APPENDIX G: SADDLE POINT APPROXIMATIONS
DERIVATION

In this Appendix, we derive the results presented in
Sec. VIII B. These solutions are based on the methods pre-
sented in [39], and they can be briefly summarized in that
we can obtain an approximate expression for the probability
vector using

Px,n ≈ 1√
2πK ′′(û)

exp (K (û) − ûx),

K (u) = ln 〈exp (ux)〉 = n ln (I0(4γ τ sinh (u/2))), (G1)

where û satisfies K ′(û) = x. In our case, it is the solution to
the equation

x = 2nγ τ
I1(4γ τ sinh (û/2))
I0(4γ τ sinh (û/2))

cosh (û/2). (G2)

Looking at the region where x ∼ n by setting x = 2nγ τ l , we
have the equation

l = I1(4γ τ sinh (û/2))
I0(4γ τ sinh (û/2))

cosh (û/2). (G3)

We will solve this equation for different regions of the prob-
ability vector by using different appropriate approximations.
Where neither approximation applies, we solve Eq. (G2) nu-
merically.

1. Small l solution

This solution corresponds to the center of the distribution,
where from both the central limit theorem and the previ-
ously presented Edgeworth series solution we expect to find
a Gaussian distribution. For a small l we can approximate the
right-hand side of Eq. (G3) using a first-order Taylor series,
which gives us

l = γ τ û, û = x

2nγ 2τ 2
= x

�x2
. (G4)

As a reminder, x and �x2 are unitless. Plugging this result into
Eq. (G1) and adding one additional minor approximation, we
obtain a Gaussian distribution as expected:

Px,n = 1√
2π�x2

exp

(
− x2

2�x2

)
,

Px,n = 1√
4πnγ 2τ 2

exp

(
− x2

4nγ 2τ 2

)
. (G5)

2. Large l solution

This solution corresponds to the far tails of the distribution,
and we expect it to display very strong decay to zero. For this
region, the right-hand side of Eq. (G3) converges to just the
hyperbolic cosine, and we get

l = cosh(û/2), û = 2 arccosh(l ). (G6)

Plugging these into Eq. (G1), we make use of the following
additional approximations:

I1(4γ τ l )

I0(4γ τ l )
≈ I2(4γ τ l )

I0(4γ τ l )
≈ 1. (G7)

This gives us the following approximation for the probability
vector:

Px,n = 1

2πnγ τ

√(
x

2γ τn

)2 − 1

I0
(
4γ τ

√(
x

2γ τn

)2 − 1
)n

exp
[
2x arccosh

(
x

2γ τn

)] . (G8)

In the limit we took of 1 � l , by extension we also have
1 � l � n � x, meaning that the term in the denominator
in Eq. (G8) is much greater than the one in the numerator,
demonstrating the rapid decay to zero that we expected.

APPENDIX H: DERIVATION OF THE 〈n〉
AND �n2 EQUATIONS

In this Appendix, we show the derivation of Eqs. (24)
and (26) in detail, as well as a more general formula for �n2

than what we presented in Sec. V. As a reminder, we are
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starting with Eq. (22) in the |ψin〉 = |ψtar〉 case, and our goal is
to find the limit as z → 1 of its first and second derivative with
respect to z. For this section, we introduce some new notation
to shorten the following equations. First, we abbreviate the
sums over the eigenstates

∑
λ

∑gλ

k=1 |λk〉 as just
∑

λ |λ〉. Each
such sum is over all eigenstates unless stated otherwise, i.e.,∑

λ=1 is only over eigenstates whose eigenvalue is 1 and∑
λ 	=1 is over all other eigenvalues. Secondly, we abbreviate

the squared projection of the initial state |ψin〉 onto each
eigenstate as ψλ = | 〈ψin|λ〉 |2.

Starting with 〈n〉, we add and subtract 1 to the numerator
in Eq. (22) and rewrite it using the shorthand notation we have
introduced:

F̃ (z) = 1 + ∑
λ ψλ

λz
1−λz − 1

1 + ∑
λ ψλ

λz
1−λz

= 1 − 1

1 + ∑
λ ψλ

λz
1−λz

. (H1)

Taking the first derivative, we get

d

dz
F̃ (z) =

∑
λ ψλ

λ
(1−λz)2(

1 + ∑
λ ψλ

λz
1−λz

)2 . (H2)

Next, we multiply and divide the generating function
by (1 − z)2,

d

dz
F̃ (z) =

∑
λ ψλλ

(1−z)2

(1−λz)2(
1 − z + ∑

λ ψλλz 1−z
1−λz

)2 . (H3)

