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Numerical test of the replica-symmetric Hamiltonian for correlations
of the critical state of spin glasses in a field

L. A. Fernandez ,1,2 I. Gonzalez-Adalid Pemartin ,1 V. Martin-Mayor ,1,2 G. Parisi,3,4,5 F. Ricci-Tersenghi ,3,4,5

T. Rizzo,3,6 J. J. Ruiz-Lorenzo ,7,8,2 and M. Veca 3

1Departamento de Física Teórica, Universidad Complutense, 28040 Madrid, Spain
2Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain

3Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
4INFN, Sezione di Roma 1, P.le A. Moro 5, 00185 Rome, Italy

5CNR-Nanotec, Unità di Roma, P.le A. Moro 5, 00185 Rome, Italy
6Institute of Complex Systems (ISC) - CNR, Rome Unit, P.le A. Moro 5, 00185 Rome, Italy

7Departamento de Física, Universidad de Extremadura, 06006 Badajoz, Spain
8Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain

(Received 23 July 2021; revised 14 January 2022; accepted 28 March 2022; published 3 May 2022)

A growing body of evidence indicates that the sluggish low-temperature dynamics of glass formers (e.g.,
supercooled liquids, colloids, or spin glasses) is due to a growing correlation length. Which is the effective field
theory that describes these correlations? The natural field theory was drastically simplified by Bray and Roberts
in 1980. More than 40 years later, we confirm the tenets of Bray and Roberts’s theory by studying the Ising
spin glass in an externally applied magnetic field, both in four spatial dimensions (data obtained from the Janus
collaboration) and on the Bethe lattice.
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I. INTRODUCTION

wSpin glasses [1–3] in a magnetic field [but above the
de Almeida-Thouless (dAT) line [4]], structural glasses close
to (but above) their mode coupling temperature [5], or hard
spheres above the Gardner transition [6] all display large
correlation lengths and slow relaxations that are typical of a
second-order phase transition. These features are predicted by
mean field (MF) theory [1] and have been identified both in
experiments and in numerical simulations [7–32]. However,
the very existence of the phase transition has been long de-
bated [33–36]. Indeed, it has been frequently suggested that
these critical features might be connected to a crossover rather
than to a true phase transition [37–43]: The corrections to MF
theory would destroy the transition, or (in some cases) move
it to zero temperature. In this paper we do not claim against,
nor in favor, of the presence of a transition. Instead, our aim
is understanding in detail the properties of the correlations in
the region where the susceptibilities are large (e.g., 103 times
their natural value).

Let us consider the framework of spin glasses in a magnetic
field. The theory is complex [44]. Three different two-point
correlators (and their associated susceptibilities) become crit-
ical. We also have eight nonlinear susceptibilities associated
to the eight three-point correlators (there are eight different
coupling constants) [45]. However, in an expansion at around
MF, one finds a linear transformation such that only one of the
three susceptibilities is divergent at the critical temperature Tc.
Similarly, the divergence at Tc is more violent for two of the
nonlinear susceptibilities: At first order in perturbation theory,

they scale as 1/(T − Tc)3, while two nonlinear susceptibilities
diverge as 1/(T − Tc)2, another one as 1/(T − Tc), and the re-
maining three are finite at Tc. As expected, only the couplings
that correspond to the most divergent nonlinear susceptibili-
ties are relevant near the transition. The linear transformations
that diagonalize the singularity structure are well known,
and they have a physical meaning. Corrections to the MF
could completely destroy this divergence structure (or they
may just modify the values of the critical exponents). A sys-
tematic investigation of the correctness of the above picture
has never been attempted using numerical simulations. This
paper fills the lacuna in the particular case of spin glasses.
We show that these qualitative predictions are satisfied in
the region of large susceptibilities. It is quite possible that
the same situation is present in other contexts, beyond spin
glasses.

