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Permutation Jensen-Shannon distance: A versatile and fast symbolic tool
for complex time-series analysis
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The main motivation of this paper is to introduce the permutation Jensen-Shannon distance, a symbolic tool
able to quantify the degree of similarity between two arbitrary time series. This quantifier results from the fusion
of two concepts, the Jensen-Shannon divergence and the encoding scheme based on the sequential ordering of
the elements in the data series. The versatility and robustness of this ordinal symbolic distance for characterizing
and discriminating different dynamics are illustrated through several numerical and experimental applications.
Results obtained allow us to be optimistic about its usefulness in the field of complex time-series analysis.
Moreover, thanks to its simplicity, low computational cost, wide applicability, and less susceptibility to outliers
and artifacts, this ordinal measure can efficiently handle large amounts of data and help to tackle the current big
data challenges.
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I. INTRODUCTION

At present, investigations related to complex systems are
spread along all scientific fields and, typically, time series of
measured variables are employed to analyze the dynamical
behavior of such systems. Consequently, the identification
of possible hidden dynamical structures from time series is
crucial to achieve a more reliable comprehension of the mech-
anisms that govern the system that generates these complex
temporal fluctuations. Unveiling the nature of the underlying
process from observed data is indispensable for classification,
modeling, and forecasting purposes. Different methods have
been developed to deal efficiently with this nontrivial task.
Without being exhaustive, the interested readers are directed
to Refs. [1–10] for a brief survey of some of these meth-
ods. It has also been found that symbolic techniques are
especially efficient for recognizing distinct features of the
phenomenon represented by the sequence of observations of
a suitable observable [11–13]. Moreover, this fact is true not
only for low-dimensional dynamical systems since symbolic
approaches can be successfully applied to time series gen-
erated by systems of much higher dimensionality [14]. In
particular, during the past few years, the ordinal symboliza-
tion introduced by Bandt and Pompe (BP) [15] has proven
great potential for extracting useful information about the
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intrinsic dynamics of complex systems [16–25]. This success
can be mainly attributed to the fact that the causal infor-
mation that stems from the system’s dynamical evolution is
naturally taken into account in the BP recipe. As stated by
Amigó et al. [26], “ordinal patterns are not symbols ad hoc
but they actually encapsulate qualitative information about
the temporal structure of the underlying data.” Furthermore,
this approach does not rely on generating partitions [27,28],
resulting in a practical option to symbolize datasets generated
by unknown dynamic processes with unknown levels of noise.
Due to these useful properties, permutation entropy, the most
representative and widely used descriptor from the BP encod-
ing scheme, which estimates the average rate at which new
information appears in a time series per observation [29], has
been successfully applied in countless applications since its
introduction almost 20 years ago (please see Refs. [30,31] for
a review of some of these applications).

On the other hand, different methodologies have been
previously introduced to measure the degree of similarity
between the symbol sequence statistics of two signals. To
the best of our knowledge, up to now, there has been no
optimal algorithm for quantifying it in practice. Particularly,
Yang et al. [32] have proposed a method based on rank-order
statistics of symbolic sequences and it has been successfully
applied to detect temporal structures in human heartbeat time
series and to categorize biological signals [33]. However,
there exist some discrepancies regarding its properties and
practical utility [34,35]. Ouyang et al. [36] have defined a dis-
similarity measure based on the rank-frequency distribution
of ordinal patterns to investigate the dynamical characteristics
of epileptic electroencephalogram (EEG) data, while Parlitz
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et al. [37] have identified equivalent dynamics quantifying
the similarity of their relative frequencies of occurrence of
ordinal patterns through the Hellinger distance. Much more
recently, an approach based on the differences between Rényi
entropy spectra has been implemented by Xu and Beck [14].
Finally, the alphabetic Jensen-Shannon divergence, a relative
distance (in a distributional sense) between time series, has
been introduced by Mateos et al. [38] for detecting dynamical
changes. A binary encoding is undertaken as a coarse-grained
representation of the signals and then used to estimate the
Jensen-Shannon divergence. Discrimination between stochas-
tic and chaotic dynamics and the determination of change
points in time series are two successful applications achieved
by implementing this scheme.

Following a similar philosophy to that of Refs. [36–38], we
shed some light on this issue by introducing the permutation
Jensen-Shannon distance. The Jensen-Shannon divergence is
implemented as a discriminant quantifier between two signals
but using the ordinal symbolic representation introduced by
BP for estimating it. It is plausible to assume that the distri-
bution of ordinal patterns is a fingerprint of the underlying
dynamics and that, in practical contexts, different dynam-
ics are associated with different ordinal patterns probability
distributions. Consequently, the Jensen-Shannon divergence
between the ordinal mapping of two time series provides an
alternative to quantify the degree of similarity between the
temporal structures of arbitrary complex systems. Moreover,
this tool straightforwardly inherits all the important advan-
tages associated with the BP scheme, namely simplicity, low
computational cost, noise robustness, and invariance under
scaling of the data. These features make our proposed ordinal
distance especially well suited for the analysis of experimental
data. Besides, another advantage to highlight is the versatility
of the proposed approach since hypothesis tests related to
the nature of an arbitrary time series can be easily carried
out by estimating its permutation Jensen-Shannon distance
to reference time series appropriately generated according to
the null model. In the following, we introduce the permu-
tation Jensen-Shannon distance, present numerical analysis
and empirical applications, and, finally, summarize the main
conclusions achieved in this work. A performance comparison
with other approaches has been addressed in the Appendix.

II. PERMUTATION JENSEN-SHANNON DISTANCE

The Jensen-Shannon divergence [39] between the prob-
ability distributions P = {p1, . . . , pn} and Q = {q1, . . . , qn}
is a symmetrized version of the Kullback-Leibler divergence
DKL(P, Q) = ∑n

i=1 pi ln (pi/qi ) given by

DJS(P, Q) = 1

2

[
DKL

(
P,

P + Q

2

)
+ DKL

(
Q,

P + Q

2

)]

= S

(
P + Q

2

)
− 1

2
S(P) − 1

2
S(Q), (1)

where S is the Shannon entropy function, i.e., S(P) =
−∑n

i=1 pi ln pi (as usual, we assume the convention that
0 ln 0 = 0 and ln (0/0) = 0). This is a dissimilarity measure,
bounded between 0 and ln 2, that can also be interpreted as
the entropy of the average distribution minus the average of

the entropies [40]. The minimum value is achieved if and
only if the two distributions under comparison are identical,
while the maximum value is obtained whenever their supports
are disjoints (that is, piqi = 0 for i = 1, . . . , n). The entropic
definition of the Jensen-Shannon divergence leads to a natural
generalization that allows us to weigh differently the com-
pared distributions. Denoting πP and πQ (πP � 0, πQ � 0 and
πP + πQ = 1) the weights associated with the probability dis-
tributions P and Q, respectively, this generalization is defined
as

DπP,πQ

JS (P, Q) = S(πPP + πQQ) − πPS(P) − πQS(Q). (2)

Furthermore, this measure of discernability can also be gen-
eralized to quantify the difference between more than two
distributions [39]:

Dπ1,π2,...,πn
JS (P1, P2, . . . , Pn)

= S

(
n∑

i=1

πiPi

)
−

n∑
i=1

πiS(Pi ), (3)

with Pi the probability distributions and πi positive weights
such that

∑n
i=1 πi = 1. But what is more important for our

present purposes is the fact that the square root of the
Jensen-Shannon divergence, [DJS(P, Q)]1/2, is a true metric
for probability distributions. For further mathematical details
please see Ref. [41]. In fact, an entire monoparametric family
of metrics is obtained for [DJS(P, Q)]γ with γ ∈ (0, 1/2] [42].
The Jensen-Shannon divergence has previously allowed us to
shed some light on some relevant issues: the segmentation of
nonstationary symbolic sequences, such as DNA sequences,
into stationary subsequences [43,44]; the definition of a sta-
tistical measure of complexity [45]; the quantification of time
symmetry breaking [46]; the characterization of network evo-
lution processes [47]; the study of proteins dynamics [48]; and
the statistical analysis of language (Ref. [49] and references
therein).

The estimation of the Jensen-Shannon distance, i.e.,
[DJS(P, Q)]1/2, as any measure from information theory, re-
quires us first to know the probability distribution of the time
series under analysis. We propose to implement this quan-
tifier over the symbolic sequences obtained via the ordinal
mapping procedure introduced by BP. This encoding scheme
considers the order relations between some equidistant suc-
cessive values of time series instead of the values themselves.
Consequently, it avoids amplitude threshold dependencies that
affect other more conventional symbolization recipes based
on range partitioning [50]. The probability distribution is then
approximated by the histogram of the ordinal patterns and it
characterizes the shape of the time-series waveforms in short
temporal windows quantitatively. The ordinal approach offers
the possibility to find an appropriate symbolic representation
from a time series based on the temporal dynamics in a simple
and natural way, with only a weak stationary assumption on
the underlying process [51].

