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Local hybrid Allen-Cahn model in phase-field lattice Boltzmann method
for incompressible two-phase flow
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For simulating incompressible two-phase fluid flows, several phase-field lattice Boltzmann (LB) methods
based on the local Allen-Cahn (AC) equation have been intensively proposed in recent years. We present a local
hybrid AC model for the phase-field LB method. In the proposed model, the local and nonlocal AC equations
are linearly combined using a local weight assigned in the interface or bulk phase regions individually. Five
numerical problems, namely diagonal translation, Zalesak’s disk rotation, static bubble, two bubbles of different
radii, and Rayleigh-Taylor instability, are simulated for validation. The numerical results agree well with the
analytical solutions or available previous results. Additionally, the numerical dispersion and the coarsening
phenomenon are considerably suppressed in the proposed model. Finally, the performance of the proposed model
is validated by conducting a drainage simulation in porous media and compared with the global hybrid AC model.

DOI: 10.1103/PhysRevE.105.045307

I. INTRODUCTION

Incompressible two-phase fluid flows are significant in na-
ture and engineering applications, such as unsaturated soils,
hydrocarbon production, microfluidic devices, and geologi-
cal carbon storage. Implementation of numerical models for
simulating two-phase flows often involves challenges such
as complex interface dynamics, high contrasts in density and
viscosity, and high surface tension. A lattice Boltzmann (LB)
method was originally developed from lattice gas cellular au-
tomata for solving a Navier-Stokes equation describing fluid
flow [1–4]. It is being extended to generalized numerical
solvers for partial differential equations such as a Poisson
equation, a convection-diffusion equation [4–7]. The LB
method for two-phase flows has been intensively investigated
and discussed in the last two decades [3,8–11]. Two-phase
flow models based on the LB method include the color-
gradient [12–15], pseudopotential [12,16,17], free-energy
[12,18], and phase-field models [19–22]. The color-gradient
and pseudopotential models are advantageous for simulating
two-phase flows in porous media, owing to their simplic-
ity and rigorous volume and mass conservation properties
[14–16,23]. However, they often suffer from high spurious
velocity and small ranges of numerical conditions avail-
able. Among phase-field LB methods, the Cahn-Hilliard (CH)
method has attracted attention for incompressible two-phase
flows because it can accurately express complex interface
dynamics [19,20]. However, from a theoretical viewpoint, the
fourth-order CH equation cannot be directly recovered via
the second-order Chapman-Enskog expansion [24]. A bubble
shrinkage (i.e., mass loss of secondary phase) can occur when
a bubble radius becomes smaller than a critical value depend-
ing on the domain size [25]. Recently, the Allen-Cahn (AC)
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model has been explored for incompressible two-phase flows.
The classical AC model for phenomenologically describing
a phase transition is nonconservative in mass and involves
a second-order spatial derivative. For the mass conservative
property, two classes of the AC model are developed. One is
the nonlocal AC (NAC) model in which a Lagrange multiplier
was adopted to preserve global mass conservation [26]. The
other is the local AC (LAC) model, developed by Sun and
Beckermann [27] and later reformulated by Chiu and Lin
[28], which ensures mass conservation without any Lagrange
multiplier. A phase-field LB method based on the LAC model
was first developed with a single relaxation time in Geier
et al. [22]. Thereafter, other studies have proposed several
LAC-type phase-field LB methods [21,24], which, however,
suffered from numerical dispersion, resulting in high-order
parameter fluctuation in a bulk phase region [21,29]. To re-
solve the numerical dispersion, Hu et al. [29] proposed the
global hybrid AC (GHAC) model by a linear combination
of LAC and NAC equations using a single global weight.
The GHAC model reduced the numerical dispersion better
as compared with LAC models. However, the NAC model
inherently involves the coarsening process, in which mass of
smaller bubbles is gradually transferred to bigger bubbles and
eventually smaller bubbles disappear [30,31]. Additionally,
the GHAC model partially inherits the coarsening process
from the NAC model. Although coarsening is a basic physical
phenomenon observed in nature (e.g., oil-in-water emulsion
polymerization), it is less important for two-phase fluid sys-
tems dominated by hydrodynamic flow. Furthermore, in the
NAC and GHAC models, the rate of the coarsening process
cannot be independently controlled. Thus, one must suppress
the coarsening phenomenon in the GHAC model for a more
consistent and accurate two-phase flow simulation.