II. SUMMARY OF THE THEORETICAL FRAMEWORK

The standard tool to understand the fate of a transition
in finite spatial dimension D is the Wilsonian renormaliza-
tion group (RG) [46]. Unfortunately, the standard perturbative
construction fails in these models. The most relevant correc-
tions to MF theory are due to the presence of cubic terms in
the effective Landau-Ginzburg theory (LGT), see Eq. (A1)
in Appendix A, and two couplings (w̃1 and w̃2) are known
to be relevant for D � 6. In fact, in spin glasses and also
in models with the same LGT, the construction of the D =
6 − ε expansion fails because no fixed point is present in
the weak-coupling region [33]. The action of the RG brings
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the corrections to the Gaussian behavior in the region where
the effective couplings are large. The fate of the parameter
λr ≡ w2,r/w1,r (wi,r , i = 1, 2, are the renormalized couplings,
see below) is of particular interest. Indeed, λr plays a crucial
role in the mode coupling theory where it must be 0 � λr � 1.
Moreover, as discovered by Gross et al. [47] and recently
stressed by Höller and Read [48], having λr > 1 would im-
ply a peculiar first-order-like transition, like the calorimetric
transition of glasses (see, e.g., [5]).

Unfortunately, in spite of the relevance of the renormalized
parameters [49], they have not been obtained in simulations,
partly because of the complexity of the computation. Here
we show that such a computation is feasible: We present
results for spin glasses in a magnetic field, both in the Bethe
lattice and in the D = 4 hypercubic lattice. Our model choice
is based on its relative simplicity, but our techniques can
be straightforwardly extended to more complex models. The
Bethe lattice computation is a test of the viability of the
approach and of the formulas used. Indeed, corrections to
MF disappear in an infinite Bethe lattice, and the value of λr ,
which is unaffected by fluctuations (i.e., loop corrections), is
analytically known. On the other hand, the D = 4 Edwards-
Anderson (EA) mode may be well thermalized in the region of
very large susceptibilities, and we have some estimates of the
position of the extrapolated dAT transition [24]. Our results
are suggestive of the presence of a fixed-point value λr ≈ 0.5
and clearly exclude a value of λr greater than 1.

Let us summarize the theoretical understanding for spin
glasses in a magnetic field h. The effective action can be writ-
ten using the replica formalism (we recall in Appendix A the
main results, that are well described in the literature). We aim
to express all our results in terms of correlation functions than
can be computed in a numerical simulation. Let us start from
the two-point correlation functions. As usual in disordered
systems, we need to distinguish between the thermal average,
〈(· · · )〉, and the average over disorder, (· · · ). For a system
of linear size L, with N = LD spins Si = ±1, we have three
relevant susceptibilities:

χ1 ≡ 1

N

∑
i j

〈Si S j〉2 − q2, (1)

χ2 ≡ 1

N

∑
i j

〈Si S j〉〈Si〉〈S j〉 − q2, (2)

χ3 ≡ 1

N

∑
i j

〈Si〉2〈S j〉2 − q2, (3)

where q ≡ 〈Si〉2 is the average overlap. If we expand around
the MF solution, we find at all orders of the perturbation
theory that the so-called replicon susceptibility is divergent
near the transition,

χR ≡ χSG ≡ 1

N

∑
i j

〈Si S j〉2
c = χ1 − 2χ2 + χ3, (4)

where by 〈(· · · )〉c we denote the connected correlation func-
tion (e.g., 〈Si S j〉c = 〈Si S j〉 − 〈Si〉〈S j〉, see, for instance, [50]).
For later use we introduce the longitudinal and anomalous sus-
ceptibilities, χL and χA, respectively. The two are degenerated

in the presence of a magnetic field,

χL = χA = χ1 − 4χ2 + 3χ3. (5)

If we consider Gaussian-distributed random magnetic
fields, χL is proportional to the staggered magnetic suscep-
tibility (see Appendix C for a detailed discussion). Then the
physically motivated assumption that the magnetic suscepti-
bility is not critical implies that χL is not critical either. Only
the average of the (squared) connected correlator becomes
critical. This is in sharp contrast with the h = 0 case where
χ2 = χ3 = 0 and χA = χL = χR. We expect a crossover re-
gion for small L and h, where χL and χA seem critical (because
χL and χA are critical at the h = 0 transition).

