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The optical resonance problem is an eigenproblem with an exponential-growing boundary condition imposed
at infinity. This inconvenient boundary condition is caused by the openness of dielectric systems, and it is
explained as the effect of retardation. Following our previous work [Jiang and Xiang, Phys. Rev. A 102, 053704
(2020)] where a perfectly-matched-layer method is developed for transverse-magnetic modes, we extend the
method in this paper to transverse-electric modes and apply it to study mode symmetries. The method is
implemented by introducing an extra layer to absorb outgoing waves at the far-field region, based on which
we derive a damping eigenequation. A finite-element-based numerical approach is developed to compute the
eigenstates of the damping eigenproblem. Our method is validated by application to the circular cavity and
comparison with exact analytical solutions of whispering-gallery modes. We apply the method to the elliptic
cavity to study the even- and odd-symmetric optical eigenstates. We also apply the method to trace the evolution
of a pair of degenerate eigenstates with cavity shapes smoothly deformed from circles to squares.
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I. INTRODUCTION

With the rapidly progressing fabrication technology in
silicon-on-insulator platforms [1], dielectric microcavities [2]
are developed as building blocks in a wide variety of on-chip
optical devices, such as optical filters [3], photonic circuits
[4,5], microlasers [6,7], biomedical sensors [8,9], optical gy-
roscopes [10], etc. Most applications are making use of a
cavity’s resonance phenomena due to the fact that resonance
states are sensitive to dielectric perturbations, for example
cavity deformations [11,12], nanoparticle perturbations [9],
and index variations [13,14]. The resonance states formed
in dielectric cavities are energy-dissipating processes, which
cause the effective Hamiltonian of the optical resonance
system to be non-Hermitian [15–17]. Uncommon physical
phenomena, such as wave chaos [18,19] and exceptional
points [20,21], could happen in this non-Hermitian system.

Exact analytical solutions of optical eigenstates in di-
electric cavities do not exist in general, except for those
with regular shapes: for example, circular shapes [22,23]
and square and rectangular shapes [24,25]. For dielectric
cavities deformed from regular shapes, perturbation theories
can be applied to obtain analytical approximations for their
eigenstates. A perturbation approach was developed based
on an artificially constructed ansatz for cavities with mirror-
symmetric shapes [11], and then this ansatz was generalized to
asymmetric cavities [26]. Another perturbation approach em-
ployed rigorous perturbation series without presumed ansatz
formulation [12], and this method was successfully applied
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to calculate eigenstates in limaçon and spiral cavities. How-
ever, for largely deformed cavities, the perturbation approach
gradually loses its accuracy because the error increases. A
possible solution to this issue is to use high-order perturbation
corrections, but such perturbation expressions could be ex-
tremely complex. An alternative approach is to seek numerical
solutions.

For arbitrarily shaped cavities, numerical methods pro-
vide an efficient treatment to calculate the optical eigenstates.
Numerical approaches based on boundary-element methods
(BEMs) have been developed [27]. It has been discussed
that spurious solutions exist in the BEMs [27]. Recently, the
authors developed a finite-element-based method to compute
optical eigenstates [28], and this method has been suc-
cessfully applied to study the evolution of eigenstates near
exceptional points. The developed approach is only applica-
ble to transverse-magnetic modes. In this paper, we extend
the method to transverse-electric modes, and we apply it
to study the symmetries of optical eigenstates in deformed
cavities.

Note that although both the resonance problems and the
time-steady Schrödinger equation in quantum-mechanical
systems are eigenproblems, they are essentially different.
Dielectric systems are intrinsically lossy because optical cav-
ities are open systems with energy continuously radiating to
infinity. This openness causes eigenfunctions to grow expo-
nentially at infinity due to the effect of retardation [28,29].
In contrast, quantum-mechanical systems are closed systems
with total energy conserved, therefore their wave functions are
restricted in a certain Hilbert space, hence they are square-
integrable. This difference makes it difficult to formulate
optical resonance problems under the framework of quantum
mechanics [30]. To calculate optical eigenstates, a special
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framework is needed to resolve the issue of exponential-
growing eigenfunctions.

The perfectly-matched-layer (PML) method is an ideal
technique to transform eigenfunctions from exponential grow-
ing to exponential decaying. The PML is an artificially
constructed layer at the far-field region to absorb outgoing
waves, which is often set up for computational convenience
in solving acoustic and electromagnetic wave equations. The
PML method is first introduced by Bérenger for the scattering
problems [31,32], and the original formulation involves split-
ting the field equations in the PML. Subsequent formulations
avoid this splitting and interpret it as the complex-coordinate
stretching [33]. Based on the complex-stretching technique,
PML methods for curvilinear coordinates have been devel-
oped [34–36] and optimized [37]. Analysis of the existence
and uniqueness of PML solutions was performed [38,39]. The
PML methods have also been adopted to solve resonance
problems in fluid dynamics [40], aeroacoustics [41], and elec-
tromagnetics [42–45].

In the computation of optical problems, the PML meth-
ods have been applied to complex optical structures, e.g.,
one-dimensional waveguides [46], gratings [47], plasma res-
onators [48], periodic structures [49], etc. In our previous
work [28], we have successfully applied the PML method to
study optical eigenstates of transverse-magnetic (TM) modes
in two-dimensional (2D) dielectric systems. In this paper,
we are going to apply the PML method to compute optical
eigenstates of transverse-electric (TE) modes in 2D dielectric
systems.

The main mechanism of this method is to introduce an
absorption layer at the far-field region. When waves penetrate
into this layer, they are absorbed as they propagate forward.
This complex-coordinate stretching technique transforms the
eigenfunctions from exponential growing into exponential de-
caying, as well as transforming the original eigenequation into
the damping eigenequation. We then derive a weak form of the
damping equation on a truncated region. Based on the weak
form, we develop a finite-element method to solve the damp-
ing eigenproblem. The solutions to the damping eigenproblem
are also solutions to the original problem.

