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Weakly first-order transition in an athermal lattice gas
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We investigate the phase behavior of a two-dimensional athermal lattice gas in which every hard-core
particle can have two or fewer nearest neighboring occupied sites on the square lattice. The ground state and
close packing density are determined and it is found that at large chemical potential the model undergoes
an ordering phase transition with preferential sublattice occupation. Although near the transition point the
particle density and entropy exhibit an apparent discontinuity, we find that the order parameter and fluctuations
of thermodynamic quantities do not scale with the system volume. These paradoxical results are reconciled
by analyzing the size-dependent flow of the thermal exponent by phenomenological renormalization and the
curve-crossing method, which lead to a weakly first-order phase transition scenario.
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I. INTRODUCTION

Lattice models have played and continue to play a vital
role in statistical mechanics as a testing ground for the theory
of critical phenomena and as a key to the phase behavior of
matter. A particularly interesting family includes hard-core
lattice gases, i.e., systems of general shaped particles that
cannot overlap. In these systems the temperature plays no
role because the allowed particle configurations have zero
energy, whereas the forbidden ones correspond to an infinite
energy state. Consequently, the phase behavior is controlled
by purely entropic effects rather than the usual energy-entropy
tradeoff of more conventional thermal systems. Paradoxically
enough, entropy alone can drive a variety of ordering and
self-assembly processes in these athermal systems [1,2], the
most prominent example being the isotropic-nematic phase
transition of hard rod molecules [3]. Due to the difficulty of
disentangling and evaluating the different (translational, rota-
tional, conformational, etc.) entropy contributions, the range
of universal critical behaviors encompassed by excluded vol-
ume interactions remains only partly explored and there is
great interest in engineering entropy for the inverse design
of soft matter systems [4]. In this endeavor it is crucial to
correctly identify the possible presence of long-range correla-
tions and spontaneously symmetry-broken phases. Although
the theoretical distinction between first- and second-order
transitions is conceptually clear, this identification is some-
time difficult in practice because singular behavior is always
rounded and shifted in a finite system by an amount of order
L−1/ν , with ν = 1/d for a first-order transition, d being the
spatial dimensionality and L the linear system size.

A subtle and particularly troubling issue occurs when L
is comparable to the (generally unknown) correlation length
ξ . In this case thermodynamic quantities do not scale with
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d but rather with nontrivial critical exponents, even though
ξ remains finite (i.e., no critical phenomenon is involved) in
the thermodynamic limit, L/ξ → ∞. Then, if ξ is sufficiently
large the conventional finite-size scaling approach fails to
detect the very nature of the phase transition. Weakly first-
order transitions are perhaps the most emblematic cases of this
situation. They occur, for example, in the isotropic-nematic
transition, which is accompanied by remarkable critical prop-
erties known as pretransitional effects [5]. They also appear
in some quantum magnets, whose behavior is dominated by
critical fluctuations, and the true discontinuous nature of the
transition is hardly observable with standard experimental
methods [6]. The best understood statistical mechanics sys-
tem is perhaps the two-dimensional Q-state Potts model. It
displays a second-order transition for Q � 4 and a first-order
transition for Q > 4 [7]. However, when Q = 5 the correlation
length is so large, ξ ≈ 2500 [8], that the condition L � ξ

cannot be achieved in any Monte Carlo simulations. It is there-
fore important to infer unambiguously the precise nature of
the phase transition in finite systems by means of systematic
extrapolation methods. This can be done by studying the size-
dependent flow of critical exponents, and this method has been
successfully applied and illustrated with detailed tests to both
classical and quantum systems [9–11]. Obviously, depending
on the scale L our system is engineered, the mathematical
asymptotic limit L/ξ → ∞ may or may not be suitable for
describing the actual physical behavior of the system. For
example, in the extreme case of bootstrap percolation (for a
review, see [12]), a problem which is thought to be relevant
to a variety of complex systems, that limit is well beyond the
length scales of physical interest.