In this study, we propose a local hybrid AC (LHAC) model
for the phase-field LB method; the framework of the model is
established using the original GHAC model in Hu et al. [29],
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LB equation for the LAC model in Liang et al. [24], and LB
equation for incompressible flows in Liang et al. [20]. The LB
equations used in this study are not newly derived; however,
the proposed LHAC model and an estimation method of phase
interface region were able to reduce the drawbacks in the
LAC and NAC models while preserving their advantages. The
proposed model is validated with five standard benchmarks
and compared with the LAC and GHAC models. A simulation
of drainage process in 2D porous media further corroborates
the stability of the proposed model.

II. MATHEMATICAL MODELS AND NUMERICAL
METHODS

A. LHAC model

The governing equations of incompressible two-phase
flows with the hybrid-type AC model can be expressed as
follows [29]:

∇ · u = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · (μ(∇u + ∇uT)) + F, (2)

∂φ

∂t
+ ∇ · (φu) = Mφ∇2φ + DL + DNL, (3)

where u represents local velocity, ρ density, p pressure, μ

dynamic viscosity, F body force (including a surface tension
force), and Mφ mobility. An order parameter φ represents a
given fluid R (red) and B (blue) as 0.5 and −0.5, respectively.
DL and DNL denote source terms for preserving a phase inter-
face by the LAC and NAC models, respectively.

In a plane interface, a one-dimensional profile of φ along a
z direction in an equilibrium state is defined as [22,32]

φeq(z) = 1

2
tanh

(
2

W
z

)
, (4)

where W represents a positive constant controlling the inter-
face thickness.

The local density and kinematic viscosity of a binary mix-
ture are obtained by interpolating each property using φ as
follows [33]:

ρ =
(

1

2
+ φ

)
ρR +

(
1

2
− φ

)
ρB, (5)

1

ν
=

1
2 + φ

νR
+

1
2 − φ

νB
, (6)

where ρk and νk represent the bulk density and kinematic
viscosity of fluid k (R or B), respectively.

The source terms DL and DNL in the GHAC model are
given as follows [29]:

DL = −λMφ∇ ·
(

4

W

(
1

2
+ φ

)(
1

2
− φ

)
n
)

, (7)

DNL = (1 − λ)Mφ

32φ
(

1
2 + φ

)(
1
2 − φ

)
W 2

+ γ (t )

(
1

2
+ φ

)(
1

2
− φ

)
, (8)

where λ and (1−λ) represent global weights for the LAC
and NAC source terms, respectively. An interface unit normal
vector n is given by ∇φ/|∇φ|. The Lagrange multiplier γ (t )
for enforcing a global mass conservation over a domain � at
time t can be obtained as follows [26,31]:

γ (t ) = −
∫
�

(1 − λ)Mφ

32φ
( 1

2 +φ
)( 1

2 −φ
)

W 2 dV∫
�

(
1
2 + φ

)(
1
2 − φ

)
dV

. (9)

Applying the Lagrange multiplier can preserve the global
mass. However, the coarsening phenomenon still occurs in
both the NAC and GHAC models owing to a violation in the
conservation of local mass. The violation in an entire domain
is relatively much higher in an interface region than in a bulk
phase region (see Appendix, Sec. 1). Here, the interface region
conceptually means a region of finite thickness in which the
spatial transition of two fluids exists in the phase-field model.
To suppress the coarsening process in the LHAC model, a
simulation domain � was partitioned into an interface region
�I and a bulk phase region �B, where the LAC and GHAC
models were separately applied. Therefore, the global weight
λ in Eqs. (7)–(9) was replaced by a local weight 	(x), which
was conditionally defined for �I and �B as follows:

	(x) =
{

1
λB

for
x ∈ �I

x ∈ �B
, (10)

with
� = �I ∪ �B and ∅ = �I ∩ �B,

where λB is a weight constant of the LAC and NAC models in
�B.

By using the local weight 	 from Eq. (10), the phase-field
equation in �I is governed by the LAC model, while �B is still
subjected to the GHAC model. Noteworthily, the Lagrange
multiplier term in Eq. (8) still globally applies over �. This
approach can achieve not only accurate interface dynamics in
�I but also the suppression of both the numerical dispersion
in �B and the coarsening phenomenon. The estimation of �I

is presented in the next section and the detailed performances
of the proposed model are also discussed in Sec. III.