We validate the developed PML method by applying it to
compute the optical eigenstates in the circular cavity. Exact
analytical solutions exist for eigenstates in the circular cav-
ity, and they are called whispering-gallery modes (WGMs)
[22,23]. The eigensolutions computed by the PML method
agree perfectly with those of WGMs, which validates the
PML method developed in this paper. We then apply the PML
method to the elliptic cavity to study the chaotic optical eigen-
states. The axial symmetries, i.e., even- and odd-symmetry, of
eigenstates in elliptic cavities are studied. Finally, we apply
the PML method to trace a pair of degenerate eigenstates
when the cavity gradually deforms from a circular shape to
a square shape. We find that the pair of degenerate eigen-
states evolve in completely different directions, while they
preserve the even and odd axial symmetries throughout the
cavity-shape deformation.

The PML method developed in this paper is applicable
to arbitrary dielectric distributions, which enables robust cal-
culations of optical eigenstates in largely deformed cavities,
multicavities, random media, index-varying dielectric sys-

tems, etc. The PML method transforms the eigenfunctions
of optical resonance problems from exponential growing into
exponential decaying, hence square-integrable. This builds up
a framework to formulate the non-Hermitian optical reso-
nance problems, which can be further solved using traditional
methods.

The rest of this paper is organized as follows. In Sec. II, we
review the resonance problems in terms of their eigenequation
and boundary conditions, and we explain the exponential-
growing boundary condition as the effect of retardation.
In Sec. III, we develop the PML approach by introducing
the damping function, performing the complex-coordinate
stretching, and deriving the damping eigenequation. In
Sec. IV, we derive the weak form to implement the finite-
element method to compute the eigenstates. In Sec. V, we
apply the PML method to compute eigenstates in three ex-
amples. Section VI presents conclusions.

II. RESONANCE PROBLEMS

On-chip optical devices are fabricated on thin layers of
materials with thickness far less than in-plane dimensions.
Therefore, formulating the original three-dimensional (3D)
resonance problem in the in-plane (r, θ ) coordinates would
be convenient for modeling. By using the variable-separation
method [50], the original 3D problem can be split into two
equations: a 1D Helmholtz equation for vertical modes in the
z-axis, and a 2D Helmholtz equation for horizontal modes
in (r, θ ) coordinates. Since optical modes form in a vertical
dimension, the refractive index in the 2D Helmholtz equa-
tion should be replaced by the effective refractive index.
Based on this fact, the material’s permittivity is approximated
by a function independent of the vertical dimension (z-axis)
for the 2D problem, and we denote the material’s relative
permittivity as ε(r, θ ). We also consider the material’s rela-
tive magnetic permeability being constant 1 in the whole 2D
space, because the material’s magnetic responses are negligi-
ble in the optical wavelength regime. Both the permittivity and
the permeability are considered isotropic in this paper.

Optical eigenstates are the time-steady solutions of
Maxwell’s equations. By considering monochromatic fac-
tors e−iωt in both electric fields E and magnetic fields B,
Maxwell’s equations reduce to resonance equations. Here
ω = kc is the resonance frequency, k is the wave number, and
c is the light speed in vacuum. By using the effective-index
approach, the resonance equation is decoupled into two types
of polarized modes [50,51]: the TM modes and the TE modes.

For the TM modes, the in-plane components of magnetic
fields and the z-component of electric fields exist while all
other components vanish:

Er = 0, Eθ = 0, Ez = ψ (r, θ ), (1a)

Br = − i

ωr

∂ψ

∂θ
, Bθ = i

ω

∂ψ

∂r
, Bz = 0, (1b)

in which the z-component of electric fields satisfies the
eigenequation

∇2ψ (r, θ ) + k2ε(r, θ )ψ (r, θ ) = 0. (2)
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FIG. 1. Illustration of the retardation effect. The left panel is the field amplitude inside the cavity in the time domain, and the right panel
shows the wavefront sequence in the spatial domain.

For the TE modes, the in-plane components of electric fields
and the z-component of magnetic fields exist while all other
components vanish:

Br = 0, Bθ = 0, Bz = ψ (r, θ ), (3a)

Er = ic2

ω

1

rε(r, θ )

∂ψ

∂θ
, Eθ = − ic2

ω

1

ε(r, θ )

∂ψ

∂r
, Ez = 0,

(3b)

in which the z-component of magnetic fields satisfies the
eigenequation

∇ ·
(

1

ε(r, θ )
∇ψ (r, θ )

)
+ k2ψ (r, θ ) = 0. (4)

In the eigenequations (2) and (4), k2 is the eigenvalue and
ψ (r, θ ) is the eigenfunction.

The optical eigenstates formed in the dielectric cavities
are leaky states. Once the eigenstates are excited, there is no
energy supply. In the meantime, because of the openness of
dielectric systems, energy carried by electromagnetic waves
keeps radiating to infinity. Therefore, the total electromagnetic
energy inside the cavity is exponentially decaying in time. In
viewing the monochromatic factor e−iωt = e−i Re(k)ct eIm(k)ct ,
the leaky property of eigenstates implies that the wave number
k is a complex value with the imaginary part being negative,
i.e., Im(k) < 0. We denote k = kr − iki for some kr, ki > 0 to
be determined by the eigenproblem. The real part kr is the
resonance frequency, and the imaginary part ki is the decay
rate of the eigenstate. Once the eigenvalue is determined, the
quality factor Q of the eigenstate can be derived as

Q = kr/(2ki ). (5)

The temporally exponential decaying would cause spatially
exponential growing. This is explained as the effect of re-
tardation [28,29], as illustrated in Fig. 1. The energy of the
eigenstate is initially contained inside the dielectric cavity.
With time evolves, energy radiates to infinity in the form of
one-by-one wavefronts, thus the energy within the cavity is
decaying. Because the energy of each wavefront is propor-
tional to the instantaneous total energy contained in the cavity,
the wavefront formed earlier (hence propagating further away)
carries more energy. Therefore, in view of the spatial domain
at a fixed time, the field components are exponentially grow-
ing at the far-field region.