In this paper we show that a weakly first-order transi-
tion occurs in a purely athermal lattice-gas in two spatial
dimensions, in which hard-core particles may have two or
fewer occupied nearest neighbors on the square lattice. This
will be denoted henceforth as the BM2 model because it
can be considered a special case of the Biroli-Mézard (BM)
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model [13], in which every particle may have � or fewer occu-
pied nearest neighbors. The BM� model interpolates between
the nearest neighbor exclusion model [14] with � = 0, which
exhibits a continuous phase transition in the Ising universality
class [15,16], and the noninteracting lattice gas, correspond-
ing to � = c (with c being the lattice coordination number).
From a geometric point of view, this form of excluded volume
interaction can be thought of as due the local steric hindrance
of molecules having c − � arms with the length equal to the
lattice spacing. Since the BM model was introduced as a
possible three-dimensional realization of the thermodynamic
glass transition, it has been especially studied in polydisperse
mixtures (with different types of �-particles) and on the Bethe
lattice in both classical and quantum domains [17–21], and
has inspired a family of various disorder-free lattice models
of glassy dynamics [22–25]. Little attention has been paid
instead to the phase behavior of the simplest monodisperse
case in generic spatial dimension d . To bridge this gap we
have begun to address systematically some of these questions
which we believe can shed some light on the conditions that
determine glass vs crystal formation in more realistic molecu-
lar systems. We find, for example, that on the square lattice the
BM3 model exhibits a first-order phase transition, while the
phase ordering of the BM1 model is hindered by the existence
of multiple ground states unrelated by a simple symmetry
transformation [26].

The layout of the rest of the paper is as follows. The
ground-state close packed structure of the BM2 model and
the order parameter definition are discussed in Sec. II. In
Sec. III we describe the grand-canonical Monte Carlo algo-
rithm and provide numerical evidence for the existence of a
phase transition. In Sec. IV the critical point is located by us-
ing the Binder ratio and its size-dependent shift is investigated
at phase coexistence. Finite-size scaling of order parameter,
susceptibility, and compressibility is addressed in Sec. V. In
Sec. VI we analyze the size-dependent flow of the correlation
length exponent and show that this makes it possible to detect
the signature of weakly first-order transition. Section VII is
devoted to some concluding remarks and prospect of future
works.

II. GROUND STATE PROPERTIES
AND ORDER PARAMETER

The close packing state of the BM2 model is obtained in
the asymptotic limit of infinite chemical potential and has to
satisfy the excluded volume condition that the maximum num-
ber of particles surrounding any particle is 2. Since there is
no explicit constraint on the local geometric structure around
an empty site, one can further assume that the maximum
number of particles surrounding any vacancy should be 4, if
this is compatible with the symmetry of the problem. From
these two conditions, starting from a vacancy, one can con-
struct iteratively the crystalline configurations shown in Fig. 1.
These can be envisioned as a series of parallel stairs (whose
elementary building block is made up of two juxtaposed par-
ticles) alternating with a line of vacancies, in the diagonal
or antidiagonal directions [Figs. 1(a) and 1(b), respectively].
The two configurations are related by a π/2 rotation and
lead to a natural decomposition of the lattice in three distinct
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FIG. 1. The two symmetric ground state configurations of the
BM2 model on the square lattice, corresponding to the close packing
density ρmax = 2/3. Lattice sites are represented by circles, with
filled circles standing for particles and empty circles for vacancies.
The central shaded 3 × 3 square represents the unit cell. For the
labeling shown here the density of sublattices L0, L1, and L2, in
the ground state configurations is ρ0 = 0, ρ1 = ρ2 in (a), and ρ0 =
ρ1 = ρ2 in (b).

sublattices Lα , with α = 0, 1, 2, each one having density ρα .
The close packing density is therefore ρmax = 2/3.

One can easily argue that at low-density, when the ex-
cluded volume constraint is negligible, the three sublattices
are equally populated, ρ0 = ρ1 = ρ2, since there are no extra
interactions. At high density, instead, when steric hindrance
becomes relevant, ρα are unequal, with two sublattices being
preferentially occupied and one being preferentially empty. It
is therefore reasonable to expect that by increasing the average
particle density the system undergoes a phase transition from
an isotropic fluidlike phase to a high-density crystalline phase
in which the sublattice symmetry is broken. To characterize
the two ground state configurations we can attach to the
lattice sites two distinct labelings, say A and B. Figure 1
shows one such labeling. By doing so, the ground state con-
figurations for a given labeling are represented in such a way
that either one sublattice is empty and the others are fully
occupied, as in Fig. 1(a), or all three sublattices are equally
populated, as in Fig. 1(b). Since it is unknown a priori which
labeling is more appropriate to the ground-state configuration
the system will choose at high density, the relevant order
parameter of the phase transition can be defined as