The renormalized coupling w1,r and w2,r are defined in
terms of the exact vertices w1 and w2, i.e., the coefficients
of the Gibbs free energy. The exact vertices can be expressed
as wi = ωi/χ

3
R (i = 1, 2) in terms of connected correlations at

zero external momentum [44]:

ω1 ≡ 1

N

∑
i jk

〈Si S j〉c 〈S j Sk〉c 〈Sk Si〉c, (6)

ω2 ≡ 1

2 N

∑
i jk

〈Si S j Sk〉2
c . (7)

The coupling constants w1, w2 diverge at the transition while
the renormalized coupling constants remain finite. They are
obtained by renormalizing the lengths and the overlap fields,
leading to

w1,r = ω1

χ
3/2
R ξ

D/2
2

, w2,r = ω2

χ
3/2
R ξ

D/2
2

, (8)

where ξ2 is the second-moment correlation length. It follows
that

λr = w1,r

w2,r
= ω1

ω2
. (9)

Note that λr = w1/w2; hence, λ does not renormalize and we
will drop thereafter the subindex r.

Finite-volume corrections are very strong, so we do not
consider here the computation of the renormalized couplings
wi,r . However, we can introduce the dimensionless quantities

�1 = ω1

χ
3/2
R LD/2

, �2 = ω2

χ
3/2
R LD/2

, (10)

which should scale with L as Binder’s cumulant [51]. Notice
that, at the critical point, �i ∝ wi,r .

Before discussing our numerical findings for λ, it is impor-
tant to stress that there are nonequivalent ways of taking the
relevant limit for λ(L, T ) in the onset of a second-order phase
transition at Tc:

λ∗ = lim
L→∞

lim
T →Tc

λ(L, T ), λ(T +
c ) = lim

T →T +
c

lim
L→∞

λ(L, T ).

(11)
The fact that λ∗ 
= λ(T +

c ) is hardly surprising [52]. Similarly,
the corresponding limits for renormalized coupling w1,r and
w2,r do not commute. λ(T +

c ) is in general more difficult to
estimate than λ∗, but the former could be more desirable given
that the RG β functions (see, e.g., [50,53,54]) are typically
expressed in terms of the thermodynamic quantities in analyt-
ical computations.
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FIG. 1. Temperature dependence of the ratio of renormalized
couplings λ, see Eq. (9), computed with a magnetic field h = 0.7
on a Bethe lattice. The critical temperature is marked with a vertical
line. We plot the data obtained with the three-, four-, and six-replica
estimators. The black dot reports the value of λ(T +

c ) � 0.47, see
Eq. (11), that has been computed analytically in [55]. All three
estimators take the same value λ∗ � 0.55 at the critical temperature.
The continuous lines, marked with N = ∞, are the extrapolations of
the data considering scaling corrections [56] and are compatible with
the analytical computation λ(T +

c ).

III. NUMERICAL SIMULATION RESULTS

In a simulation, the above quantities are computed from
real replicas (i.e., systems that evolve independently under
the same coupling constants). It is well known that one needs
two real replicas to compute q, four replicas for the three
susceptibilities, and six replicas for the ωi=1,2 in Eqs. (6) and
(7). In spite of this and only at the critical point is it possible
to compute both ωi using only three and four replicas. We
shall denote the estimate obtained with R replicas by ω

(R=3,4)
i .

Away from the critical point, one has for the differences
ωi − ω

(R)
i = O(|T − Tc|ρ(R) ), where ρ(R) is a suitable expo-

nent (see Appendix B for a more complete discussion).
a. Numerical results in the Bethe lattice.. To study the

behavior of the three- and four-replica estimators in a con-
trolled setting, we have simulated an Ising spin glass in a
magnetic field on a Bethe lattice (random regular graph with
fixed degree 4). In this case there is little doubt that a true
dAT transition is present. Furthermore, the divergence of the
susceptibilities (both linear and nonlinear) closely matches
our description above.