While the intuitive explanation is given as the effect of
retardation, the quantitative description is expressed by the

radiation boundary condition (BC) [28]: as r → +∞,

ψ (r, θ ) ∼ F (θ )√
r

ein0kr = F (θ )√
r

ein0kr ren0kir, (6)

where n0 > 0 is the refractive index of materials at infinity.
Here the dielectric permittivity is assumed to be constant at
infinity:

lim
r→+∞ ε(r, θ ) = n2

0. (7)

In the BC Eq. (6), F (θ ) is the far-field pattern denoting the
directional distribution of the eigenstate, ein0kr r is the spatial
oscillating term, and en0kir is the exponential growing term
denoting the retardation effect. The denominator

√
r is to

reflect the fact that the energy of each wavefront in the far-field
region spreads along the cylindrical perimeter 2πr, indicating
that the radial component of the Poynting vector S is propor-
tional to 1/r:

S · er = −(Eze
−iωt )∗Bθe−iωt ∼ n0

c

|F (θ )|2
r

for TM, (8a)

S · er = (Eθe−iωt )∗Bze
−iωt ∼ c

n0

|F (θ )|2
r

for TE. (8b)

We remark here that in Eq. (8), F (θ ) stands for the far-field
pattern of the electric fields and the magnetic fields for TM
modes and TE modes, respectively. Therefore, the expressions
of the Poynting vector in terms of F (θ ) are slightly different
for TM and TE modes.

There are two reasons that the resonance problems are diffi-
cult to solve by directly applying numerical methods. First, the
problem is defined on the entire domain R2, and it is improper
to truncate the infinite domain into a finite region due to the
exponential growth BC. Second, the exponential-growing BC
is difficult to implement directly in numerical methods. The
PML method is ideal to simultaneously overcome the two
difficulties: it transforms the exponential-growing BC into
exponential-decaying BC, which enables the truncation of the
infinite domain into a finite region. In this paper, we focus
on using the PML methods computing optical eigenstates
in TE polarizations, which is formulated by the governing
eigenequation (4) and the BC Eq. (6).

III. PML APPROACH

A. Damping functions

As illustrated in the left panel of Fig. 2, the method is
implemented by introducing an absorption layer, called a per-
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FIG. 2. Schematic illustration of the perfectly matched layer
(PML). The left panel is an illustration of the PML, starting from
the far-field region and extending to infinity. The right panel shows
the truncated PML.

fectly matched layer (PML). In Fig. 2, r0 roughly stands for
the cavity radius and should be specified for each particular
cavity shape. The PML starts at the radius of R0, and we
consider that the PML extends to infinity for method devel-
opment in this subsection. For computational purposes in the
following subsections, the PML will be truncated at the radius
of R1; see the right panel of Fig. 2.

The absorption is realized by constructing a dimensionless
damping function σ̃ (r) as

σ̃ (r) =

⎧⎪⎨⎪⎩
0,

increasing,

σ0,

0 � r < R0,

R0 � r � R1,

r > R1,

(9)

with some real-valued constant σ0 > 0. The damping function
should be second-order differentiable in the positive semi-
axis, i.e., σ̃ (r) ∈ C2(R+). A typical C2(R+) function with the
above properties satisfied in the interval [R0, R1] is given [42]
by

σ̃ (r) = σ0

∫ r
R0

(t − R0)2(R1 − t )2dt∫ R1

R0
(t − R0)2(R1 − t )2dt

. (10)

However, the exact form of σ̃ (r) is not limited to Eq. (10), and
any C2(R+) functions satisfying Eq. (9) are acceptable.

B. Complex-coordinate stretching

The PML methods can be viewed as complex stretch-
ing in coordinate systems. With the damping function σ̃ (r),
complex-valued variables (ρ, φ) can be constructed based on
the real-valued coordinate system (r, θ ) as

ρ(r, θ ) = r[1 + iσ̃ (r)], (11a)

φ(r, θ ) = θ. (11b)

The relations of partial derivatives between the two coordinate
systems are explicitly expressed as

∂

∂ρ
= 1

1 + iσ (r)

∂

∂r
, (12a)

∂

∂φ
= ∂

∂θ
, (12b)

in which we introduce the notation

σ (r) := d (rσ̃ (r))

dr
= σ̃ (r) + r

d σ̃ (r)

dr
. (13)

For notation-simplification purposes, we also introduce two
dimensionless variables α(r) and β(r) as

α(r) = 1 + iσ̃ (r), (14)

β(r) = 1 + iσ (r), (15)

which are also called coordinate stretching variables in
Ref. [52].

C. Damping eigenequations

The original eigenequation (4) under a polar-coordinate
system is

1

r

∂

∂r

(
r

ε(r, θ )

∂ψ (r, θ )

∂r

)
+ 1

r2

∂

∂θ

(
1

ε(r, θ )

∂ψ (r, θ )

∂θ

)
+ k2ψ (r, θ ) = 0. (16)

Replacing the real-valued coordinate system (r, θ ) with
the complex-valued variables (ρ, φ) leads to the damping
eigenequation. With the relations between coordinate sys-
tems Eq. (11) and their derivatives Eq. (12), the damping
eigenequation can be explicitly expressed under the real-
valued system as

1

rα(r)β(r)

∂

∂r

(
rα(r)

ε(r, θ )β(r)

∂ψ (r, θ )

∂r

)
+ 1

r2α2(r)

∂

∂θ

(
1

ε(r, θ )

∂ψ (r, θ )

∂θ

)
+k2ψ (r, θ ) = 0. (17)

We then change the coordinates from a polar system to a
Cartesian system. To avoid confusion, we use the notation
ε(r) to denote the dielectric functions in R2 without specifying
the coordinate system being used. The damping eigenequation
under the Cartesian-coordinate system is expressed as