This procedure can be better illustrated through a sim-
ple numerical example. Given the short time series X =
{4, 1, 6, 5, 10, 7, 2, 8, 9, 3}, two parameters, the order of the
permutation symbols D (D � 2 with D ∈ N, length of the
ordinal pattern) and the lag τ (τ ∈ N, time separation between
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elements) should be chosen. Next, the time series is parti-
tioned into subsets of length D with lag τ akin to phase-space
reconstruction by means of time-delay embedding. The ele-
ments in each new partition (of length D) are replaced by their
rank in the subset. This symbolic ordering reflects the visual
pattern in this subset. For example, if D = 3 and τ = 1, then
there are eight three-dimensional vectors of three consecutive
data points associated with X . The first one (x0, x1, x2) =
(4, 1, 6) is mapped to the ordinal pattern (102). The second
three-dimensional vector is (x0, x1, x2) = (1, 6, 5), and (021)
will be its related permutation. The procedure continues so
on until the last sequence, (8,9,3), is mapped to its corre-
sponding motif, (120). There are a couple of technical issues
worth mentioning. First, note that we implement an over-
lapped scheme for successive ordinal patterns. A comparison
between the overlapping versus the nonoverlapping ordinal
pattern selection has confirmed that the former approach re-
duces the variance of motifs frequencies thanks to the larger
number of ordinal patterns to count [52]. Second, if two ele-
ments in the vector have the same value, then they are ranked
according to their temporal order or, alternatively, a small
random perturbation is added to break ties. The effect of a
significant number of equalities on the BP encoding scheme,
and more specifically on the permutation entropy estimated
values, has been carefully analyzed in Refs. [53,54].

The probability of each ordinal pattern can then be esti-
mated by simply computing the relative frequencies of the D!
possible permutations πi:

p(πi ) = C(πi )

N − (D − 1)τ
, i = 1, . . . , D!, (4)

with C(πi ) the number of occurrences of the ordinal pat-
tern πi in an arbitrary scalar time series {xt }N

t=1 of length
N . In such a way, an ordinal pattern probability distribution,
P = {p(πi ), i = 1, . . . , D!}, is obtained. Returning to our nu-
merical example: p(π1) = p(012) = 1/8, p(π2) = p(021) =
1/4, p(π3) = p(102) = 3/8, p(π4) = p(120) = 1/8, p(π5) =
p(201) = 0, and p(π6) = p(210) = 1/8. When there is not
any temporal dependence between the values in the time
series, all possible ordinal patterns appear with the same
probability, i.e., P = {p(πi ) = 1/D!, i = 1, . . . , D!}. Nontriv-
ial dynamics manifest themselves in a nonuniform distribution
of the ordinal patterns: Some motifs occur more often than
others and this can be interpreted as an underlying dynami-
cal signature. The distribution of ordinal patterns is invariant
with respect to order-preserving changes, such as transla-
tions (adding a constant), scalings (multiplying by a positive
constant), and/or any monotone increasing nonlinear trans-
formations of the original data [55]. Technically speaking,
the ordinal pattern probability distribution P is obtained once
the order D and the lag τ are fixed. This encoding scheme
does not require the optimal reconstruction of the phase space
that is necessary for estimating other quantifiers of chaotic
signals. Consequently, D and τ are not usually selected fol-
lowing the methodologies often employed in a conventional
phase-space reconstruction (e.g., the first zero of the autocor-
relation function, the first minimum of the average mutual
information, and the false nearest-neighbor algorithm) [56].
Taking into account that there are D! potential permutations
for a D-dimensional vector, the condition N � D!, with N the

length of the time series, must be satisfied in order to obtain a
reliable estimation of P [57]. It is clear that more temporal in-
formation is incorporated into the ordinal patterns as the order
D increases. For practical purposes, BP suggest in their sem-
inal paper to estimate the frequency of ordinal patterns with
3 � D � 7 and lag τ = 1 (consecutive data points). Since the
lag τ physically corresponds to multiples of the sampling time
of the signal under analysis, a multiscale analysis can be easily
accomplished by analyzing the behavior of any statistic of P
as a function of this parameter. Particularly, the estimation
with lagged data points, i.e., τ � 2, offers a more complete
comprehension of the underlying dynamics in the case of
continuous and/or scale-dependent systems [18,19,51,58,59].

The permutation Jensen-Shannon distance (PJSD) is hence
obtained by calculating the square root of Eq. (1), with P
and Q the ordinal probability distributions associated with
the two signals under analysis. It is worth remarking here
that the metric property of [DJS(P, Q)]1/2 and all the practical
advantages of the ordinal coarse-graining are merged into
the PJSD. Henceforth, normalized values of the PJSD with
respect to its upper bound, i.e., (ln 2)1/2, are estimated. Since
it constitutes a measure of distinguishability between two
probability distributions, the symbol composition between
different sequences can be quantitatively compared through
this metric. Obviously, larger values of this quantifier indicate
less similarity between the symbolic mapping of the signals
and vice versa. We hypothesized that signals coming from
the same underlying dynamics would have small estimated
values of this ordinal distance (close to but not exactly zero
as a consequence of finite-size effects), whereas larger values
(significantly different from zero) will be found when the
signals have different origins. Actually, in the former instance,
PJSD converges asymptotically to zero with the series size, as
will be shown shortly.

III. NUMERICAL ANALYSIS

Next, several numerical datasets are analyzed for char-
acterizing the PJSD behavior, as well as for illustrating the
versatility and robustness of the proposed symbolic quantifier
within controlled frameworks. It is worth advancing that the
main purpose in each of these examples is totally different and
that these applications seek to demonstrate the potentiality and
flexibility of the PJSD for heterogeneous applications.

A. Convergence to zero for signals with the same dynamics

Trying to characterize the behavior of the PJSD when two
signals from the same dynamical source are analyzed, we
have estimated the ordinal metric as a function of the time-
series size N for two independent numerical realizations of
a Gaussian white noise. Figure 1 shows the log-log plot of
the average PJSD with D ∈ {3, 4, 5, 6} and lag τ = 1 from
an ensemble of 100 independent estimations of sizes N ∈
{211, 212, . . . , 220}. From the observed linear decrease in the
log-log plot, it can be concluded that the PJSD tends asymp-
totically to zero following a power-law behavior with N . To
be more precise, PJSD ∝ N−1/2, with a proportionality factor
that depends on the order D. Consequently, the deviation
from zero for the PJSD estimation in the case of two signals
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FIG. 1. Log-log plot of the PJSD estimations as a function of
the time-series size N for two independent numerical realizations
of a Gaussian white noise. Circles indicate the average value from
an ensemble of 100 independent estimations with several orders D
and lag τ = 1. Dashed lines correspond to the best linear fits to the
data. Fitting parameters and R2 values of these linear regressions are
detailed in the legend.

with the same dynamics is due to finite-size effects. We have
confirmed qualitatively similar behaviors for other stochastic
and deterministic dynamics [60].

It has been analytically shown by Grosse et al. [44] that,
up to a first-order approximation, the expected value of the
Jensen-Shannon divergence DJS(P, Q) for two sequences of
independent and identically distributed symbols decays in-
versely proportional to N , i.e., DJS(P, Q) = Cn/N , with Cn

a constant that depends on n, the number of elements in the
probability distributions. Considering that the square root is
taken when estimating the PJSD and the fact that n = D!
(number of possible permutations) in the BP symbolization
scheme, our numerical results are consistent with this ana-
lytical approximation. It should also be highlighted here that
DJS(P, Q) follows a χ2 distribution for asymptotically large
values of N under the null hypothesis that P and Q are gener-
ated from the same probability distribution [41,44]. This result
could, in principle, be used for defining a criterion or threshold
in order to quantify the statistical significance of estimated
values of PJSD.