B. Interface region estimation

To implement Eq. (10), it is a prerequisite that the interface
region �I is relevantly estimated from an order parameter
field, which may have been contaminated by the numerical
dispersion. Let us consider an estimator of �I in a 1D space
for the sake of simplicity. Suppose a 1D profile of an actual
order parameter φac, perpendicularly crossing an exact inter-
face, comprises an equilibrium component φeq and a small
perturbation component δφ:

φac(z) = φeq(z) + δφ(z). (11)

The inverse function of Eq. (11) yields

z

W
= 1

2
tanh−1(2φeq) = 1

2
tanh−1(2(φac(z) − δφ(z))), (12)

where z is the inverse hyperbolic tangent function of φeq and
tends to be insensitive to the small perturbation δφ unless φac

approaches ±0.5. A line of z = 0 can be defined as the exact
interface line.
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(a)

(b)

FIG. 1. Schematics of (a) three different estimators for determining interface region in order parameter profile and (b) morphological
dilation by square-shaped structuring element in 2D space.

A thresholding-based estimator segments the interface re-
gion �I from a field of φac using a single-threshold value φξ

with the thresholding method as

�I = {x||φac(x)| � φξ }, (13)

where a single-threshold value φξ is an order parameter value
with respect to an interface boundary as |φeq(±ξ/2)| = φξ ,
where ξ is an interface thickness and we let �ξ = 0.5 − φξ .
Note that �ξ must be a sufficiently small positive value to
suppress the coarsening effect.

Because z exponentially approaches positive or negative in-
finity as φeq approaches ±1/2, δφ hinders directly segmenting
�I by the thresholding estimator. If we use the threshold-
ing estimator for �I , spurious interface regions, in which

|φac| � φξ � |φeq|, will be additionally segmented from the
bulk phase region as shown in Fig. 1(a). Another intuitive
estimator for �I is a distance from a nearest exact interface
line and can determine �I as

�I = {x||x − x(φeq = 0)| � 1
2ξ
}
. (14)

However, it is very difficult and expensive to directly es-
timate a distance from all possible pixels to the nearest exact
interface line from an order parameter field defined in a Carte-
sian grid space. Instead, this study proposes an alternative
estimator for �I that uses both the threshold- and distance-
based criteria with a morphological operation. As mentioned
above, the effect of δφ in Eq (12) can be negligible when
|φac| is moderately smaller than 1/2. This implies that we can
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accurately segment only a part of �I by a relevant threshold
value ψ as

�̂I = {x||φac(x)| � ψ} and �̂I ⊂ �I for φξ − ψ � sup |δφ|,
(15)

where �̂I is herein called a definite interface region. A thick-
ness of �̂I is presented by Eq. (12) as

ξ̂ = W tanh−1(2(ψ − δφ)) ≈ W tanh−1(2ψ ). (16)

A remainder interface region �̂C
I which is a complementary

region of �̂I in �I is then defined as

�̂C
I = {x|∃x : |x − y| � tr , y ∈ �̂I , x ∈ (� − �̂I )}, (17)

where the geometry of �̂C
I will be almost a form wrapping

�̂I by two sides. A one-side thickness of �̂C
I is given by

tr = (ξ−ξ̂ )/2.
In the 2D or 3D Cartesian space, Eq. (17) is easier and more

efficient than Eq. (14) because a Euclidean distance transform
used in digital image processing is available. Nonetheless, this
is also an expensive operation to iterate over every time step.

A morphological dilation can be an efficient way to ap-
proximately determine �̂C

I . In the digital image processing, a
morphological dilation for a binary object A by a structuring
element B in an integer Cartesian space �i is defined as [see
Fig. 1(b)]

A ⊕ B = {x|(x − y + yc) ∈ A, x ∈ �i, y ∈ B,

yc = center(B) and yc ∈ B}, (18)

where x and y are integer coordinate of pixels. ⊕ is the
morphological dilation operator. A length of grid spacing in
�i is unity.

If a square (or cube)-shaped binary object s(ds) with a side
length ds is used as a structuring element, the dilation of A by
s(ds) can be replaced by a process in which A is sequentially
dilated (ds − 1)/2 times by the smallest structuring elements
s(3) as

A ⊕ s(ds) = ((A ⊕ s(3)) ⊕ · · ·) ⊕ s(3)︸ ︷︷ ︸
(ds−1)/2

, (19)

where ds is set to an odd positive number to meet the op-
eration symmetry. The thickness dilated by s(ds) is between
(ds − 1)/2 and (ds − 1)

√
d/2; here, d is dimension.

Because the morphological dilation of A by s(3) can be
simply implemented by searching in every candidate pixel
whether a neighboring pixel belongs to A, no calculation
of distance is required. The dilated pixels by Eq. (19) are
analogous to the estimated region by Eq. (17).