∂

∂x

[(
x2

β2
+ y2

α2

)
1

r2ε

∂ψ

∂x
+

(
1

β2
− 1

α2

)
xy

r2ε

∂ψ

∂y

]
+ ∂

∂y

[(
1

β2
− 1

α2

)
xy

r2ε

∂ψ

∂x
+

(
x2

α2
+ y2

β2

)
1

r2ε

∂ψ

∂y

]
+ 1

αβ3ε

d (αβ )

dr

(
x

r

∂ψ

∂x
+ y

r

∂ψ

∂y

)
+ k2ψ = 0. (18)

To simplify the damping eigenequation, the matrix A(r) is
introduced [28] as

A(r) := 1

r2

(
x2

β2 + y2

α2
xy
β2 − xy

α2

xy
β2 − xy

α2
x2

α2 + y2

β2

)
, (19)

and the damping eigenequation (18) can be simplified as

∇ ·
(

1

ε(r)
A∇ψ

)
+ 1

αβ3ε(r)
∇(αβ ) · ∇ψ + k2ψ = 0. (20)

In the region r < R0, the matrix A(r) becomes the 2-by-2
identity matrix and ∇(αβ ) ≡ 0, meaning that the damping
eigenequation (20) reduces to the original eigenequation (4).
This indicates that the eigenfunctions remain unchanged in the
region r < R0 as if the PML does not exist.
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D. Exponentially decaying boundary conditions

Although the damping eigenequation (20) looks more
complicated than the original eigen-equation (4), it avoids
the original exponentially growing BC Eq. (6). Replacing
the real-valued coordinate system (r, θ ) with complex-valued
variables (ρ, φ) in Eq. (6), the BC becomes, as r → +∞,

ψ (r, θ ) ∼F (φ)√
ρ

ein0kρ = F (θ )√
(1 + iσ0)r

ein0(kr−iki )(1+iσ0 )r

= F (θ )√
(1 + iσ0)r

ein0(kr+kiσ0 )re−n0(krσ0−ki )r . (21)

As given in Eq. (21), the BC associated with the damping
eigenequation (20) is exponentially decaying if the preset
parameter σ0 is large enough, i.e., σ0 > ki/kr = 1/(2Q).

E. Domain truncation

Since the BC for the damping eigenequation is exponen-
tially decaying, it is appropriate to approximate the problem
by truncating the original domain R2 into a finite region ,
as shown in the right panel of Fig. 2. The underlying mecha-
nism of the PML method is to introduce a sufficient amount
of damping in the absorption region so that outgoing waves
decay to almost zero at the outer edge of the PML, so that we
can apply the Dirichlet BC at the outer edge of the PML, i.e.,

ψ |∂ = 0. (22)

The thickness of the PML can be obtained by estimating
how close the field decays to zero at ∂. We introduce γ as the
exponent of the exponential decay factor e−γ = e−n0(krσ0−ki )d

when the field propagates to ∂. By equaling the exponent, a
typical PML thickness d (with d = R1 − R0) is given as

d = γ

n0(krσ0 − ki )
≈ γ

n0krσ0
. (23)

Normally, we can set γ = 10 with e−10 = 4.5 × 10−5 or γ =
20 with e−20 = 2 × 10−9, meaning that the field decays to
almost zero at ∂ so that the Dirichlet BC (22) is effective.

IV. FINITE-ELEMENT METHODS FOR THE DAMPING
EIGENPROBLEM

As with the derivation shown above, solving the original
resonance problem is equivalent to solving the damping eigen-
problem, with governing Eq. (20) and Dirichlet BC Eq. (22).
In this section we develop a finite-element method (FEM) to
compute the numerical solutions to the damping eigenprob-
lem.

We first derive the weak form for the damping eigenequa-
tion (20). Here, we use the notation H1

0 () to stand for the
Hilbert space in which the function and its derivatives are
square-integrable and vanishes on the boundary:

H1
0 () :=

{
f ∈ L2() :

∫


(| f |2 + |∇ f |2)dμ < +∞ and f |∂ = 0

}
. (24)

The eigenfunctions are assumed to be in this Hilbert space, i.e., ψ ∈ H1
0 (). The weak form for the damping eigenequation (20)

can be derived, for ∀ϕ ∈ H1
0 (), as∫


1

ε(r)
∇ϕ · (A(r)∇ψ )dμ −

∫


ϕ

αβ3ε(r)
∇(αβ ) · ∇ψdμ = k2

∫


ϕψ dμ. (25)

In the weak form Eq. (25), the bilinear form on the left-hand side,

P(ϕ,ψ ) :=
∫



1

ε(r)
∇ϕ · (A(r)∇ψ )dμ −

∫


ϕ

αβ3ε(r)
∇(αβ ) · ∇ψ dμ, (26)

is the coupling strength between ϕ and ψ . The bilinear form
on the right-hand side,

Q(ϕ,ψ ) :=
∫



ϕψ dμ, (27)

is the coupling energy between ϕ and ψ .
The FEM formulation is implemented by approximating

the infinite-dimensional space H1
0 () with a finite-element

space. We first generate a triangular mesh Mh on the domain
. In each triangle, there are six points (xi, yi ), including
three vertices and three midpoints. Based on the six points,
we build six element-functions ξi in Lagrangian P2 form, i.e.,
for ∀(x, y) ∈ Mh,

ξi(x, y) = A + Bx + Cy + Dx2 + Exy + Fy2, (28)

satisfying ξi(x j, y j ) = δi j, (29)

where δi j is the Kronecker notation. Assembling element
functions of different triangles but associated with the same
point forms the basis functions ϕ j . All the basis functions
ϕ j form the finite-element space Vh. The eigensolution of
Eq. (25) is approximated as linear combinations of the basis
functions in Vh:

ψ =
∑
ϕ j∈Vh

c jϕ j . (30)

In the weak form Eq. (25), substituting the above representa-
tion of ψ and varying ϕ as all basis functions ϕ j ∈ Vh generate
the matrix representation of the damping eigenequation:

P̃Ψ = k2Q̃Ψ, (31)

where the eigenvalue is k2 and the eigenvector is Ψ =
(. . . , c j−1, c j, c j+1, . . . )T . The P̃ and Q̃ are square matrices
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with entities specified as

P̃i j = P(ϕi, ϕ j ), (32)

Q̃i j = Q(ϕi, ϕ j ). (33)

The algebraic eigenequation (31) is solved by the implicitly
restarted Arnoldi method using ARPACK [53]. All the numer-
ical processes, including generating meshes, building finite
elements, matrix assembling, and matrix computations, are
done using the open-source software FREEFEM++ [54].