B. Characterizing long-range correlated time series

It is well known that a wide range of complex systems
from diverse fields, including physiology, economy, geo-
physics, and music, among many others, generates output
signals that display different degrees of long-range power-
law correlations. Discriminating between these long-memory
stochastic dynamics is crucial for several purposes. For exam-
ple, scaling properties observed for the heart-rate variability
are different in healthy and pathological conditions [61].
Fractional Brownian motions (fBms) and their increments,
the fractional Gaussian noises (fGns), are ubiquitous models
for nonstationary and stationary long-range correlated time
series, respectively. These stochastic processes are usually
characterized by the Hurst exponent H ∈ (0, 1) that controls
the power-law exponent of their associated spectra. In the
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FIG. 2. PJSD estimations with several orders D ∈ {3, 4, 5, 6} (in-
creasing from top left to bottom right) and lag τ = 1 are plotted
as a function of the Hurst exponent for fBms. Mean and standard
deviation (as error bar) from estimations of an ensemble of 100
independent realizations of length N = 104 data are depicted. PJSD
baseline references resulting from the analysis of a pair of shuffled
surrogate realizations from each simulation are also included.

stationary case, i.e., for fGns, the power spectrum is pro-
portional to 1/ f β with β = 2H − 1 (−1 < β < 1), while an
analogous generalized power spectrum but with β = 2H +
1 (1 < β < 3) can be defined for the fBm nonstationary
processes. Antipersistence, absence of correlations, and per-
sistence are obtained for fGns with H ∈ (0, 1/2), H = 1/2,
and H ∈ (1/2, 1), respectively. In fGns with antipersistent be-
haviors, the series are anticorrelated. That means that positive
values are followed by negative values (or vice versa) more
frequently than by chance and time series with higher degrees
of roughness are observed. On the other hand, long-range cor-
related series are obtained for persistent fGns where positive
values are followed by positive values and negative values
are followed by negative values more likely than by chance.
Memoryless dynamics are generated if H = 1/2: Gaussian
white noise for the fGn model and ordinary Brownian motion
for the fBm one. Smoother time series with stronger trends
are obtained for fBms with larger values of H . Further details
about these fractal stochastic models can be found in the
seminal paper by Mandelbrot and Van Ness [62].

We have analyzed numerical simulations of fBm and fGn
with Hurst exponents H ∈ {0.05, 0.1, . . . , 0.95} generated by
implementing the function wfbm of MATLAB. One hundred
independent realizations of length N = 104 data were simu-
lated for each Hurst exponent. Mean and standard deviation
(included as error bar) of the PJSD, estimated for several
orders D ∈ {3, 4, 5, 6} and lag τ = 1, between the simulated
records and their shuffled counterparts (white noise and ran-
dom walk null models for fGn and fBm, respectively [63])
are displayed in Fig. 2 for fBms and in Fig. 3 for fGns.
Shuffled or scrambled surrogates are considered as time series
of reference since we are trying to quantify the degree of tem-
poral correlations, and these randomized resampled sequences
are constrained realizations that satisfy the null hypothesis;
i.e., fully random data having exactly the same amplitude
distribution as the original time series are generated [64,65].
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FIG. 3. The same as in Fig. 2 but for fGns.

Moreover, a baseline is established by estimating the PJSD
between two shuffled realizations of each simulation. In such
a way, finite-size and amplitude distribution effects are taken
into account. The presence of any temporal structure can be
robustly concluded only when a significant deviation from
this baseline is confirmed. Actually, a clear discrimination of
the temporal correlations is observed for both models: The
PJSD reaches values larger than the baseline for H �= 1/2.
This discrimination is improved for longer simulations with
N = 105 data [60]. The deviations are asymmetric, with larger
distances for highly persistent dynamics than those reached
for highly antipersistent ones. A similar asymmetric behavior
is found when the permutation entropy is implemented for
the fGns characterization [60,66]. In relation to the selec-
tion of the lag τ , we have confirmed that the correlations
discrimination is worse for fGns (especially for H < 1/2)
and remains qualitatively similar for fBms when larger values
(1 < τ � 20) are used [60]. This latter finding for fBms will
be further explored in Sec. III D. Finally, by comparing the
results obtained for the two models, it can be concluded that
PJSD analysis on the process (fBm) allows us to unveil the
presence of the underlying temporal correlations much more
precisely. This is in agreement with previous findings [67]
and should be taken as a rule of thumb when possible. For
a comparison with the results obtained by implementing other
dissimilarity measures, please see the Appendix.

C. Distinguishing persistent from antipersistent
stochastic dynamics

Results previously obtained for the fGns show that persis-
tent and antipersistent dynamics are indistinguishable when
the PJSD to the shuffled surrogate realizations is implemented
to characterize the underlying temporal correlations. This
ambiguous behavior, also observed when the permutation
entropy is used as a discriminative measure [60], could be
considered an important weakness, especially for classifica-
tion tasks. Ordinal probability distributions for fGns with
H > 1/2 and H < 1/2 are clearly different as you can con-
clude from Fig. 4. However, the problem lies in the fact that
their distances to the equiprobable distributions (associated
with the uncorrelated dynamics of the shuffled realizations)
achieve similar values. Beyond this limitation, it is important
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FIG. 4. Estimated ordinal pattern probabilities for fGns with
Hurst exponents H ∈ {0.05, 0.1, . . . , 0.95} (increasing from blue to
yellow). For the sake of a better visualization, only results for D = 3
(top plot) and D = 4 (bottom plot), and lag τ = 1, are displayed.
Mean and standard deviation (as error bar) from estimations of an
ensemble of 100 independent realizations of length N = 104 data are
depicted. Ordinal patterns are indexed following the lexicographic
order (please see Fig. 2 of Ref. [18]).

to emphasize that PJSD can discriminate persistence from
antipersistence. To demonstrate this, we have estimated the
PJSD between two fGns with Hurst exponents H1 and H2 in
the set {0.05, 0.1, . . . , 0.95}, generated by following the same
conditions described in the previous section. Figure 5 shows
the associated distance matrices with several orders D and
τ = 1 for these synthetic fGns of length N = 104 data. More
precisely, mean distance from 100 independent estimations
for each pair of Hurst exponents is plotted. As expected, the
minimal distances are obtained along the diagonal with values
near (but not) zero due to finite-size effects. Furthermore, the
distance between two fGns increases as long as their Hurst
exponents are more separated from each other. Improved
discrimination is achieved for longer time-series sizes [60].
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FIG. 5. PJSD matrices for two fGns with Hurst exponents H1

and H2 in the set {0.05, 0.1, . . . , 0.95}. Mean from estimations of
an ensemble of 100 independent realizations of length N = 104 data
for several orders D ∈ {3, 4, 5, 6} (increasing from top left to bottom
right) and lag τ = 1 are depicted.
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FIG. 6. Estimated ordinal pattern probabilities with D = 4 and
lags 1 � τ � 40 (increasing from blue to yellow) for one represen-
tative fBm numerical simulation of length N = 104 data with Hurst
exponent H = 0.25 (top plot), H = 0.5 (center plot), and H = 0.75
(bottom plot). Ordinal patterns are indexed following the lexico-
graphic order.

Consequently, we can confirm that the PJSD is actually an
efficient tool for distinguishing persistent from antipersistent
fGns dynamics and potentially useful for classifying them.

D. Ordinal self-dissimilarity

Our analysis for the fBms developed in Sec. III B shows
that results are invariant under changes of the lag τ (at least
for small values of this parameter). The self-similar property
of these processes analytically justifies this finding: fBms
look qualitatively similar independently of the distance from
which we look at them (Ref. [68], see in particular page 48
for a more formal definition of self-similarity). Indeed, it has
been theoretically shown that the ordinal patterns probabilities
do not depend on the lag τ for fBms [69]. Following the
definition introduced by Bandt [58], fBms fulfill the order
self-similarity property. For illustration, we show in Fig. 6
the estimated ordinal pattern probabilities with D = 4 and
lags τ between 1 and 40 for fBms with three Hurst ex-
ponents H ∈ {0.25, 0.5, 0.75}. Since numerical realizations
of length N = 104 data are analyzed, the theoretical order
self-similarity is only approximately verified and some dis-
crepancies are visually evident when the lag τ increases from
1 (blue curve) to 40 (yellow curve). Keeping this in mind,
we propose to estimate the PJSD of an arbitrary time series
symbolized with an order D and two different lags τ1 and
τ2 to quantify the degree of self-dissimilarity of the time
series itself at these two temporal scales. By fixing τ1 = 1 and
varying τ2 from 2 to τmax

2 , this ordinal self-dissimilarity seeks
to characterize how different, from an ordinal perspective, the
time series looks when the scale is increased with respect to
the initial scale used to examine it. Smaller estimated values
of the ordinal self-dissimilarities, close to the baseline refer-
ence, are expected in the case of self-similar dynamics, such
as that associated with fBms processes, while larger values
will be obtained for systems whose dynamics depend on the
observation scale. Moreover, it is reasonable to conjecture that
intrinsic characteristic scales of the dynamics that generates
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FIG. 7. Ordinal self-dissimilarity as a function of the observation
scale τ2 with τmax

2 = 40 for fBms with Hurst exponents H = 0.25
(top plot), H = 0.5 (center plot), and H = 0.75 (bottom plot). Mean
and standard deviation (as error bar) from estimations of an ensemble
of 100 independent realizations of length N = 104 data for several
orders D ∈ {3, 4, 5, 6} are displayed. Baseline references are calcu-
lated from shuffled surrogates of the original simulations.

the time series, such as temporal delays and/or periodici-
ties, could be revealed through this analysis. With the aim
of illustrating this approach, we have tested fBms numerical
realizations. Figure 7 shows the ordinal self-dissimilarity with
different orders D as a function of the observation scale τ2

with τmax
2 = 40 for fBm simulations of length N = 104 data

with the same three Hurst exponents previously considered.
Once again, average and standard deviation from an ensemble
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of 100 independent realizations have been plotted. Baseline
references are calculated repeating the procedure for shuffled
surrogates of the original simulations. The expected invari-
ance is only verified for small scales. Moreover, the ordinal
self-dissimilarity moves further away from the baseline refer-
ence for larger Hurst exponent and larger orders D. It is also
confirmed that the behavior is qualitatively similar but with
smaller values of the distances if longer numerical realizations
are considered [60]. Even though ordinal pattern probabilities
are a priori similar (on average) for different lags τ , the
ordinal self-dissimilarity seems to be a sensitive tool able to
quantify and magnify their subtle differences.