q = 1

ρmax
〈|qA − qB|〉, (1)

where 〈· · · 〉 is the ensemble average, qA is

qA = ∣∣ρA
0 − ρA

1

∣∣ + ∣∣ρA
1 − ρA

2

∣∣ + ∣∣ρA
2 − ρA

0

∣∣, (2)

and equivalently for the labeling B. Accordingly, in the low-
density phase, when all sublattices are equally populated,
qA = qB = 0, we obtain q = 0. At high density, when the
sublattice symmetry is broken, we have q > 0 because ei-
ther qA > 0, qB = 0, or qA = 0, qB > 0. In the close packed
state q = 1. Since each of the two ground-state configurations
are threefold degenerate (corresponding to the three possible
ways the sublattices are occupied by vacancies), the overall
degeneracy of the ground state is 6. The analogy with the two-
dimensional Potts model, for which the phase transition is first
order when the ground-state degeneracy is larger than 4 [7],
would suggest that the phase transition of BM2 model cannot
be continuous. Since the correlation length of the six-state
Potts model is quite large, ξ � 159 [8], it might be difficult to
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make L � ξ in numerical simulations. If this is so we should
expect large corrections to the leading scaling functions
and the observation of critical fluctuations on intermedi-
ate length scales. To test this prediction more quantitatively
we need to look more closely at the nature of the critical
point.

III. GRAND-CANONICAL MONTE CARLO AND
THERMODYNAMIC EVIDENCE OF PHASE TRANSITION

To investigate the phase behavior of the BM2 model
we perform Monte Carlo (MC) simulations in the grand-
canonical ensemble. This offers the advantage of a more
efficient sampling of the configuration space when compared
to a system with a fixed particle number as the dynamics
can indeed more easily escape long-lived metastable states
by letting the particles caged by their neighbors to jump
into the reservoir. In other words, the reservoir speeds up
the particle diffusion by allowing virtual particle motion over
longer distances, provided that the reservoir chemical poten-
tial is finite. To mimic the interaction of the system with
the reservoir an extra bond is added to every lattice site. In
a square lattice of side L there will be therefore an overall
number of 3L2 bonds (2L2 bonds between nearest neighbor-
ing sites, plus L2 bonds to the reservoir). In every Monte
Carlo step a bond is randomly selected and, depending on its
type, a particle displacement or a particle exchange with the
reservoir is attempted. The local excluded volume condition
is met whenever particle-diffusion or particle-insertion from
the reservoir occurs. In a MC sweep there will occur, on
average, a particle exchange with the reservoir for every lattice
site, randomly alternating with particle displacements. As the
temperature plays no role we set kBT = 1 throughout, and
consider changes in the only relevant independent parameters,
the volume L2 and the chemical potential μ of the particle
reservoir. Boundary conditions are fully periodic. We first
evaluated the particle density ρ by slowly annealing an initial
empty system in contact with a particle reservoir from low to
high chemical potential with a rate of �μ = 10−2 per 105 MC
sweeps. The entropy s was then obtained by using the thermo-
dynamic integration method, s(μ f ) = s(μi ) − ∫ μ f

μi
μ dρ, with

μi chosen sufficiently low as to make the excluded volume
interaction ineffective [so that the s(μi ) coincides with the
entropy of the noninteracting lattice gas]. In Fig. 2 we show
a plot of curves ρ(μ) and s(μ). These quantities are com-
pared with those of the noninteracting lattice gas, for which
ρ(μ) = 1/[1 + exp(−μ)] and s(μ) = −ρ(μ) ln ρ(μ) − [1 −
ρ(μ)] ln[1 − ρ(μ)]. As anticipated above, the two systems
display the same thermodynamics at low density, as long as
ρ < 0.2 (μ < −1.5). Increasing the chemical potential, the
two curves depart from one another, meaning that the ex-
cluded volume interaction becomes more and more effective.
In the range μ ∈ [2.84, 2.87] we observe a sudden jump in
both density and entropy, which clearly suggests the existence
of a first-order phase transition. Interestingly, the analysis
of the cavity equations on the corresponding Bethe lattice,
namely the random regular graph with connectivity equal to
4 [17], shows that the entire fluid phase is well described
by the factorized replica symmetric solution—see dotted blue
line in Fig. 2—with a slight discrepancy occurring only near