In Fig. 1 we plot the parameter λ for the Bethe lat-
tice, as obtained from the exact expression together with the
three- and four-replica estimators λ(3) ≡ ω

(3)
2 /ω

(3)
1 and λ(4) ≡

ω
(4)
2 /ω

(4)
1 . In this case Tc and λ(T +

c ) are known analytically
[55], and we see that the estimators extrapolate to the correct
value at the critical temperature, although close to the crit-
ical point there are finite-size corrections. Note as well that
the finite-size corrections of the true λ (i.e., the six-replica
estimator) and the four-replica estimator coincide in the criti-
cal region. The same effect is expected for the three-replica
estimator, but it is masked by preasymptotic effects at the
sizes considered. At any rate, we find that the deviations are

FIG. 2. Replicon (χR) and longitudinal (χL) susceptibilities,
Eqs. (4) and (5) vs temperature, as computed for the D = 4 Edwards-
Anderson model at magnetic fields h = 0.075, 0.15, and 0.3 (for
each h, the temperature is plotted rescaled by the corresponding best
estimate for Tc [24]). To avoid cluttering the plot, we only show data
for our largest system, L = 16.

consistent with the predicted MF values ωi − ω
(3)
i = O(|T −

Tc|) and ωi − ω
(4)
i = O(|T − Tc|3) [56].

b. Numerical results in four dimensions. The discussion
of the three- and four-replica estimators is of great practical
and theoretical importance in this case. The theoretical im-
portance relies on the fact that, at variance with the Bethe
lattice case, one cannot take for granted that the transition
is described by the theory outlined above. For instance, we
could have a continuous transition described by a different
theory and therefore the three- and four-replica estimators
would yield conflicting results, thus indicating a wrong choice
for the starting field theory. Furthermore, due to the lack of a
perturbative RG fixed point below six dimensions, one could
even question the very existence of such a theory for D < 6.
Thus the fact that the three- and four-replica expressions yield
consistent estimates provides a nontrivial indication that the
region of large susceptibilities is actually described by the
replica-symmetric field theory of Bray and Roberts [33].

The practical importance of the three- and four-replica
estimators lies in that, in the present study, we have reanalyzed
equilibrium configurations obtained by the Janus Collabora-
tion [24] using the Janus-I supercomputer [57], where the
four-dimensional Ising spin glass in the presence of a con-
stant magnetic field was simulated (see Appendix D). Those
equilibrium configurations were obtained for only four real
replicas. Therefore λ can be computed only through the three-
and four-replica estimators (although the computation will not
be exact away from the dAT line).

In [24] the critical temperatures and the critical expo-
nents were estimated for three different magnetic fields (h =
0.075, 0.15, and 0.3) by looking only to one of the two-point
correlators, namely, the replicon. We study the same magnetic
fields considered in [24] for temperatures near (but above)
their estimated critical temperatures.

We start by studying in Fig. 2 the replicon and longitudinal
susceptibilities, recall Eqs. (4) and (5). We clearly see that
χR increases and becomes very large as the temperature is
lowered, while χL saturates at a much smaller plateau value
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FIG. 3. D = 4 Edwards-Anderson model with magnetic field
h = 0.15. Left: Four-replica estimate, ω

(4)
1 , for the nonlinear suscep-

tibility in Eq. (6) vs temperature. Right: Dimensionless quantity �1,
recall Eq. (10), vs temperature. In both panels, T is in units of the
estimated critical temperature Tc [24].

[58]. We conclude, in agreement with our MF-based expec-
tations and with previous dynamic investigations in D = 3
[22], that correlations extend to much larger distances for the
replicon mode than for the longitudinal one, thus excluding
the possibility that the critical behavior in χR is due to the
h = 0 fixed point.

We have considered also the nonlinear susceptibilities, the
most divergent ones being ω1 and ω2, see Eqs. (6) and (7).
We find that ω1 grows significantly upon decreasing T and
(at a fixed, low T ) upon increasing L, see Fig. 3 (left). The
suggested divergence in ω1 makes it advisable to consider the
dimensionless �1(L, T ), see Eq. (10). At a critical point, the
curves of �1 as function of T , computed for different sizes
L, should cross or merge at Tc. Our data for L = 10, 12, and
16 in Fig. 3 (right) do not clearly cross nor merge, making it
difficult to compute Tc from these data (indeed, the authors
of Ref. [24] could locate Tc only by considering quantities at
nonzero external momentum). The crucial point, however, is
the absence of any evidence in Fig. 3 (right) for a runaway

trajectory where �1 becomes bigger and bigger upon increas-
ing L. This observation makes unlikely the scenario with a
first-order transition [48].