E. Distances between different complex deterministic dynamics

Within the proposed approach, we conjecture that the PJSD
estimated between signals coming from different dynami-
cal origins will achieve values significantly larger than the
baseline or reference values obtained when two signals from
the same system are compared. The rich dynamical behavior
of the logistic map is considered as a testbed to illustrate
this fact. Realizations of this one-dimensional quadratic map
xt+1 = rxt (1 − xt ) for values of the parameter r between 3.5
and 4 with step �r = 0.001 (giving a total of 501 values of
r) are mutually compared through the PJSD. It is well known
that different deterministic dynamics are generated within this
range of the parameter value, from simple periodic to fully
chaotic regimes. Average values of the PJSD matrices esti-
mated with several orders D and lag τ = 1 from an ensemble
of 20 independent realizations of length N = 104 data for each
pair of values of the parameter r are displayed in Fig. 8. As
was expected, minima of the PJSD near zero are observed
along the diagonal. It is also concluded that the discrimination
between different dynamics improves for larger orders D. This
is especially evident in the periodic windows, in agreement
with results previously obtained by Parlitz et al. [37]. Thus, as
a rule of thumb, the largest possible order D that satisfies the
condition N � D! should be chosen to maximize the accuracy
for discriminating between different dynamics. Please see the
Appendix to compare with results obtained by implementing
other dissimilarity measures.

F. Unveiling noise-induced effects

It is well known that the presence of dynamical noise in
nonlinear dynamical systems can lead to several interesting
phenomena such as stochastic resonance, noise-induced order,
and noise-induced chaos [70]. Within this context, it is criti-
cal to appropriately identify the parameters of the nonlinear
systems and the noise levels for which these phenomena are
realized. To illustrate that the PJSD is useful for this purpose,
we have analyzed the paradigmatic noisy logistic map defined
by

xt+1 = rxt (1 − xt ) + μt , (5)

with μt a Gaussian random variable with zero mean and
standard deviation σ . As it was done in Ref. [70], the σ

value is interpreted as the noise level. Realizations of this
noisy map for values of the bifurcation parameter r between
3.54 and 3.94 with step �r = 0.01 (giving a total of 41

values of r) and noise levels σ between 0.0005 and 0.002
with step �σ = 0.0005 (giving a total of 40 values of σ ) are
ordinally contrasted against their noise-free counterparts via
the PJSD. More precisely, average values of the PJSD with
different orders D and lag τ = 1 between 100 independent
noisy realizations of length N = 104 data (for each value of r
and σ ) and the noise-free realization with the same value of
the bifurcation parameter are calculated. Results obtained are
displayed in Fig. 9.

It is observed that the PJSD increases abruptly for some
particular pair of r and σ values independently of the order
D. In other words, noisy and original (noise-free) dynamics
are significantly different from an ordinal perspective, and,
consequently, noise-induced relevant effects on the original
clean dynamics are concluded for such instances. Actually,
noise-induced chaos has already been confirmed for some
of the bifurcation parameter values our analysis highlights,
namely r = 3.63, r = 3.74, and r = 3.83 [70]. Although fur-
ther research is needed to confirm the chaotic nature of the
noisy realizations, we conjecture that transition from periodic
to chaotic states due to the presence of dynamical noise is the
main source of the observed behavior.

G. Discriminating reversible from irreversible time series

The possibility to discriminate between reversible and irre-
versible dynamics from the analysis of time series generated
by the underlying generating systems is relevant for modeling
purposes. The irreversible nature of the time series confirms
that Gaussian linear processes and nonlinear static transfor-
mations of them should be excluded as potential models, and
this allows us to shed some light on the physical mecha-
nisms that govern the system under study. In other words,
any difference between the actual (forward) time series and
its time-reversed (backward) counterpart is a symptom of the
presence of nonlinearities in the process that generated the ob-
served time series. Despite the fact that several methods have
been introduced to quantify the degree of time irreversibility
in practice, there is not an a priori optimal approach (Ref. [71]
and references therein). Motivated by this issue, we propose
here that the amount of time irreversibility can be measured as
the normalized distance (in a distributional sense) between the
ordinal probability distributions estimated from the forward
and backward series, i.e., [DJS(Pfor, Pback )/ ln 2]1/2 with Pfor

and Pback the time-forward and time-reversed ordinal pattern
probability distributions, respectively. It is important to em-
phasize that the idea of implementing ordinal related tools as
a way of assessing the irreversibility of a time series is not
new and has been recently explored by Zanin et al. [72] and
Martínez et al. [73] and that we are simply trying to give a
step forward in this direction.

In the following, several numerical analyses on theo-
retically validated reversible and irreversible stochastic and
chaotic dynamics have been developed to characterize the
performance of the proposed approach. In Fig. 10, we have
plotted, in log-log scale, the PJSD between the forward and
backward series for simulated fGns with Hurst exponents
H ∈ {0.1, 0.2, . . . , 0.9} as a function of the realization length
N (N ∈ {210, 211, . . . , 220}). Average PJSD estimated with or-
ders D ∈ {3, 4, 5, 6} and lag τ = 1 from an ensemble of 100
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FIG. 8. [(a)–(d)] PJSD matrices estimated with D ∈ {3, 4, 5, 6} (increasing from top left to bottom right) and lag τ = 1 for the logistic map
with parameter r between 3.5 and 4 and step �r = 0.001. Average values from estimations of an ensemble of 20 independent realizations of
length N = 104 data for each pair of values of the parameter r are shown. (e) Lyapunov exponents and (f) bifurcation diagram of the logistic
map for this parameter range are also included for comparison purposes.

independent numerical simulations for each value of H are
displayed. It is concluded that the PJSD converges asymp-
totically to zero when N increases with the same power-law
behavior PJSD ∝ N−1/2 observed in Sec. III A. This result is
independent of the Hurst exponent H (that increases from the
blue to the yellow curves) and with a proportionality factor
that depends on the order D. Consequently, the observed
deviations from zero are purely related to finite-size effects,
and a reversible dynamics is concluded, as expected, for all
these linearly correlated stochastic noises. We have found
qualitatively equivalent findings for Gaussian and uniform
white noises [60].

Next, we consider the irreversibility analysis of two
stochastic systems: a static nonlinear transformation of a
Gaussian process (commonly known with the acronym STAR)
and a linear autoregressive model driven by a non-Gaussian
noise (NGRP). More precisely, the STAR is given by xt =
tanh2 (yt ) where yt is the first-order autoregressive AR(1)
process yt = 0.6yt−1 + εt with εt pseudorandom values from
the standard normal distribution while the NGRP is defined
by xt = 0.3xt−1 + ξt where ξt are pseudorandom numbers
uniformly distributed in the interval (−0.5, 0.5) [74]. These
are examples of stochastic systems with static and dynamic
nonlinearities and, consequently, they are time reversible and
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FIG. 9. PJSD matrices estimated with D ∈ {3, 4, 5, 6} (increas-
ing from top left to bottom right) and lag τ = 1 for the noisy logistic
map with parameter r between 3.54 and 3.94 with step �r = 0.01
and noise levels σ between 0.0005 and 0.002 with step �σ =
0.0005. Average values of PJSD estimations between an ensemble of
100 independent noisy realizations of length N = 104 data (for each
value of r and σ ) and their noise-free counterparts are shown. PJSD
reaches larger values for all orders D when the bifurcation parameter
r ∈ {3.63, 3.74, 3.83, 3.84, 3.85} and the noise level σ increases.