V. COMPUTATIONAL RESULTS

In this section, we present three computational examples
for different cavity shapes. We first study the eigenstates in
the circular cavity, and we validate the PML method by com-
paring numerical results with existing analytical results. We
then study the mode symmetries in the elliptic cavity. Finally,
we trace the evolution of a pair of degenerate eigenstates when
the cavity shape deforms smoothly from circle to square.

In all three computational examples, we set R0 = 3r0, and
the PML region is truncated at R1 = 4r0. That is, the computa-
tional domain is defined as  := {(x, y) : x2 + y2 � R2

1}. The
damping function is set as

σ̃ (r) =
{

0,

σ0(r−R0)4,

r � R0,

R0 < r � R1,
(34)

where the region r > R0 is truncated and σ0 is set to be 1. We
set the damping function as the polynomial of fourth order
for the purpose of introducing enough damping into the PML.
Other orders or other forms for the damping function would
also work for the calculation as long as they introduce enough
damping in the PML. We also set the dielectric permittivity as
a piecewise-constant function, i.e.,

ε(r) =
{

n2
1,

n2
0,

r ∈ 0,

r ∈ /0,
(35)

where 0 stands for the cavity domain. The refractive indices
are n1 and n0 for the inside and outside of the cavity, respec-
tively. For the three computational examples in this paper, we
set n1 = 2 and n0 = 1.

A. Whispering-gallery modes in the circular cavity

Exact analytical solutions exist for the eigenstates in
the circular cavity 0 = {(x, y) : x2 + y2 � r2

0}. Those eigen-
states are formed due to total internal reflections, and they are
called whispering-gallery modes (WGMs) [22,23]. The eigen-
functions for WGMs in circular cavities are given [11,23] as

ψ (r, θ ) =

⎧⎪⎪⎨⎪⎪⎩
Jm(n1kr)

Jm(n1kr0)
e±imθ for r � r0,

Hm(n0kr)

Hm(n0kr0)
e±imθ for r > r0,

(36)

where Jm is the Bessel function of mth order, and Hm is the
first-type Hankel function of mth order.

Maxwell’s equations require that ψ and 1
ε

∂ψ

∂r are continu-
ous across the interface between the cavity inside and outside,

FIG. 3. Dimensionless eigenvalues of eigenstates for the circular
cavity for the first nine radial orders l = 1, 2, 3, 4, . . . , 9. The circles
are eigenvalues computed using the developed PML method; the dots
are eigenvalues obtained by finding numerical roots of the transcen-
dental Eq. (37).

which leads to the eigencondition [11]

1

n1

J ′
m(n1kr0)

Jm(n1kr0)
= 1

n0

H ′
m(n0kr0)

Hm(n0kr0)
(37)

for any positive integer m. The eigencondition Eq. (37) gives
a family of transcendental equations in terms of k. For each
integer m, numerical roots of the transcendental equation can
be found and rearranged in absolute-value ascending order,
indexed by l . As a result, each eigenvalue km,l in the circular
cavity can be labeled by the mode number (m, l ), where m is
the azimuthal order and l is the radial order. With the eigen-
value km,l , the associated eigenfunction ψm,l can be obtained
by substituting the eigenvalue back into Eq. (36).

Using the PML method, we calculate the eigenvalues of
WGMs for the first nine radial orders l = 1, 2, 3, 4, . . . , 9,
as shown in Fig. 3. The eigenvalues obtained by computing
the roots of Eq. (37) are also plotted in Fig. 3 for comparison
purposes. For each fixed radial order l , the plot of eigenvalues
kr0 forms a V-shape scatter-plot with an infinitely long right
tail. The imaginary part of kr0 is negative and approaches zero
when m → ∞. The computed eigenvalues are compared with
the numerical roots of Eq. (37). As shown in Fig. 3, the results
from the PML method and the roots of the eigencondition are
in perfect agreement. Only a very minor deviation is observed
when the imaginary part of the eigenvalue grows, where the
minor deviation could be further reduced by introducing more
damping in the PML, i.e., tuning σ0 larger.

We also compute the eigenfunctions of WGMs and com-
pare them with the analytical results. Figure 4 shows the
modulus square of computed eigenfunctions. All the com-
puted eigenfunctions are associated with azimuthal order m =
7, i.e., there are seven periods in the azimuthal direction. Each
period contains one positive and one negative maximum in
eigenfunctions, thus there are in total 2m = 14 local maxima
along the azimuthal direction in all plots of Fig. 4. The radial
order l indicates the number of local maxima in the radial
direction. In Fig. 4, the top four plots are the results computed
by the PML method and the bottom four plots are the results
calculated by the analytical formula Eq. (36). Because of the
rotational symmetry of the circular cavity, there is a twofold
degeneracy for each mode index (m, l ), i.e., clockwise (CW)
and counterclockwise (CCW), and any combination of CW
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FIG. 4. Modulus square of the eigenfunctions for the circular cavity. Parts (a), (b), (c), and (d) are calculated by the PML method. Parts
(e), (f), (g), and (h) are calculated by the analytical formula Eq. (36). The four columns are associated with the first four radial orders. All plots
are associated with the azimuthal order m = 7.

and CCW is also an eigenfunction associated with the same
eigenvalue, as indicated by the analytical solutions Eq. (36).
The CW-CCW degeneracy is so sensitive to perturbations
that tiny rounding errors in the computation would split the
degeneracy. We note here that small perturbations are in gen-
eral inevitable in numerical methods. The plots in the top
row of Fig. 4 are the PML results with rounding errors, i.e.,
the degeneracy is split due to rounding errors. The plots in
the bottom row of Fig. 4 are analytical results with a tuned
combination of CW and CCW in order to compare with the
PML results. We only plot and compare one pair for each
mode index in Fig. 4, and the comparison results of another
pair are similar. Those plots of the mode distribution show
that the eigenfunctions calculated by the PML method are also
perfectly matched with the analytic results.