0

0.2

0.4

0.6

ρ

(a)

0

0.2

0.4

0.6

−6 −2 2 6

s

μ

(b)

FIG. 2. Thermodynamic properties of the two-dimensional BM2

model on the square lattice. Data points (square symbols), extracted
from grand-canonical Monte Carlo simulation of a system of linear
size L = 75, are compared with the noninteracting lattice gas be-
havior (dashed curve) and the Bethe-Peierls, or replica factorized,
approximation (dotted curve). (a) Particle density ρ vs chemical
potential μ. The horizontal segment indicates the close packing den-
sity ρmax = 2/3. (b) Entropy s vs chemical potential μ. The phase
transition is located in the range μ ∈ [2.84, 2.87].

the phase transition. Further increasing the chemical potential
eventually leads the system to attain the previously computed
closest packing density, ρmax = 2/3. In this limit the system
entropy vanishes, consistently with the finite (system-size in-
dependent) degeneracy of the ground state.

IV. BINDER RATIO AND PHASE COEXISTENCE

To locate more precisely the critical point and get a first
insight into the microscopic nature of the phase transition we
study the Binder ratio UL of the order parameter probability
density function [27]. Here we find it convenient to define UL

as

UL(μ) = 1

2

( 〈q4〉
〈q2〉2

− 1

)
, (3)

where 〈qk〉 is the k-order cumulant of the order-parameter
distribution PL(q, μ). Accordingly, we expect that in the
low density fluidlike phase UL → 1 [assuming a Gaussian
PL(q, μ), and therefore 〈q4〉 = 3〈q2〉], while in the high
density solidlike phase UL → 0 (assuming a Dirac delta
order-parameter distribution, and thus 〈qk〉 = 〈q〉k). Assum-
ing that near the critical point the growing correlation
length leaves the system scale invariant, one can argue that
〈qk〉 = L−kβ/νQk[(μc − μ)L1/ν], where Qk is a scaling func-
tion, β is the order parameter exponent, and ν the correlation
length exponent. We thus expect that the Binder ratio scales
asymptotically as

UL(μ) = U [(μc − μ)L1/ν], (4)
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FIG. 3. Binder ratio UL vs chemical potential μ in the two-
dimensional BM2 model on the square lattice of side L. The crossing
point is approximately located at μc = 2.8559(1). The peaks location
shifts from left to right with increasing L. Inset: Binder ratio vs scaled
distance to the critical point with ν = 0.54 and μc = 2.8559.

where U is a scaling function. This implies that a sensible es-
timation of the critical chemical potential μc can be obtained
by looking at the crossing point of UL(μ) for different system
sizes, while the data collapse of UL plotted vs the scaled
distance to the critical point gives the possibility of estimating
ν. We evaluated the Binder ratio throughout the critical region
from time series of long MC runs, typically 108 MC sweeps,
by means of the histogram reweighting technique [28–30].
Results were averaged over ten realizations of the random
noise, after the system was aged in the critical region for
an extra time of about 106–108 MC sweeps. Thermalization
was checked by looking at the time-translation invariance of
the two-time density-density correlation function. Figure 3
shows UL(μ) curves on a semilogarithmic scale for linear
system size L in the range [75,150]. The intersection of the
different curves allows one to locate the critical point at
μc = 2.8559(1). Three distinctive features of the Binder ratio
can be observed in Fig. 3: (i) UL is a nonmonotonic function
of μ, (ii) it displays a peak that grows and sharpens with L,
and (iii) its logarithm behaves linearly over a critical region
that shrinks with L. These features are rather different than
those expected from the Ising model and other systems with
continuous phase transitions, where instead UL typically stays
bounded and tends to a step function monotonically. Indeed,
the above features are due to the emergence of multiple
peaks in the order-parameter distribution and are thus gener-
ally taken as a signature of phase coexistence, i.e., that the
transition is of first order [11,31–33]. Nevertheless, it should
be emphasized that multiple peaks can also appear in some
systems with continuous phase transitions such as the Baxter-
Wu model, the two-dimensional three- and four-state Potts
models, the Ashkin-Teller model, the Ising model with both
nearest- and next-nearest-neighbor interactions, and some
quantum magnets related to the phenomenon of deconfined
quantum criticality [9–11,34–36]. The inset of Fig. 3 shows
the Binder ratio plotted against the scaled distance to the criti-
cal point for various system sizes. As expected for a first-order
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FIG. 4. Finite-size probability density function PL (μ, q) of the
order parameter q evaluated at the chemical potential μL