irreversible, respectively [73,74]. We have developed an anal-
ysis similar to that previously described for the fGns. The
average PJSD between the forward and backward series from
an ensemble of 100 independent realizations is depicted in
Fig. 11 as a function of the time-series length N in log-log
scale. Ordinal distances are estimated with D ∈ {3, 4, 5, 6}
and lag τ = 1. Results for the STAR model are displayed in
the top plot. The PJSD tends asymptotically to zero, allowing
us to conclude a reversible dynamics, as it was expected, for
this case. Behaviors of the ordinal approach for the NGRP
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FIG. 10. Irreversibility analysis for fGns with several orders D ∈
{3, 4, 5, 6} (increasing from top left to bottom right) and τ = 1. Log-
log plots of the average PJSD between the forward and backward
series from 100 independent realizations for each Hurst exponent
H ∈ {0.1, 0.2, . . . , 0.9} (increasing from blue to yellow) as a func-
tion of the time-series length N . It should be noted that as D increases
the dispersion between the nine curves reduces and they are totally
overlapped for D = 5 and D = 6.
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FIG. 11. Irreversibility analysis for the STAR (top plot) and
NGRP (bottom plot) models. The PJSD between the forward and
backward series estimated with several orders D and τ = 1 is plotted
(in log-log scale) as a function of the time-series length N . Average
values from 100 independent realizations are displayed. Behaviors
displayed by the standard Gaussian AR(1) process (dashed lines with
triangle markers) have also been included for comparison purposes
in the bottom plot.

model are detailed in the bottom plot. We have also included
the results for the standard Gaussian AR(1) counterpart as
a reference (please see the dashed lines with triangle mark-
ers). An irreversible dynamics is concluded for the NGRP
model since the PJSD converges to nonzero values for the
different order values. Qualitatively similar results have also
been found for another linear system excited by a non-
Gaussian noise. It is the third-order autoregressive process
xt = 0.4xt−3 − 0.3xt−2 + 0.2xt−1 + ζt with ζt the squaring of
a white process with uniform amplitude distribution between
−0.5 and 0.5 [74]. For a matter of space, the results for this
irreversible system are detailed in the Supplemental Mate-
rial [60]. We can conclude that the robustness of the proposed
ordinal approach to distinguish between reversible and irre-
versible time series is confirmed in these more challenging
stochastic models. Moreover, we have found that static and
dynamic nonlinearities can be successfully handled. We have
found that other dissimilarity measures have problems to un-
veil the irreversible nature of the NGRP model. Please see the
Appendix for more details.
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FIG. 12. The same as in Fig. 11 but for the logistic map in the
fully chaotic regime (r = 4) (top plot) and the x component of the
Arnold’s cat map with k = 2 (bottom plot). The maximal ordinal
distance is obtained for the logistic map with D = 5 and D = 6.

We have also tested the performance of the proposed ordi-
nal approach to discriminate the reversibility or irreversibility
of several chaotic maps. More precisely, the logistic map
in the fully chaotic regime (r = 4), the Hénon map (xt+1 =
1 + yt − ax2

t , yt+1 = bxt with a = 1.4 and b = 0.3), and the
Arnold’s cat map [xt+1 = xt + yt mod(1), yt+1 = xt + kyt

mod(1) with k = 2] have been analyzed. The temporal evolu-
tion of the x component is considered in the two-dimensional
maps. Figure 12 shows the results obtained for the logistic (top
plot) and the Arnold’s cat map (bottom plot). Results for the
Hénon map are qualitatively similar to that observed for the
logistic map [60]. On the one hand, and taking into account
that dissipative chaotic systems are irreversible [71,72], the
(practically constant) nonzero estimated values reached by the
PJSD for the different orders D in the case of the logistic and
Hénon maps confirm irreversibility for them in full agreement
with their dissipative nature. On the other hand, since the
PJSD asymptotically tends to zero with N following the same
power-law behavior previously described for linear systems,
a reversible dynamics is concluded for the Arnold’s cat map
as it was expected for a conservative chaotic system [71]. We
have found that the ordinal distance achieves its maximum
possible value when the irreversibility of the logistic map is
analyzed with the larger orders (D = 5 and D = 6). This is
because the two ordinal pattern probability distributions under
comparison have disjoint supports. This means that observed
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FIG. 13. The same as in Fig. 11 but for the β transform with β =√
20 (top plot), β = √

200 (center plot), and β = √
2000 (bottom

plot). The same vertical scale is used in the three plots for easier
comparison.

ordinal patterns of the forward time series are unobserved
ordinal patterns of the reversed time series and vice versa.

Finally, we have investigated the β transform, defined by
the iterated map xt+1 = βxt mod (1), with increasing values
of the parameter β. The detection of the irreversibility as-
sociated with this map becomes more challenging for larger
values of the parameter since the dynamical complexity of this
system increases monotonically with β [74]. More precisely,
a Kolmogorov-Sinai entropy equal to ln β is theoretically
obtained [75]. Figure 13 illustrates the ability of the PJSD
approach to unveil the irreversibility of the β transform for

045310-10



PERMUTATION JENSEN-SHANNON DISTANCE: A … PHYSICAL REVIEW E 105, 045310 (2022)

three different values of β ∈ {√20,
√

200,
√

2000}. In the
three cases it is observed that the PJSD between the forward
and backward series converges to a nonzero value but longer
time series are necessary to realize the underlying irreversible
nature for larger values of β. Moreover, the ordinal distance
tends to lower values as long as β increases. Thus, it is
possible to conjecture that the ordinal approach can quantify
the irreversibility degree associated with this complex system.
Even though further analyses are required to have a rigorous
statistical approach, the current results suggest that this strat-
egy can be useful for testing the temporal irreversibility in
time series.

IV. EMPIRICAL APPLICATIONS

Some examples of real data applications are detailed below.
They are mainly included to demonstrate the significance and
applicability of the PJSD into specific practical settings.

A. Ordinal self-dissimilarity for a financial time series

We have estimated the ordinal self-dissimilarity for the
historical temporal price evolution of crude oil, one of the
most influential commodities in the present world economy.
Considering that the ordinary Brownian motion is a widely
accepted first approach to model financial time series, we
conjecture that the behavior for the oil prices should be anal-
ogous to that obtained for the numerical simulations analyzed
in Sec. III D. Our main objective is to find some evidence
to either support or reject this hypothesis. Daily closing spot
prices of the West Texas Intermediate (WTI), often used as a
benchmark in oil pricing, from January 2, 1986, to February
16, 2021, have been tested. This time series of N = 8851 oil
prices, quoted in U.S. dollars per barrel and freely available
to download at the U.S. Energy Information Administration
(EIA) website, is displayed in Fig. 14 (top plot). At the bottom
of this figure, the estimated ordinal self-dissimilarity with dif-
ferent orders D is plotted as a function of the observation scale
τ2 with τmax

2 = 40. Since observed trends are similar to those
obtained for the ordinary Brownian motion (please compare
with the middle plot of Fig. 7 taking into account that these re-
sults correspond to numerical realizations of length N = 104

data), we can conclude that, from an ordinal self-dissimilarity
perspective, this stochastic process seems to be suitable for
modeling the financial data under analysis. It is also worth
mentioning that our analysis is in accord with recent results
obtained by Bandt [58], which showed that the assumption of
equality of frequencies of ordinal patterns in the case of the
same financial time series is only justified for small values of
the lag parameter (τ � 6).

B. Estimating the Hurst exponent from crude oil prices

Although our previous application demonstrates that the
ordinal self-dissimilarity obtained for time series of crude oil
prices agrees with that displayed for simulations of an ordi-
nary Brownian motion model, we seek to find further evidence
in favor of this random walk behavior. If this was the case,
then a memoryless efficient dynamics immune to speculative
strategies would be associated with the financial time series.
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FIG. 14. Time series of the daily closing spot prices of the
West Texas Intermediate (top plot) and its estimated ordinal self-
dissimilarity as a function of the observation scale τ2 with τmax

2 = 40
for several orders D ∈ {3, 4, 5, 6} (bottom plot). Baseline references
are calculated from shuffled surrogates of the crude oil prices (mean
and standard deviation from estimations of an ensemble of 100
independent shuffled realizations are displayed).

With this goal in mind, we propose to quantify the ordinal dis-
tance between the WTI daily data and numerical realizations
of fBm with the same length (N = 8851 data) and different
Hurst exponents (H ∈ {0.05, 0.1, . . . , 0.95}). More precisely,
the PJSD between the financial data and 100 independent fBm
numerical simulations for each of these Hurst exponents is
estimated. A minimum of the proposed quantifier is expected
for the Hurst exponent which best fits the data within an ordi-
nal framework. Results obtained for order D = 4 and different
lags 1 � τ � 40 are shown in Fig. 15. Qualitative similar be-
haviors are obtained for other orders [60]. Even when certain
deviations with the lag τ are observed, we can conclude that
within the fBm family, the ordinary Brownian motion, i.e., the
fBm with Hurst exponent H = 1/2, is the more appropriate
model for the ordinal patterns of the WTI daily oil prices.
This allows us to suggest the ordinal efficiency of the oil
prices. We have confirmed that a Hurst exponent H ≈ 1/2
is also estimated with the widely accepted detrended fluctu-
ation analysis methodology [60,76]. It should be stressed that
the success of the methodology described in this section is
strongly dependent on the quality of the fBm generator and
that spurious results could potentially be achieved if numerical
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FIG. 15. PJSD between the WTI daily data and fBm numerical
simulations of the same length (N = 8851 data) with different Hurst
exponents (H ∈ {0.05, 0.1, . . . , 0.95}). Mean and standard deviation
(as error bar) from estimations with D = 4 and different lags 1 �
τ � 40 (increasing from blue to yellow) of an ensemble of 100 inde-
pendent numerical realizations for each Hurst exponent are shown.

simulations have significant bias. Beyond this limitation, we
consider that the proposed ordinal approach can serve as a
complementary and validation tool for more traditional Hurst
exponent estimators.