FIG. 5. The solid line shows the elliptic shape with semimajor
axis a = r0 + δ and semiminor axis b = r0 − δ, where the parameter
δ = 0.1r0. The dashed line shows the circular shape with radius r0 =
1.

As shown in Figs. 3 and 4, the computed eigenvalues and
mode distributions using the PML method both agree per-
fectly with the existing analytical results. This demonstrates
that the PML method developed in this paper is efficient
and accurate in computing optical eigenstates. Note that the
comparison conducted in this subsection is for validation pur-
poses. It is more interesting to find optical modes associated
with deformed cavities, for which analytical solutions are in
general not available. In the next two computational examples,
we will apply the PML method to deformed cavities.

B. Optical eigenstates in the elliptic cavity

In this subsection, we apply the PML method to study
chaotic eigenstates in elliptic cavities, whose shapes in the
Cartesian-coordinate system are given by

x2

(r0 + δ)2
+ y2

(r0 − δ)2
= 1, (38)

FIG. 6. Dimensionless eigenvalues of eigenstates of the elliptic
cavity for the first four radial orders l = 1, 2, 3, and 4. The top panel
shows the eigenvalues of even modes, and the bottom panel shows the
eigenvalues of odd modes.
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FIG. 7. Modulus square of eigenfunctions of the elliptic cavity. The top row shows the even modes, and the bottom row shows the odd
modes. (a),(e) (m, l ) = (6, 1); (b),(f) (m, l ) = (4, 2); (c),(g) (m, l ) = (5, 3); (d),(h) (m, l ) = (9, 4). The dashed lines are the positive x-axis
and the positive y-axis. The even and odd symmetries are with respect to the x-axis.

or in the polar-coordinate system by

R(θ ) = r2
0 − δ2√

(r0 − δ)2 cos2(θ ) + (r0 + δ)2 sin2(θ )
. (39)

In this computational example, we choose parameters r0 = 1
and δ = 0.1r0. This elliptic cavity compared with the circular
cavity is shown in Fig. 5.

The CW-CCW degeneracy is formed due to rotational sym-
metry of the disk cavity. For the elliptic cavity, the rotational
symmetry is broken and the degenerate eigenstates split. How-
ever, the elliptic cavity still has axial symmetry with respect
to the x-axis and the y-axis. As a result, the eigenfunctions of
the optical eigenstates are also symmetric with respect to the
x-axis and the y-axis, and the eigenstates are characterized as
even modes and odd modes.

We first compute the eigenvalues of the optical eigenstates
in the elliptic cavity for the first four radial orders l = 1, 2, 3,

and 4. The eigenvalues for the even and odd modes are shown
in Fig. 6. As in the case of the circular cavity, the eigenvalues
of each radial order l exhibit an infinitely long right tail. The
imaginary part of kr0 is negative and approaches zero when
the real part kr0 approaches infinity. Unlike the degenerate
states in the circular cavity, the eigenvalues for even and odd
modes in the elliptic cavity are split, thus they are distinguish-
able. The overall trends of the eigenvalues are similar to those
degenerate cases in the circular cavity shown in Fig. 3.

Figure 7 shows mode distributions of those four pairs of
eigenstates in the elliptic cavity. In this paper, the even modes
and the odd modes of eigenfunctions in the elliptic cavity are
with respect to the x-axis. As shown in the top row of Fig. 7,
the eigenfunctions of the even modes are axial-symmetric
with respect to the x-axis, i.e.,

ψ (r,−θ ) = ψ (r, θ ). (40)

In contrast, as shown in the bottom row of Fig. 7, the eigen-
functions of the odd modes are central symmetric with respect
to the x-axis, i.e.,

ψ (r,−θ ) = −ψ (r, θ ), (41)

so that the eigenfunctions vanish along the x-axis for all odd
modes, i.e., ψ (r, 0) = ψ (r, π ) ≡ 0 for all r ∈ R+. The above
even and odd symmetries are referred with respect to the
x-axis. However, the elliptic cavity is also axial-symmetric
with respect to the y-axis. Similar symmetry behaviors of the
eigenfunctions also hold with respect to the y-axis. In general,
the symmetry behavior holds for any axial symmetric cavity
with respect to its corresponding symmetric axis. As shown in
Fig. 7, when the mode index (the azimuthal order or radial
order) of the eigenstates increases, the mode distributions
become more and more irregular.

C. Evolution of eigenstates in cavity deformations

Although the optical eigenstates in both circular cavities
and square cavities are widely applied in on-chip devices, the
relations between the eigenstates in the two generic shapes

FIG. 8. Several vector-norm shapes defined as Eq. (42) for p
varies from 2 to 100. The blue line, p = 2, is the circular shape. The
green line, p = 100, is the square shape.
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FIG. 9. Dimensionless eigenvalues of eigenstates in the vector-
norm-shaped cavities. The top panel is eigenvalues for the even
modes, and the bottom panel is eigenvalues for the odd modes.
Parameter � = 10−4.

have not been clearly studied. We are interested in how the
eigenstates in the circular cavity evolve to those in the square
cavity. In this subsection, we trace a pair of degenerate eigen-
states when the cavity-shape deforms from a circle to a square.