Once we know that ω1,2 behaves as expected, we can
consider their ratio λ, which is the main quantity of interest.
Figure 4 shows the three- and four-replica estimators for mag-
netic fields h = 0.075, 0.15, and 0.30. At variance with our
findings for the Bethe lattice [where the difference between
λ(T +

c ) and λ∗ is very clear, recall Eq. (11) and Fig. 1], our
data for the 4D case shown in Fig. 4 do not manifest large
finite-size effects approaching the critical point: Data barely
depend on temperature for T < Tc(h = 0), thus suggesting λ∗
and λ(T +

c ) should be very close. The only visible finite-size
effect in 4D data is a monotonic in L decrease for R = 3
and increase for R = 4, which actually helps in bracketing λ∗
between the values measured on the largest lattice L = 16. In-
deed, our data are consistent with a universal value λ∗ ≈ 0.55
at the critical temperature. We remark as well that both the
R = 3 and the R = 4 estimates verify λ(L, T ) < 1. Hence we
conclude λ(T +

c ) < 1 in 4D spin glasses in a field, which is the
main result of this paper.

IV. CONCLUSIONS

Irrespective of the ongoing debate about whether the glass
transition is a true phase transition or a crossover, it is un-
deniable that glass formers display slow dynamics and large
correlations. When the length scale for fluctuations becomes
large, the natural tool to study the problem is a field the-
ory. Unfortunately, symmetry considerations do not constrain
the Hamiltonian much. In the particular case of spin glasses
in a magnetic field, we end with a extremely complex the-
ory containing eight different coupling constants. Bray and
Roberts [33] drastically simplified the theory. Their so-called
replica-symmetric Hamiltonian has been the basis for many
analyses. In spite of this, up to now it was not possible to test
in a nontrivial problem the basic hypothesis underlying the
theory. We have overcome this challenge thanks to two crucial
ingredients: (i) a detailed scaling description for the many
linear and nonlinear susceptibilities in the problem [44], and

FIG. 4. Three- and four-replica estimators for λ as a function of the temperature in the D = 4 Ising spin glass (the value of the magnetic
field is indicated above each panel). Vertical lines report the three critical temperatures taken from [24]. The band around λ∗ � 0.55 is our
best L → ∞ extrapolation, assuming three- and four-replica estimators converge to a common value for all the three simulated values of the
magnetic field (the width of the band represents the uncertainty in our extrapolation for h = 0.075).
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(ii) a reanalysis of the equilibrated configurations obtained
with the Janus I supercomputer [24]. We have found that the
crucial scaling relations are fulfilled beyond the mean field
approximation, close to (but above) the de Almeida-Thouless
line. Furthermore, it is quite probable that our approach will
be relevant for the study of other physical systems as well
(e.g., glass-forming liquids). In addition, our results for the
renormalized coupling λ seem to exclude the suggested sce-
nario of a first-order transition [48].
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APPENDIX A: THE REPLICA-SYMMETRIC
FIELD THEORY

Standard arguments [33,34] tell us that the D-dimensional
Ising spin glass in the presence of a magnetic field is described
at criticality by the following Replica Symmetric (RS) Hamil-
tonianfor the replicated overlap φab(x) [φaa(x) = 0]:

H = 1

2

∫
dDx

[
m1

∑
ab

φ2
ab + 1

2

∑
ab

(∇φab)2+

+ m2

∑
abc

φabφac + m3

∑
abcd

φabφcd+

− 1

6
w̃1

∑
abc

φabφbcφca − 1

6
w̃2

∑
ab

φ3
ab

]
. (A1)

Note that the cubic couplings in the Hamiltonian are written
as w̃1, w̃2. In general they are different from the correspond-
ing coefficients w1,w2 of the Gibbs free energy discussed
in Ref. [44] (the vertices in field theoretical language). The
Gibbs free energy as usual is the Legendre transform of the
free energy, and the corresponding coefficients of the free
energy are ω1, ω2 introduced previously. The coefficients w̃i

and wi are respectively bare and dressed couplings. They
coincide only at the level of the tree approximation in field
theory; in general they are different.