C. Parameter adjustment for modeling
sunspot number fluctuations

Sunspots are identified as dark spots on the visible surface
of the sun, with a mean lifetime of the order of a few days
[77]. The number of these spots during a given period of
time is a widely accepted proxy for the solar activity and,
consequently, modeling its dynamics is of great interest. The
best known low-frequency component of the sunspot number
time series is its quasiperiodic 11-year cycle. Yet, several
attempts have been made to model the interplay between
this long-term variation and the presence of high-frequency
fluctuations (Ref. [78] and references therein). In particular,
Blanter et al. [79] have demonstrated that the evolution of
the sunspot number can be modelled as a modulated noise,
whose long-term component is the well-known 11-year cycle.
In a nutshell, the model consists of an autoregressive process
of first order, as the high-frequency component, multiplied
by a low-frequency function, x(t ) = η(t )[sin(ωt ) + c], with
η(t + 1) = αη(t ) + ξ (t ), where α quantifies the autocorrela-
tion of the noise η(t ) and ξ (t ) is an independent randomly
variable uniformly distributed in [0,1]. Nonnegative values
are guaranteed by setting c � 1. It is worth mentioning that
the autocorrelation parameter α can be related to the mean
lifetime τ of sunspots (τ = 1/(1 − α)) [79].

Here we aim to estimate the autocorrelation parameter α

for which the model more accurately reproduces the daily
evolution of the sunspot numbers. With this goal in mind,
we propose to look for the α value that minimizes the PJSD
between the modulated-noise model and the daily sampled
sunspot number. Following Ref. [79], we consider two dif-
ferent periods of the daily international sunspot number data
from the World Data Center SILSO, Royal Observatory of
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FIG. 16. PJSD with D = 5 and τ = 1 between signals from the
modulated-noise model (with c = 1.5 and ω = 2π/11) and the daily
sunspot time series, both previously smoothed by an 11-year moving
average sliding window, as a function of the autocorrelation param-
eter α. Mean and three standard deviations (as error bar) calculated
from the distance between the empirical sequence and 100 indepen-
dent realizations of the model are plotted.

Belgium, Brussels [80], spanned between 1850 to 1925 and
1950 to 2020, respectively. We have estimated the PJSD with
D = 5 and τ = 1 between the sunspot numbers for these two
periods and 100 independent realizations of the modulated-
noise model with c = 1.5 and ω = 2π/11 for different values
of α ∈ {0.05, 0.1, . . . , 0.95}. Additionally, a baseline was es-
tablished by estimating the PJSD between two independent
realizations of the model. These results are depicted in Fig. 16.
A minimum of the PJSD is found for α = 0.7 and 0.8 for
the first and second periods, respectively. For these values,
we can say that the modulated-noise model better fits the real
observations within an ordinal framework. Similar results are
found for other orders [60]. The change in the autocorrelation
of the daily solar activity can be interpreted as an increment on
the average lifetime of the sunspots in the period 1925–1950.
Indeed, our results are in accordance with those obtained in
Ref. [79], where α was estimated from the daily sunspot signal
by calculating its Markov radius of correlation for the same
two time periods approximately.

D. Multiscale analysis of electroencephalograms
from healthy and epileptic patients

Trying to demonstrate the potential of the PJSD in the
analysis of neurophysiological data, we have implemented it
for discriminating between different brain electrical activity
time series. More precisely, five sets of EEG for different
groups and recording regions have been considered: surface
(scalp) EEG recordings from five healthy volunteers in an
awake state with eyes open (Set A) and closed (Set B),
intracranial EEG recordings from five epilepsy patients dur-
ing the seizure free interval from outside (Set C) and from
within (Set D) the seizure generating area, and intracranial
EEG recordings of epileptic seizures (Set E). One hundred
representative EEG segments of length N = 4097 data, free
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FIG. 17. PJSD with D = 4 between the forward and backward
EEG records as a function of the lag τ . Mean and standard error
(as error bar) calculated from the 100 representative time series for
each set are plotted. Results obtained for a set of 100 independent
Gaussian white noise realizations of the same length (WN) as linear
reference are also displayed. The irreversibility degree and, conse-
quently, the nonlinearity changes as a function of the considered
temporal scale for the different EEG sets while the linear reference
shows a constant behavior. Actually, it can be visually concluded that
the discriminative power between the different datasets increases for
larger lag τ .

of artifacts and satisfying a weak stationarity criterion, were
appropriately selected for each of these sets. Please see the
original paper by Andrzejak et al. [81] for further details about
this database.

It has been previously shown that the degree of nonlinearity
in these sets is different [7,81–83]. Consequently, tools or
statistical tests that quantify the presence of nonlinear struc-
tures can be particularly suited for the discrimination task.
Considering this and also the fact that time irreversibility is
a signature of nonlinearity, we propose the PJSD between the
forward and backward EEG recordings as discriminatory tool.
In this case, due to the limited length of the EEG recordings,
we cannot study the behavior of the PJSD with the time-series
length N as done in Sec. III G. Instead, we simply compare
the estimated ordinal distances for the five EEG groups. Since
the discriminative power could depend on the timescale and
the optimal temporal scale is a priori unknown, a multiscale
analysis, i.e., PJSD versus τ , is developed. Moreover, in order
to have the reference of a linear process to compare, results
obtained for an additional set of 100 independent Gaussian
white noise (WN) realizations of the same length (N = 4097
data) have also been included. PJSD estimations with D = 4
and 1 � τ � 40 for the six considered sets are displayed in
Fig. 17. Qualitatively similar results are obtained for other
orders [60].

As expected, coexistence of timescales with different de-
grees of time irreversibility are concluded for the complex
fluctuations of the physiological time series. On the one hand,
it is clearly observed that the segments of ictal activity (Set E)
have the highest degree of nonlinearity for any lag τ , allowing
them to be clearly distinguished from the other brain electrical
activities. On the other hand, larger timescales improve the
discrimination between the other groups (Sets A–D and WN).

Indeed, for τ = 1, the irreversibility degree estimated from
records of Sets A–C and those from the linear WN reference
are highly overlapped. The nonlinearity nature of Sets A–D
seems to be better unveiled at larger timescales and, hence,
a multiscale analysis is crucial to differentiate these EEG
time series from the white noise linear realizations. Moreover,
higher degrees of irreversibility or nonlinearity are observed
for the pathological cases (Sets C and D). As a matter of
fact, this increment of time irreversibility with pathology is
in perfect agreement with the results previously obtained by
implementing different techniques on the same [7,81–83] and
other [84,85] epileptic EEG databases. It should also be noted
that this finding is totally opposite to the loss of time irre-
versibility with disease over multiple timescales observed for
human heartbeat time series and interpreted as evidence of
loss of functionality and adaptability [86]. Contrarily, for the
epileptic brain electrical activities analyzed in this section, the
time-reversal asymmetry is lower in the healthy condition. It
is worth adding that, even when the surface EEG recordings
of healthy subjects with eyes open and closed (Sets A and
B) achieve the lower indications of nonlinear dynamics, they
are clearly distinguished from the WN reference, especially
for larger values of the lag τ . Last, EEG data from these two
healthy groups show similar time irreversibility behaviors as
a function of τ and can be hardly distinguished.

E. Differentiating between real and simulated
heartbeat time series

In this last experimental application, we investigated the
database from a challenge to generate realistic sequences of
interbeat (RR) intervals [87]. More precisely, a collection of
50 (26 physiologic and 24 synthetic) RR interval time series,
each between 20 and 24 hours in length, are tested. The real
series were obtained from long-term ECG recordings of adults
between the ages of 20 and 50 with no evidence of cardiac
abnormalities, while each of 12 different generators was im-
plemented to simulate synthetic RR interval time series (two
series had been simulated by each generator). The length N
of these sequences is variable and it goes from a minimum of
71 953 up to a maximum of 128 507 data. It should also be
noted that two of the generators violated the required rule that
portions of real (physiologic) RR interval sequences cannot
be incorporated in the output. One of them, that generated the
series designated as rr36 and rr42, used smoothed averages
of real time series while the other one simply time-reversed
entire (real) 24-h series (datasets labeled as rr14 and rr16
correspond to this last not-allowed strategy). See Ref. [88] for
further information about this open access database.