c at which
the peaks have equal height (L is the square lattice side; larger
values of L correspond to higher peaks). Inset: power-law fit of the
finite-size shifted critical point μc − μL

c vs inverse length 1/L. The
estimated value of the infinite volume limit of the critical point and
the correlation length exponent are μc = 2.8559(1) and ν = 0.54(1),
respectively.

phase transition we find a good data collapse only in a linear
(on a semilogarithmic scale) region around the critical point,
with ν = 1/2. However, a good data collapse over a larger
scaling window beyond the linear region is obtained also with
ν = 0.54, although significant size dependence remains in the
neighborhood of the peak. So, to further understand the nature
of the phase transitions, we sought phase coexistence and
finite-size corrections to the critical point. We observe that in
the critical region the order-parameter distribution PL(q, μ)
develops in fact a pronounced double-peak structure corre-
sponding to the simultaneous formation of two distinct phases
near the transition point: one is located at q = 0 and corre-
sponding to the disordered fluidlike state, while the other is at
q > 0 in the solidlike ordered state. Figure 4 shows PL(q, μ)
for L in the range [30,150] at the chemical potential μ = μL

c at
which the two peaks of PL are of equal height. We will take μL

c
as our measure of the finite-size shift of the critical point. In
spite of the manifest phase coexistence, we see in the inset of
Fig. 4 that a power-law fit describes very well the data of μL

c
with values of ν and μc compatible with those obtained with
the analysis of the Binder ratio.

V. FINITE-SIZE SCALING AND PSEUDOCRITICAL
EXPONENTS

Since the estimated value of the correlation length expo-
nent, ν = 0.54 is sensibly different from that expected for
a first-order phase transition (ν = 1/2), we now look at the
finite-size scaling behavior of the order parameter q, suscepti-
bility χ ,

χ = L2(〈q2〉 − 〈q〉2), (5)
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which describes the mean-squared fluctuations of the order
parameter, and compressibility κ ,

κ = L2

〈ρ〉2
(〈ρ2〉 − 〈ρ〉2), (6)

which describes the mean-squared fluctuations of the particle
density. Notice that compressibility plays the role of specific
heat (the second derivative of free energy with the respect to
temperature), because in purely hard-core lattice gases, such
as the BM2 considered here, there is no energy and no tem-
perature. Likewise, density fluctuations are the direct analog
of energy fluctuations. Therefore, the critical exponent α is
associated with compressibility (the second derivative of en-
tropy with the respect to the control parameter μ). The scaling
hypothesis suggests that for a continuous phase transition the
above quantities behave as

q = L−β/νQ[(μ − μc)L1/ν], (7)

χ = Lγ /νX [(μ − μc)L1/ν], (8)

κ = Lα/νK[(μ − μc)L1/ν], (9)

where Q, X , and K are scaling functions and the critical
exponents β, γ , and α, which characterize the universality
class of the phase transition, satisfy the scaling and hyperscal-
ing relations α + 2β + γ = 2 and 2β + γ = dν, the space
dimensionality being d . At a first-order transition instead the
relevant scaling is with the volume of the system [37], thus
Eqs. (7), (8), and (9) hold with trivial value of critical expo-
nents, α = 1, β = 0, γ = 1, ν = 1/d . Panels (a), (b), and (c)
of Fig. 5 show q, χ , and κ , respectively, in the critical region
of chemical potential for linear system sizes L in the range
[75, 150]. The inset of each panel of Fig. 5 shows rescaled
data with α = 0.85(2), β = 0.04(1), γ = 1.10(4), and the
previously estimated μc = 2.8559(1), and ν = 0.54(1). The
data collapse is so successful that would seem to suggest,
rather convincingly, a continuous phase transition with non-
trivial values of the critical exponents, if we did not know
from Sec. III the true first-order nature of the transition. The
estimated critical exponents are indeed compatible, within
the numerical accuracy, with the scaling and hyperscaling
relations α + 2β + γ = 2 and 2β + γ = 2ν. Interestingly,
they are also very close to those of the universality class
of the tricritical Ising model in two dimensions (or, equiva-
lently, the two-dimensional two-state Potts lattice gas) [38],
and can be exactly determined from conformal invariance as
α = 8/9, β = 1/24, γ = 37/36, ν = 5/9 [39–41]. A possi-
ble justification of this similarity will be suggested in Sec. VII.
The way out of this paradox is that we are indeed probing
the preasymptotic regime which is still too far from the limit
L � ξ to show deviations from conventional critical behavior.