At the MF level (where w̃i = wi), m1 vanishes linearly on
the dAT line and, in the spin glass (SG) phase, the solution
displays Replica Symmetry Breaking (RSB) with a break-
ing point at a value equal to w2/w1 [47,59]. It follows that
λ ≡ w2/w1 must be smaller than 1 for consistency. It should

be also noted that the parameter λ controls the MF values
of equilibrium and off-equilibrium dynamical exponents in a
variety of contexts [44,60,61].

The idea of Höller and Read [48] (that started from [62])
is to apply the RG to the above replicated Hamiltonian until
the mass term m1 (which is initially small because we start
close to the dAT line) becomes equal to 1; then the RG
flow is stopped and the new Hamiltonian is analyzed at the
MF level. Note that they actually follow Bray and Roberts
[33] and project on the replicon subspace effectively sending
the longitudinal and anomalous masses to infinity. To obtain
subcritical behavior, one must keep the massive modes finite;
see Refs. [63,64] for a thorough comparative discussion of the
two approaches. Höller and Read suggest that below the upper
critical dimension, λ becomes larger than 1 under the RG flow
on the whole dAT line and therefore the transition becomes
first order. One should note that treating a Wilson Hamiltonian
at the MF level is always an approximation, although it may
be accurate close to the upper critical dimension. Essentially,
one is approximating the true Gibbs free energy with the
Wilson’s Hamiltonian, i.e., fluctuations are neglected. While
the coefficients of the Wilson’s Hamiltonian are bare param-
eters that cannot be measured, the coefficients of the Gibbs
free energy (proportional of the renormalized couplings) can
be expressed in terms of physical observables and thus are
directly accessible to measurements [50,53,54].

The renormalized couplings w1,r and w2,r have finite and
model-dependent values except at the critical temperature
where, if scaling holds, they have finite universal values
w∗

1,r and w∗
2,r . The spin-glass susceptibility and correlation

length diverge as χR ∝ |T − Tc|−γ and ξ2 ∝ |T − Tc|−ν , re-
spectively, and consistently ω1 and ω2 diverge as

ω1,2 ∝ |T − Tc|−γ3 , γ3 = 3ν − 3

2
ν η + νD

2
. (A2)

Notice that renormalized coupling constants w∗
1,r and w∗

2,r
are universal quantities at criticality and play a key role in
computations of critical exponents [50,53,54], being the zeros
of the β functions.

Note that Eqs. (8) in the main text follow from Eqs. (91)
in Ref. [44], noticing that when the RG flow is stopped, the
overlaps are effectively rescaled by a factor χ

1/2
R and the

length is rescaled by a factor ξ2, since the coefficient of the
term (∇φab)2 is fixed to 1 in the RG flow.

APPENDIX B: COMPUTING ω1 and ω2 USING
THREE, FOUR, AND SIX REPLICAS

In order to compute ω1 and ω2, we need to evaluate numer-
ical quantities like

m2
i ≡ 〈σi〉2, m4

i ≡ 〈σi〉4, m6
i ≡ 〈σi〉6. (B1)

The standard approach consists in introducing K inde-
pendent replicas of the system sharing the same disorder
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(σ (i), i = 1, . . . , K), obtaining

m2
i = 〈

σ
(1)
i σ

(2)
i

〉
, m4

i = 〈
σ

(1)
i σ

(2)
i σ

(3)
i σ

(4)
i

〉
,

m6
i = 〈

σ
(1)
i σ

(2)
i σ

(3)
i σ

(4)
i σ

(5)
i σ

(6)
i

〉
. (B2)

Both nonlinear susceptibilities, ω1 and ω2, are suitable for
numerical evaluation once expressed as [44]