To trace the evolution of the eigenstates, we first set up
cavity shapes that smoothly deform from a circle to a square
[55], which is defined as the unit p-norm in the Cartesian-
coordinate system as

|x|p + |y|p = rp
0 , (42)

or in the polar-coordinate system as

R(θ ) = r0(| cos(θ )|p + | sin(θ )|p)−1/p. (43)

We call this cavity shape the vector-norm shape. When p = 2,
the vector-norm shape is a circle; when p = +∞, the vector-
norm shape is a square. The vector-norm shape smoothly
deforms from a circle to a square as p gradually changes
from 2 to +∞. Figure 8 illustrates the vector-norm shapes
for several p values between 2 and 100. In the following, we
use the vector-norm shape of p = 2 to represent the circle, and

we use the vector-norm shape of p = 100 to approximate the
square.

In the eigenstates evolution, we focus on a pair of WGMs,
i.e., (m, l ) = (2, 6). This pair of WGMs are degenerate eigen-
states in the circular cavity, but they will evolve into different
eigenstates when the cavity shape deforms to a square. We
first trace the eigenvalues when p varies. Figure 9 shows the
eigenvalue evolution of the degenerate pair. As p varies from
2 to 100, the real part of the eigenvalue decreases while the
imaginary part oscillates. As shown in Fig. 9, the eigenvalues
of the mode pair are largely deviated when p = 100 (see
the real part), which indicates that the degenerate WGM pair
evolves into different states when the cavity shape deforms to
a square.

As in the elliptic cavity, the vector-norm shape is also
axial symmetric. For any value p, the vector-norm shape is
axial-symmetric with respect to both the x-axis and the y-axis
as well as the line x + y = 0 and the line x − y = 0. There-
fore, the previous axis symmetry behaviors of eigenfunctions,
e.g., Eqs. (40) and (41), also hold here for the mode pairs
throughout their evolution, with respect to the corresponding
axial-symmetric axis.

Figure 10 shows the evolution of mode distributions in
the vector-norm cavity as the shape deforms from a circle to
a square. The eigenstate pair with index (m, l ) = (2, 6) are
degenerate in the circular cavity (p = 2), thus they are not
able to be distinguished. However, once the shape is slightly
deformed, i.e., p = 2 + � for any small � > 0, the pair of
degenerate eigenstates would split into one even mode and one
odd mode; see Figs. 10(a) and 10(f). Again, the even and odd
symmetry in this subsection are with respect to the x-axis. As
the cavity shape deforms, the eigenfunctions of the mode pair
evolve in different directions, but the symmetry of eigenstates
is preserved in the mode evolution as shown in Fig. 10. When
p = 100, the cavity shape becomes a square, and the mode
distributions are the eigenstates of the square cavity.

As shown in the eigenvalue plot (Fig. 9) and the evolu-
tion of eigenfunctions (Fig. 10), the degenerate eigenstate

FIG. 10. Modulus square of eigenfunctions as the cavity shape deforms from circle to square. The top row shows the even modes, and the
bottom row shows the odd modes. (a),(f) p = 2 + � with � = 10−4; (b),(g) p = 2.5; (c),(h) p = 3; (d),(i) p = 4; (e),(j) p = 100. The dashed
lines are the positive x-axis and the positive y-axis. Here, the even and odd symmetries are with respect to the x-axis.
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pair evolves into completely different eigenstates after cavity
deformations. This tracing method can be applied for other
eigenstate pairs throughout cavity deformations. It can be ob-
served from Figs. 9 and 10 that the degenerate eigenstate pairs
evolve in different directions when the cavity shape deforms,
whereas the mode symmetry is preserved during the evolution.

VI. CONCLUSIONS

Based on the complex-stretching technique, we have devel-
oped a numerical method to compute the transverse-electric
polarized optical eigenstates in the 2D dielectric systems. The
method is implemented by constructing in the far-field region
an absorption layer. The optical eigenstates in the dielectric
cavity are leaky modes with energy radiating to infinity, result-
ing in the exponentially growing BC. The complex stretching
technique transforms the BC from exponential growing into
exponential decaying, and it leads to the damping eigenequa-
tion. With a sufficient amount of damping introduced in the
PML, the infinite domain can be truncated into a finite region.
We have derived the weak form of the damping eigenequation
in the truncated domain to implement finite-element methods
for computing the eigenstates.

The developed PML method is first applied to the cir-
cular cavity, and the obtained results agree perfectly with
existing analytical results. We then apply the PML method
to the elliptic cavity to study the chaotic optical eigenstates,
where degenerate pairs are found splitting into even- and odd-
symmetric modes. Finally, we apply the PML method to study
the eigenstate evolution in the vector-norm shape cavities. We
set up the cavity shape to gradually deform from a circle to a
square, and we trace a degenerate pair throughout the defor-
mation. The degenerate pair evolves into different states when
the cavity deforms into a square, but the even and odd axial
symmetry is preserved throughout the deformation. The PML
method developed in this paper does not impose any require-
ment on the dielectric distributions, therefore it is applicable
to arbitrary dielectric systems, including largely deformed
cavities, multicavities, random media, index-varying materi-
als, etc.
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[8] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, Nat.

Nanotechnol. 6, 428 (2011).
[9] F. Vollmer and L. Yang, Nanophotonics 1, 267 (2012).

[10] S. Sunada and T. Harayama, Opt. Express 15, 16245 (2007).
[11] R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, and C.

Schmit, Phys. Rev. A 77, 013804 (2008).
[12] T. Jiang and Y. Xiang, Phys. Rev. A 99, 023847 (2019).
[13] J.-W. Ryu, S. Rim, Y.-J. Park, C.-M. Kim, and S.-Y. Lee, Phys.

Lett. A 372, 3531 (2008).
[14] C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens,

Europhys. Lett. 87, 34003 (2009).
[15] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[16] H. Cao and J. Wiersig, Rev. Mod. Phys. 87, 61 (2015).
[17] E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M.

Suen, S. S. Tong, and K. Young, Rev. Mod. Phys. 70, 1545
(1998).

[18] J. U. Nöckel and A. D. Stone, Nature (London) 385, 45
(1997).