VI. CURVE CROSSING METHOD

To corroborate the weakly first-order scenario we next
study the size-dependent flow of the correlation length expo-
nent by exploiting phenomenological renormalization [42–44]
and the curve-crossing method [10,11]. We here follow the
same procedure detailed in Refs. [10,11] and show that it
allows one to detect unambiguously the signature of the first-
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FIG. 5. Finite-size scaling properties of the BM2 model on a
square lattice of side L for (a) order parameter q, (b) susceptibility
χ , and (c) compressibility κ vs chemical potential μ, and rescaled
data in the inset. In panel (a) larger values of L correspond to steeper
curves. In both panels (b) and (c) larger values of L correspond to
higher peaks. The values of critical point and critical exponents are
μc = 2.8559, ν = 0.54, β = 0.04, γ = 1.1, and α = 0.85. Rescaled
data are limited to the four largest sizes, L > 90.

order transition. In the phenomenological renormalization,
one considers a dimensionless quantity, for which curves plot-
ted versus the control parameter (here the chemical potential)
for two different system sizes, say L/2 and L, will cross
each other at a point approaching the phase transition point
as the system sizes are taken to infinity, and a corresponding
critical value of the dimensionless quantity is approached in
the vertical direction. The flows of the horizontal and vertical
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FIG. 6. Size-dependent flow of the inverse correlation-length ex-
ponent 1/νL at length scale L for the BM2 model on the square
lattice. Squares represent the data obtained from the crossing point
analysis with system-size pairs (L/2, L). The dashed green curve is
a three-parameter power-law fit, 1/νL = 1/ν∞ + a L−ω, where the
effective correction-to-scaling exponent is ω � 0.07 and the extrap-
olated value 1/ν∞ � 3.96. The dotted blue curve is a two-parameter
exponential-law fit 1/νL = 2 + b exp(−L/ξ ), where the estimated
correlation length is ξ � 132. The smallest size was excluded from
the fits.

crossing values, as well as the slopes at the crossing points,
are governed by the exponent ν and corrections to scaling
(the subleading exponent ω). Strong indications of weakly
first-order behavior can be detected in the extrapolation of the
effective critical exponents in terms of the system size. This is
most clearly manifested in the inverse correlation length expo-
nent 1/ν [11], which in the renormalization group approach is
known as the thermal eigenvalue (of renormalization group
transformations). For this reason we essentially focus on 1/ν

and consider for the dimensionless quantity the logarithm of
the Binder ratio UL previously defined in Eq. (3). In practice,
we first evaluate ln UL on a dense grid of chemical potentials
and system sizes. Then, we use polynomial fits for interpola-
tion to obtain the crossing points for system sizes (L/2, L) as
well as the slopes at the crossing point. The polynomial fitting
is better behaved with the quantity ln UL(μ), which is linear
near the transition point [11], as we have seen in the Fig. 3 of
Sec. III. The correlation length exponent at the scale L is then
extracted as

1

νL
= log2

[
d

dμ
ln UL(μ)

d
dμ

ln UL/2(μ)