ω1 = W1 − 3W5 + 3W7 − W8,

ω2 = 1
2W2 − 3W3 + 3

2W4 + 3W5 + 2W6 − 6W7 + 2W8,

and

W1 ≡ N2〈δQ12δQ23δQ31〉,
W2 ≡ N2

〈
δQ3

12

〉
,

W3 ≡ N2〈δQ2
12δQ13

〉
,

W4 ≡ N2
〈
δQ2

12δQ34
〉
,

W5 ≡ N2〈δQ12δQ13δQ24〉,
W6 ≡ N2〈δQ12δQ13δQ14〉,
W7 ≡ N2〈δQ12δQ13δQ45〉,
W8 ≡ N2〈δQ12δQ34δQ56〉,

where overlap fluctuations can be written in terms of indepen-
dent real replicas with the same quenched disorder:

δQab ≡ 1

N

∑
i

sa
i sb

i − 1

N

∑
i

〈si〉2. (B3)

Each correlator Wi requires a number of different real repli-
cas equal to the largest index in its expression (right-hand
side). Hence, we recall, we need two replicas to compute the
overlap—four for the susceptibilities and six for ω1 and ω2.

Can we use use a smaller number of replicas? The theory
predicts that there are six linear combinations of the W ′

i s that
diverge less than the Wi separately. By using these linear
relationships one can express the eight coefficients in terms
of only the three-replica estimators [44]:

ω
(3)
1 ≡ 11

30
W1 − 2

15
W2, (B4)

ω
(3)
2 ≡ 4

15
W1 − 1

15
W2. (B5)

Alternatively, the theory predicts that there are three linear
combinations of the W ′s that remain finite at the critical
temperature. Therefore one can express W7 and W8 as a
function of the remaining cumulants obtaining the four-replica
estimators [56]:

ω
(4)
1 ≡ 23W1

30
+ W2

20
− 3W3

5
+ 9W4

20
− 6W5

5
+ W6

2
,

ω
(4)
2 ≡ 7W1

15
+ 2W2

5
− 9W3

5
+ 3W4

5
− 3W5

5
+ W6.

within the RS theory, the three- and four-replica estimators are
different from the true ω1 and ω2 at any given temperature but
coincide with them at the critical temperature. At a generic
temperature w1,r , w2,r and λ have model-dependent values
and we are interested in the universal values they take only
at the critical temperature. More precisely, one can show that
close to the critical point,

ωi − ω
(3)
i = O(|T − Tc|γ� ) , ωi − ω

(4)
i = O(|T − Tc|γ3 ),

where the exponent γ� is expected to be smaller than γ3 (e.g.,
in MF one finds γ� = 1 and γ3 = 3).

APPENDIX C: FINITENESS OF THE LONGITUDINAL
SUSCEPTIBILITY

Let us consider the model in the presence of a Gaussian
magnetic field which generates a new term in the Hamiltonian:
+ho

∑
i hiSi, where hi are independent Gaussian variables

with zero mean and unit variance. The staggered magnetiza-
tion is defined as

mst ≡ 〈hiσi〉, (C1)

where (· · · ) is the joint average over the couplings and the
Gaussian magnetic field. Its susceptibility is

χst = ∂mst

∂h0
= −β

∑
l

(〈hiSihl Sl〉 − 〈hiSi〉〈hl Sl〉). (C2)

Integrating by parts Eq. (C2), one can finally obtain that
χst = 2βχL. Therefore if the magnetic susceptibility does not
diverge, neither does the longitudinal susceptibility.

APPENDIX D: THE MODELS

We study the 4D-dimensional EA model in a field h where
N = L4 Ising spins interact via

H = −
∑
〈xy〉

JxySx Sy + h
∑

x

Sx, (D1)

where the first sum is over nearest-neighbor pairs and Jxy =
±1 with 50% probability. In our 4D computation, the spins
are located in the nodes of a hypercubic lattice with periodic
boundary conditions. We have also simulated the model on a
Bethe lattice where the spins occupy the vertices of a random
regular graph with connectivity 4.
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