Our ultimate goal in this analysis is to identify a prop-
erty of the underlying processes generating the time series
that allows us to discriminate between the real and artificial
heartbeat signals. According to some previous results, looking
for signatures of nonlinear dynamical behavior seems to be
an appropriate strategy for achieving robust discrimination
of these data [86,89]. Following this hypothesis, once again
the degree of time irreversibility is proposed as a potential
discriminatory tool. It has also been previously demonstrated
the importance of considering the multiple timescales inher-
ent in the healthy cardiac interbeat variability for a more
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FIG. 18. Integrated irreversibility measure with different orders
D ∈ {3, 4, 5, 6} (increasing from top left to bottom right) and τmax =
10 for the different sequences of the RR challenge database. Results
obtained for the physiologic (black circles), synthetic (blue circles),
and the four problematic artificial sequences (red circles) are shown.
Mean and standard deviation (as error bar) of estimations for an
ensemble of 10 independent shuffled realizations for each RR in-
terval time series are also displayed in order to get a baseline for
linear/reversible dynamics with the same length. The arrow indicates
the true physiologic dataset rr23 with a low integrated irreversibility
degree, similarly to those estimated for simulated datasets.

proper characterization of its intrinsic time-reversal asym-
metry [86,89]. Consequently, as in the analysis of the EEG
database, a multiscale analysis is recommended, i.e., PJSD
between the forward and the backward time heartbeat time se-
ries are estimated and contrasted at multiple levels of temporal
resolution. After several preliminary analyses, we have fur-
ther found that the summation of the estimated irreversibility
degree, i.e.,

∑τ=τmax
τ=1 [DJS(Pfor, Pback )/ ln 2]1/2, up to a suitable

maximum temporal scale, τmax, for a value of the order D is
better for the discrimination purpose. This global quantifier
for characterizing the time-reversal asymmetry, which con-
siders a predefined range of scales simultaneously, is in line
with the multiscale asymmetry index proposed by Costa et al.
[86,89].

Results obtained for the RR challenge database by es-
timating this integrated irreversibility measure with several
orders D and τmax = 10 are shown in Fig. 18. In order to
have a linear reversible reference to compare with, ensembles
of 10 independent shuffled realizations for each RR interval
time series have also been analyzed. The mean and standard
deviation of the 10 shuffled estimations of the proposed global
irreversibility quantifier for each tested sequence are also
displayed in Fig. 18. The value for τmax has been chosen
through visual comparison and it might not be the optimal
one in a quantitative context. However, we consider that our
qualitative analysis is enough for the illustration of the tech-
nique and that the identification of the optimal value for τmax

is beyond the scope of the present work. A clear discrim-
ination between real and simulated sequences is concluded
from Fig. 18. True physiological records (black circles) have
larger estimated values of the global quantifier, confirming the
existence of nonlinear temporal structures in their underlying

dynamics. Estimations for the synthetic datasets (blue circles)
are significantly lower. Essentially, algorithms included in
the challenge cannot reproduce the nonlinearity intrinsically
present in the true physiological records. Only the true phys-
iologic dataset rr23 (indicated with an arrow) shows a low
irreversibility degree that makes us erroneously assume that
it is an artificial record. It is worth noting here that curiously
the same misclassification has been observed in the analysis
developed in Ref. [89] (see Fig. 4 in this reference). This
common misclassification reinforces the hypothesis suggested
by the authors of the aforementioned article that unknown
factors such as age, level of physical activity, and/or drug
effects could be potential reasons for the low level of the
integrated reversal asymmetry related to this particular phys-
iologic record. Furthermore, the results obtained for the four
problematic synthetic sequences deserve special attention. On
the one hand, the two records that are simply time reversal of
real data, rr14 and rr16 (the two red circles on the left), are
classified as physiologic as it was obviously expected. On the
other hand, the other two records, rr36 and rr42 (the two red
circles on the right), which are smoothed averages of real time
series, show an interesting behavior as a function of the order
D. Their integrated irreversibility degree reaches a low value
for D = 3, similarly to that obtained for synthetic records.
However, estimated values for the global quantifier increase as
D increases, achieving values similar to that obtained for true
RR sequences when D = 6. We conjecture that their inherent
physiological (irreversible/nonlinear) nature remains partially
hidden at the lowest orders but is successfully revealed at the
highest one. We consider that all these findings confirm that
the proposed multiscale time irreversibility analysis is partic-
ularly valuable for testing the quality of algorithms designed
to simulate heart rate time series. We are also optimistic about
its usefulness for characterizing the potential limitations of
generators of other physiological signals.

V. CONCLUSIONS

We have introduced the PJSD, an ordinal metric able to
quantify the degree of similarity between two (or more) time
series. Through several numerical and experimental analyses,
we have confirmed its usefulness for characterizing and classi-
fying time series. Comparisons against other approaches have
allowed us to verify the enhanced performance of the pro-
posed tool for some relevant purposes. Taking into account the
robustness to noise effects and the invariance under scaling of
the data associated with the ordinal symbolization approach,
the PJSD seems to be a quantitative metric especially suited
for the analysis of real-world signals. We also consider this ap-
proach to be versatile because the hypothesis to be tested can
be easily set up by conveniently choosing the time series taken
as reference. Actually, the diversity of applications included in
this paper is explicit evidence of this. Consequently, a wide
range of complex phenomena can be scrutinized with this
ordinal symbolic quantitative metric. In particular, we conjec-
ture that the PJSD can be potentially useful for quantifying the
functional connectivity in complex network analysis; e.g., to
reveal specific disease effects from brain networks analysis.
Moreover, it can be easily and quickly implemented, paving
the way to monitor the behavior of big data series in real time.
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It is also possible to hypothesize that multiple scientific fields
can be benefited through its implementation. For all these rea-
sons, we consider that the proposed ordinal distance is a useful
addition to the repertoire of existing methods for complex
signals analysis. Further analytical investigations that support
the heuristic results detailed in this work will be undertaken
in future research. Exploring possible generalizations using
other divergences, such as the Jensen-Tsallis one that allows
a more complete characterization in the case of heavy-tailed
distributions [49], could be another potential avenue of study.
Interested readers are welcome to contact the authors for an
implemented code of the PJSD in MATLAB. This method will
also be available in ordpy, a Python package for data analysis
with ordinal methods [90].
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APPENDIX: PERFORMANCE COMPARISON
AGAINST OTHER APPROACHES

With the aim of achieving a better characterization regard-
ing the significance of the results obtained with the PJSD,
we have developed some comparative analysis with other
two quantifiers of similarity or dissimilarity between signals;
namely the information-based similarity index (IBSI) [32,33]
and the alphabetic Jensen-Shannon divergence (aJSD) [38]. A
binary coarse graining depending on the relative amplitudes
of successive values is first implemented in both of them and
then binary sequences of length m (m-bit words) are obtained.
This procedure is known as alphabetic mapping. The relative
frequencies of the 2m possible m-bit words are calculated and
then used to quantify the dissimilarity between two arbitrary
signals. On the one hand, in the case of IBSI, the m-bit words
are first sorted and ranked according to their frequencies of
occurrence for each signal. Then, an average deviation of the
ranks for the common words, with a suitable weighting factor
that takes into account the importance (relative frequency)
of the word, is proposed for characterizing the dissimilarity
between the two symbolic sequences. On the other hand, for
the aJSD, the Jensen-Shannon divergence between the proba-
bility distributions of the two signals under analysis, estimated
following the alphabetic mapping scheme, is proposed as
measure of dissimilarity. For further details, see Refs. [32,33]
for the former tool and Ref. [38] for the latter one.

As a first numerical test, we compare performances of
IBSI, aJSD, and PJSD for discriminating the presence of
temporal correlations in long-range correlated time series. The
analysis developed is similar to that described in Sec. III B,
and, for this reason, the information is not repeated here.
Both fractal stochastic models, fBm (nonstationary process)
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FIG. 19. Estimations of IBSI with several lengths
m ∈ {8, 9, 10, 11} (increasing from top left to bottom right)
are plotted as a function of the Hurst exponent for fBms. Mean and
standard deviation (as error bar) from estimations of an ensemble of
100 independent realizations of length N = 104 data are depicted.
Baseline references resulting from the analysis of a pair of shuffled
surrogate realizations from each simulation are also included.

and fGn (stationary noise), with different Hurst exponent H
have been analyzed. Word lengths m between 8 and 11 have
been chosen since these values were proposed in the original
papers. Results obtained for IBSI are detailed in Figs. 19
and 20 while those for aJSD are displayed in Figs. 21 and
22. We have accordingly adjusted the vertical scale of these
plots in order to make the comparison easier with the results
obtained for PJSD (Figs. 2 and 3). By comparing the behavior
and range of the three quantifiers, we conclude that PJSD
offers the best characterization for both stochastic models.
Performance differences observed in favor of PJSD are clear
and evident when comparing against IBSI. Although much
less noticeable, PJSD also outperforms aJSD with a larger
range of estimated values that points out a higher ability for
characterizing long-range memory effects.