]
μ=μcross

(10)

with μcross corresponding to the crossing point of the curves
ln UL(μ) and ln UL/2(μ), which are computed, along with
their derivatives, from the fitted polynomials. In Fig. 6, we
show the size-dependent exponent 1/νL of the BM2 model
obtained from the crossing point method. The next step of the
analysis proceeds by a classical reductio ad absurdum. We
assume the transition is continuous and therefore a power-law
finite-size correction L−ω to the leading scaling form Eq. (4).
If any inconsistency on the flow of 1/νL toward the asymptotic
value results from this assumption then the phase transition
cannot be continuous. The dashed line in Fig. 6 shows in
fact that a power-law form yields a very good fit of 1/νL

data. However, this requires an anomalously small sublead-
ing correction exponent, ω � 0.07. Further, the extrapolated

value 1/ν∞ � 3.96 far exceeds the first-order value 2 and the
previously estimated 1/ν � 1/0.54 � 1.85, while at a contin-
uous transition it should never be larger than d (d being the
spatial dimension). Therefore, a continuous phase transition
is untenable. In contrast, if we assume that the transition is
first order we can see that the data for 1/νL are described as
well by an exponentially rapidly approach to the asymptotic
value 1/ν = 2 over the same range of system sizes (dotted
line in Fig. 6). Several interesting features emerge from the
comparison of the exponential and power law forms. First,
the two forms agree over an extended range of system sizes
which goes quite beyond the available data set of 1/νL (up
to L ≈ 500). Second, the smallest system size that would
be required to clearly distinguish between the two forms is
about L ≈ 800, which is quite beyond what we could afford.
Third, the correlation length extracted from the exponential
fit, ξ � 132, is comparable with that of the six-state Potts
model, ξ � 159 [8], which is consistent with the ground state
degeneracy of the BM2 model, as pointed out in Sec. II.
This definitely confirms the weakly first-order character of the
phase transition, even though it is not possible to reach the sys-
tem sizes over which the crossover from second- to first-order
scaling is manifestly evident. Therefore we can conclude that
the nontrivial critical behavior observed in Secs. IV and V
represents a large preasymptotic effect.

VII. CONCLUSIONS AND PERSPECTIVES

We have studied the phase behavior of a two-dimensional
Biroli-Mézard model in which every particle can have two or
fewer nearest neighboring occupied sites on the square lattice.
We have determined the structure of the ground state and the
close packed density and showed that the system undergoes
an ordering transition from a dilute fluidlike phase to a solid-
like phase in which the sublattice symmetry is broken. The
transition is of first order because the particle density and
entropy display a sudden jump at a critical chemical potential
that we identify by studying the Binder ratio. The analysis
of the probability density function of the order parameter has
made evident that near the critical point the system exhibits
phase coexistence. Thermodynamic observables, however, do
not scale simply with the system volume. Rather, they exhibit
nontrivial critical exponents, that we have identified via finite-
size scaling analysis and the histogram reweighting technique.
We have thus seen that conventional finite-size scaling fails to
detect unambiguously the weakly first-order character of the
phase transition, which is instead correctly captured by the
extrapolation of the size-dependent flow of the thermal expo-
nent, which we have obtained via the crossing point method.

We believe that the nontrivial critical behavior observed
here in the preasymptotic regime, and which is manifested
in critical exponents close to the universality class of the
two-dimensional tricritical Ising model, provides a strong in-
dication of the presence of a tricritical point in the global
phase diagram of the BM2 model in which suitable extra di-
agonal interactions are introduced. In this case, one of the two
ground state configurations becomes unstable, and thus the
ground state degeneracy is reduced from 6 to 3. The analogy
with the Potts model thus suggests that the modified system
belongs to the universality class of the two-dimensional dilute
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Potts lattice gas. This scenario is made plausible by the fact
that a similar situation occurs in the square lattice gas with
diagonal interactions [45–47]. A changeover from first- to
second-order transition via a tricritical point should be also
expected for mixtures of particles with different types of
excluded volume interactions, in analogy with the results of
Refs. [48–51]. It is known that the nature of the phase tran-
sition displayed by extended hard-core lattice gases, which
has been much studied in the past decades [52–61], depends
sensitively on the underlying lattice structure and the pre-
cise extension of the short-range exclusion. This goes against
the conventional wisdom of renormalization group approach
and in this respect, the prospect of extending to higher-order
neighbors the range of the excluded volume interaction in the

BM model would be very interesting, also because it provides
a way to approach the continuum limit of a fluid made of
general shaped particles. Finally, the reformulation of the BM
model in terms of known statistical mechanics models, such as
the Coulomb gas or vertex models, might give the possibility
of exploiting analytical techniques for deriving some exact
results [62,63].
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