Written like this, we can see that the reason exceptional
eigenvalues are significant is that only the eigenstates whose
eigenvalue is 1 will remain after we take the limit z → 1.
Taking the limit, we easily obtain Eq. (24),

lim
z→1

d

dz
F̃ (z) =

∑
λ=1 ψλ( ∑
λ=1 ψλ

)2 = 1∑
λ=1 ψλ

. (H4)

For the variance, we start by first relating it to 〈n〉 and the
second derivative of the generating function,

�n2 = 〈n2〉 − 〈n〉2

= d

dz

(
z

d

dz

)
F̃ (z)|z→1 − 〈n〉2

= d2

dz2
F̃ (z)|z→1 + 〈n〉 − 〈n〉2 . (H5)

Next, we need to find the value of the second derivative at
z → 1. Taking the derivative of Eq. (H2), we get

d2

dz2
F̃ (z) =

[∑
λ

ψλ

2λ2

(1 − λz)3
+

∑
λ,�

ψλψ�

2λ2

(1 − λz)3

�z

1 − �z
− 2

∑
λ,�

ψλψ�

λ

(1 − λz)2

�

(1 − �z)2

](
1 +

∑
λ

ψλ

λz

1 − λz

)−3

.

(H6)
Since the limit of a sum is the sum of the limits if both limits exist, we can simplify our equation slightly by first finding the
limit of the first sum which appears in the numerator and later find the limit of the rest of the sums. We can compute this first
limit easily in the same way we did for Eq. (H4) by multiplying and dividing by (1 − z)3 so that after taking the limit, only the
eigenstates whose eigenvalue is 1 will remain,

lim
z→1

∑
λ ψλ

2λ2

(1−λz)3(
1 + ∑

λ ψλ
λz

1−λz

)3 = lim
z→1

∑
λ ψλ2λ2 (1−z)3

(1−λz)3(
1 − z + ∑

λ ψλλz 1−z
1−λz

)3 = 2( ∑
λ=1 ψλ

)2 = 2 〈n〉2 . (H7)

Next, to find the limit of the two double sums, we will first combine them into a single double sum. As we do this, we also
multiply the whole expression by the (1 − z)3 which originates in the denominator of Eq. (H6),

(1 − z)3

[∑
λ,�

ψλψ�

2λ2

(1 − λz)3

�z

1 − �z
− 2

∑
λ,�

ψλψ�

λ

(1 − λz)2

�

(1 − �z)2

]

=
∑
λ,�

ψλψ�

λ�

(1 − λz)3

(1 − z)3

(1 − �z)2
[2λz(1 − �z) − 2(1 − λz)]

=
∑
λ,�

ψλψ�

λ�

(1 − λz)3

(1 − z)3

(1 − �z)2
(4λz − 2λ�z2 − 2). (H8)

To see what elements of this double sum reduce to zero in the limit and which will remain, we will break it apart into four sums
depending on whether the eigenvalues of the eigenstates being summed over equal 1 or not,∑

λ=1
�=1

ψλψ�

1

(1 − z)3

(1 − z)3

(1 − z)2
(4z − 2z2 − 2) +

∑
λ=1
� 	=1

ψλψ�

�

(1 − z)3

(1 − z)3

(1 − �z)2
(4z − 2�z2 − 2)

+
∑
λ 	=1
�=1

ψλψ�

λ

(1 − λz)3

(1 − z)3

(1 − z)2
(4λz − 2λz2 − 2) +

∑
λ 	=1
� 	=1

ψλψ�

λ�

(1 − λz)3

(1 − z)3

(1 − �z)2
(4λz − 2λ�z2 − 2). (H9)
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We can see here that in the limit only the first two sums will remain whereas the other two will go to zero. After taking the limit
and simplifying, we get

−2
∑
λ=1
�=1

ψλψ� + 2
∑
λ=1
� 	=1

ψλψ�

�

1 − �
. (H10)

Putting this result together with Eq. (H7) in Eq. (H5), we obtain a general formula for the variance which is correct for all
sampling rates,

�n2 = 〈n〉 + 〈n〉2 + 〈n〉3

⎛⎜⎝−2
∑
λ=1
�=1

ψλψ� + 2
∑
λ=1
� 	=1

ψλψ�

�

1 − �

⎞⎟⎠. (H11)

For nonexceptional sampling rates, the only term in the sum over eigenstates whose eigenvalue is 1 is the |φ〉 term, which is just
|X |−1, and the expression can be simplified to Eq. (26).
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