[19] N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and
A. D. Stone, Phys. Rev. Lett. 88, 094102 (2002).

[20] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl,
H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Nat.
Commun. 5, 4034 (2014).

[21] W. D. Heiss, J. Phys. A 45, 444016 (2012).
[22] L. Rayleigh, Philos. Mag. 20, 1001 (1910).
[23] A. N. Oraevsky, Quantum Electron. 32, 377 (2002).
[24] A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 632

(2001).
[25] Y.-D. Yang and Y.-Z. Huang, J. Phys. D 49, 253001 (2016).
[26] J. Kullig and J. Wiersig, Phys. Rev. A 94, 043850 (2016).
[27] J. Wiersig, J. Opt. A 5, 53 (2002).
[28] T. Jiang and Y. Xiang, Phys. Rev. A 102, 053704 (2020).
[29] J. U. Nöckel and A. D. Stone, in Optical Processes in Micro-

cavities (World Scientific, Singapore, 1996) pp. 389–426.
[30] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge

University Press, Cambridge, 2011).
[31] J.-P. Bérenger, J. Comput. Phys. 114, 185 (1994).
[32] J.-P. Bérenger, J. Comput. Phys. 127, 363 (1996).
[33] W. C. Chew and W. H. Weedon, Microwave Opt. Tech. Lett. 7,

599 (1994).
[34] F. Teixeira and W. Chew, IEEE Microwave Guided Wave Lett.

7, 371 (1997).
[35] F. Teixeira and W. Chew, in IEEE Antennas and Propagation

Society International Symposium 1997, Digest (IEEE, Piscat-
away, NJ, 1997), Vol. 3, pp. 1908–1911.

[36] F. Collino and P. Monk, SIAM J. Sci. Comput. 19, 2061 (1998).
[37] F. Collino and P. Monk, Comput. Methods Appl. Mech. Engrg.

164, 157 (1998).
[38] M. Lassas and E. Somersalo, Computing 60, 229 (1998).
[39] M. Lassas and E. Somersalo, Proc. R. Soc. Edinburgh: Sect. A

Math. 131, 1183 (2001).
[40] S. Hein, T. Hohage, and W. Koch, J. Fluid Mech. 506, 255

(2004).

045309-10

https://doi.org/10.1515/nanoph-2013-0034
https://doi.org/10.1038/nature01939
https://doi.org/10.1109/LPT.2002.1003107
https://doi.org/10.1038/nature02921
https://doi.org/10.1109/JSTQE.2014.2300184
https://doi.org/10.1063/1.106688
https://doi.org/10.1038/nphoton.2010.167
https://doi.org/10.1038/nnano.2011.99
https://doi.org/10.1515/nanoph-2012-0021
https://doi.org/10.1364/OE.15.016245
https://doi.org/10.1103/PhysRevA.77.013804
https://doi.org/10.1103/PhysRevA.99.023847
https://doi.org/10.1016/j.physleta.2008.02.018
https://doi.org/10.1209/0295-5075/87/34003
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.70.1545
https://doi.org/10.1038/385045a0
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1080/14786441008636993
https://doi.org/10.1070/QE2002v032n05ABEH002205
https://doi.org/10.1364/OL.26.000632
https://doi.org/10.1088/0022-3727/49/25/253001
https://doi.org/10.1103/PhysRevA.94.043850
https://doi.org/10.1088/1464-4258/5/1/308
https://doi.org/10.1103/PhysRevA.102.053704
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1006/jcph.1996.0181
https://doi.org/10.1002/mop.4650071304
https://doi.org/10.1109/75.641424
https://doi.org/10.1137/S1064827596301406
https://doi.org/10.1016/S0045-7825(98)00052-8
https://doi.org/10.1007/BF02684334
https://doi.org/10.1017/S0308210500001335
https://doi.org/10.1017/S0022112004008584


COMPUTATION OF TRANSVERSE-ELECTRIC POLARIZED … PHYSICAL REVIEW E 105, 045309 (2022)

[41] F. Q. Hu, Int. J. Comput. Fluid Dyn. 18, 513 (2004).
[42] S. Kim and J. E. Pasciak, Math. Comp. 78, 1375 (2009).
[43] F. Teixeira and W. Chew, IEEE Microwave Guided Wave Lett.

8, 223 (1998).
[44] F. Teixeira and W. Chew, J. Electromagn. Waves. Appl. 13, 665

(1999).
[45] B. Donderici and F. L. Teixeira, IEEE Trans. Microwave Theor.

Tech. 56, 113 (2008).
[46] W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, IEEE Photon.

Tech. Lett. 8, 652 (1996).
[47] J. P. Hugonin and P. Lalanne, J. Opt. Soc. Am. A 22, 1844

(2005).
[48] C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, Phys.

Rev. Lett. 110, 237401 (2013).

[49] Z. Chen and H. Wu, SIAM J. Numer. Anal. 41, 799
(2003).

[50] W. C. Chew, arXiv:2107.09672.
[51] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New

York, 1999).
[52] W. Chew, J. Jin, and E. Michielssen, in IEEE Antennas and

Propagation Society International Symposium 1997, Digest
(IEEE, Piscataway, NJ, 1997), Vol. 3, pp. 2060–2063.

[53] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998).

[54] F. Hecht, J. Numer. Math. 20, 251 (2012).
[55] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, IEEE

J. Quantum Electron. 41, 857 (2005).

045309-11

https://doi.org/10.1080/10618560410001673524
https://doi.org/10.1090/S0025-5718-09-02227-3
https://doi.org/10.1109/75.678571
https://doi.org/10.1163/156939399X01104
https://doi.org/10.1109/TMTT.2007.912217
https://doi.org/10.1109/68.491569
https://doi.org/10.1364/JOSAA.22.001844
https://doi.org/10.1103/PhysRevLett.110.237401
https://doi.org/10.1137/S0036142902400901
http://arxiv.org/abs/arXiv:2107.09672
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1109/JQE.2005.846696