Next, we analyze how useful the three measures result for
unveiling the presence of slightly correlated dynamics. This
is a relevant and well-known issue in several fields, where
a fully uncorrelated dynamic is taken as the null hypothesis.
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FIG. 20. The same as in Fig. 19 but for fGns.
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FIG. 21. Estimations of aJSD with several lengths m ∈
{8, 9, 10, 11} (increasing from top left to bottom right) are plotted
as a function of the Hurst exponent for fBms. Mean and standard
deviation (as error bar) from estimations of an ensemble of 100 in-
dependent realizations of length N = 104 data are depicted. Baseline
references resulting from the analysis of a pair of shuffled surrogate
realizations from each simulation are also included.

Trying to provide a more rigorous statistical answer to this
issue, we have estimated the three quantifiers for ensembles of
10 000 independent realizations of fGns with H = 0.5 (fully
random dynamics) and H = 0.6 (slightly persistent dynam-
ics). Simulations of length N = 104 data were generated for
this numerical test. Taking into consideration that the main
objective is to identify the presence of memory effects in the
time series, dissimilarities between the original and their shuf-
fled counterparts were calculated. Histograms of estimated
values for IBSI, aJSD, and PJSD are depicted in Figs. 23–25,
respectively. The two distributions of estimated values are
better separated for the PJSD while the overlap increases in
the case of IBSI and aJSD. This finding allows us to confirm a
higher performance of the PJSD for uncovering the presence
of slightly correlated dynamics.

Dissimilarity between the original signal and its shuffled
counterpart has been previously proposed as nonrandomness
index [32]. Indeed, this is analogous to what we have done
when fGns are analyzed. Following this idea, we have found
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FIG. 22. The same as in Fig. 21 but for fGns.

FIG. 23. Distributions of IBSI estimated values for ensembles
of 10 000 independent numerical realizations of fGns with H = 0.5
(fully uncorrelated dynamics) and H = 0.6 (slightly correlated dy-
namics) with respect to their shuffled counterparts. Results obtained
for simulations of length N = 104 data with word lengths m ∈
{8, 9, 10, 11} (increasing from top left to bottom right) are shown.

that the three dissimilarity measures show monotonic increas-
ing behaviors when they are implemented to quantify the
nonrandomness degree of colored noises. Figure 26 shows
these behaviors when 1/ f k noises with k between 0 and 3
and step �k = 0.1 are analyzed. The Fourier filtering method
has been implemented for generating the colored noises. We
address the reader to Ref. [91] for more details about this
algorithm. The mean and standard deviation (displayed as
error bars) of the three dissimilarity measures for 100 inde-
pendent realizations of length N = 214 data for each value
of k have been plotted. Results for other values of N (N ∈
{210, 211, . . . , 217}) are qualitatively similar. It is visually clear
that IBSI has less accuracy for discriminating colored noises
in both extremes of the power-law exponent range (k ∈ [0, 1]
and k ∈ [2, 3]) while aJSD suffers from a similar lack of
sensitivity but only when k ∈ [0, 1]. PJSD shows the best
discrimination, especially for larger D. Moreover, an ideal
quasilinear behavior is observed for D = 6 when k > 0.5.

Next, the performance of these dissimilarity measures for
classifying different colored noises is quantified. For such a
purpose, we train a linear support vector machine algorithm

FIG. 24. The same as in Fig. 23 but for aJSD.
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FIG. 25. The same as in Fig. 23 but for PJSD. In this case, results
for orders D ∈ {3, 4, 5, 6} (increasing from top left to bottom right)
and lag τ = 1 are displayed.

with a fivefold cross validation considering the 31 values of k
(k ∈ {0, 0.1, . . . , 2.9, 3}) as possible classes for the algorithm
and the estimated nonrandomness index as single feature. We
generate ensembles with 100 simulations for each value of the
power-law exponent k and for each length N . Overall accura-
cies (fractions of correctly classified values of k) as a function
of the time-series length N for the three dissimilarity measures
are compared in Fig. 27. As it was expected, the overall
accuracy for PJSD is enhanced regardless of the time-series
length N . Differences observed with IBSI are larger. When
comparing with aJSD, differences are lower but always in
favor of PJSD. The only exception is when PJSD is estimated
with D = 6 for N = 210. This can be attributed to finite-size
effects since the condition N � D! is not satisfied in this case.

The ability to distinguish between different complex de-
terministic dynamics, reproducing the analysis detailed in
Sec. III E, has also been contrasted. We have first ob-
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FIG. 26. Nonrandomness degree for colored noises 1/ f k with
k ranging from 0 to 3 with steps of size 0.1. Mean and standard
deviation (as error bars) from estimations of an ensemble of 100
independent realizations of length N = 214 data are displayed. Word
lengths m ∈ {8, 9, 10, 11} are considered for the IBSI and aJSD
estimations while orders D ∈ {3, 4, 5, 6} with lag τ = 1 are used for
the PJSD estimations. The value of m and D increases in the upward
direction for each color group.
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FIG. 27. Overall accuracy as a function of the time-series length
N for classifying colored noises. A linear support vector machine
algorithm with a fivefold cross validation has been implemented
as machine learning classifier. Word lengths m ∈ {8, 9, 10, 11} are
considered for the IBSI and aJSD estimations while orders D ∈
{3, 4, 5, 6} with lag τ = 1 are used for the PJSD estimations. The
value of m and D increases from left to right for each color group.

served that IBSI has problems to be estimated in several
instances in which the dissimilarity between pure periodic
and low-dimensional chaotic dynamics is considered. This is
essentially due to the fact that the signals associated with these
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FIG. 28. Matrices distances obtained for the aJSD with m = 8
(top plot) and PJSD with D = 5 and τ = 1 (bottom plot) for the lo-
gistic map with parameter r between 3.5 and 4 and step �r = 0.001.
Numerical realizations of length N = 104 data are analyzed.
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FIG. 29. Irreversibility analysis for the β transform with β =√
200. Dissimilarities between the forward and backward series are

plotted (in log-log scale) as a function of the time-series length N .
Average values from 100 independent realizations are displayed.
Word lengths m ∈ {8, 9, 10, 11} are considered for the IBSI and
aJSD estimations while orders D ∈ {3, 4, 5, 6} with lag τ = 1 are
used for the PJSD estimations. The value of m and D increases in the
upward direction for each color group.

two regimes have very few common m-bit words, making
statistically unreliable the estimation of an average deviation
between their associated ranks. Actually, we have found sev-
eral couples of control parameters of the logistic map for
which only one m-bit word is shared between the simulated
time series. Consequently, IBSI has been discarded for this
particular analysis. The estimated matrices for the aJSD and
PJSD in the case of logistic map for 501 equidistant values
of the control parameter r ∈ [3.5, 4], are compared in Fig. 28.
For a fairer comparison, we have fixed the values of m = 8 and
D = 5 in order to have a similar number of elements in the
probability distributions (28 = 256 and 5! = 120). By com-
paring the two matrices, it is concluded that PJSD achieves
a more accurate discrimination of the different deterministic
dynamics, especially in the periodic windows. Moreover, ex-
pected minima along the diagonal are also better defined in the
PJSD matrix distance, evidencing a more robust distinction
between nearby values of the control parameters. It is worth
mentioning here that we have confirmed that results obtained
for aJSD with larger m (m ∈ {9, 10, 11}) are very similar to
those obtained for m = 8 and that they do not show significant
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FIG. 30. The same as in Fig. 29 but for the NGRP model.

improvements. This behavior is different to that observed for
the PJSD (Fig. 8), for which improved discrimination between
dynamics is reached for larger orders D.

Finally, we have confirmed that IBSI and aJSD are also
useful to discriminate between reversible and irreversible time
series following a procedure analogous to the one proposed
for the PJSD. That is, the behavior of the dissimilarity be-
tween the forward and backward series as a function of
the time-series length is analyzed to conclude in favor of
a reversible (asymptotic convergence to zero) or irreversible
(convergence to a nonzero value) dynamics. We have iden-
tified, however, a couple of cases in which both IBSI and
aJSD have clear difficulties within this framework. The first
one is the β transform with a large value of the parameter
β. Figure 29 illustrates the irreversibility analysis for IBSI,
aJSD, and PJSD when β = √

200. It is concluded that the
convergence to a nonzero value is realized for IBSI and aJSD
but for larger values of N . Consequently, these two quantifiers
need longer time series to identify the irreversible character
of the dynamics. With short time series both of them may
be unable to conclude the irreversible nature of the original
dynamics. The second case that deserves special consideration
is the NGRP model. According to the results displayed in
Fig. 30, IBSI and aJSD are not able to unveil the underly-
ing irreversible nature. In fact, on the contrary, reversibility
could be erroneously concluded from the aJSD analysis. Un-
doubtedly, PJSD offers an enhanced characterization of this
stochastic system with dynamic nonlinearities.
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