In the LB method, the domain is usually defined as an
integer Cartesian space, combining Eqs. (15), (17), (18), and
(19); the morphological dilation-based estimator for �I is
presented as

�I = �̂I ⊕ s(ds) = �̂I ⊕s(3) ⊕ · · · ⊕ s(3)︸ ︷︷ ︸
(ds−1)/2

and

�̂I = {x||φ(x)| � ψ, x ∈ � }. (20)

In Eq. (20), the dilated thickness must be greater than or
equal to the one-side thickness tr as (ds − 1)/2 � tr and so ds

is expressed as an inequality:

ds � W tanh−1(2φξ ) − W tanh−1(2ψ ) + 1. (21)

Further, we select ds of a minimum odd positive number by
a ceiling function as

ds = 2
⌈W

2
(tanh−1(2φξ ) − tanh−1(2ψ ))

⌉
+ 1. (22)

This study used the morphological dilation-based estimator
to determine �I in the simulations.

C. LB model for phase-field equation

The multirelaxation time (MRT)-LB model was used to
solve the AC model in this study. The LB equation comprises
streaming and collision equations as follows [20,24]:

gi(x + eiδt, t + δt ) = g̃i(x, t ), (23)

g̃(x, t ) = g(x, t ) − M−1SgM(g − geq )

+ M−1
(
I − 1

2 Sg
)
MGg, (24)

where gi is a particle distribution function with a dis-
crete particle velocity ei at position x and time t . g̃ =
[g̃0, g̃1, . . . , g̃q−1]T, g = [g0, g1, . . . , gq−1]T, and geq =
[geq

0 , geq
1 , . . . , geq

q−1]T are column vectors of the postcolli-
sion, precollision, and equilibrium distribution functions in
a DdQq lattice model, respectively. M denotes a transfor-
mation matrix, Sg a diagonal relaxation matrix, and Gg =
[Gg

0, Gg
1, . . . , Gg

q−1]T a source term.
The equilibrium distribution function is given as [24]

geq
i = wiφ

(
1 + ei · u

c2
s

)
, (25)

where wi represents the directional weight, and cs the speed
of sound in the lattice system.

The source term Gg
i with antidiffusion terms of Eqs. (7) and

(8) is defined as follows [24,29]:

Gg
i = wi

(
1

c2
s

ei · QL + QNL

)
, (26)

where QL is given as follows:

QL = c2
s 	

4
(

1
2 + φ

)(
1
2 − φ

)
W

n + ∂t (φu). (27)

The time derivative term ∂t (φu) eliminates the artificial
term in the recovered AC equation [6,24]. To avoid the im-
plicitness of φ in Eq. (9), QNL is given by replacing φ with φ̂

as follows:

QNL = (1 − 	)Mφ

32φ
(

1
2 + φ̂

)(
1
2 − φ̂

)
W 2

+ γ (t )
(

1
2 + φ̂

)(
1
2 − φ̂

)
. (28)

Additionally, φ̂ is used to determine �I and �B in Eq. (20),
so that 	 can be evaluated at the current time step. Similarly,
Eq. (9) is modified to calculate the Lagrange multiplier γ as
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follows:

γ (t ) = −32Mφ

W 2

∑
x∈� (1 − 	)φ̂

(
1
2 + φ̂

)(
1
2 − φ̂

)∑
x∈�

(
1
2 + φ̂

)(
1
2 − φ̂

) . (29)

The order parameter φ is calculated by the zeroth-order
moment of gi with the source term QNL as follows [29]:

φ = φ̂ + δt

2
QNL =

∑
i

gi + δt

2
QNL. (30)

The discrete velocity set and the corresponding directional
weights in the D2Q9 lattice model are defined as follows:

ei =
⎧⎨
⎩

(0, 0)c
(±1, 0)c, (0, ±1)c
(±1, ±1)c, (±1, ∓1)c

and

wi =
⎧⎨
⎩

4/9
1/9
1/36

for
i = 0

i = 1 − 4
i = 5 − 8

, (31)

where the lattice velocity c is δx/δt . The speed of sound cs is
c/

√
3 in the D2Q9 lattice model. δx and δt are usually set to

unity.
In the MRT model, the transformation matrix M for map-

ping the distribution functions from the discrete velocity space
to the moment space is defined as follows [34,35]:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 −1 0 0 1 −1 1 −1
0 −2 2 0 0 1 −1 1 −1
0 0 0 1 −1 1 −1 −1 1
0 0 0 −2 2 1 −1 −1 1
0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(32)
The moments of the equilibrium distribution functions and

the source terms are then presented as follows:

Mgeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ

−2φ

φ

φux

−φux

φuy

−φuy

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and MGg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QNL

−2QNL

QNL

QL
x

−QL
x

QL
y

−QL
y

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

The diagonal relaxation matrix Sg in this study is chosen as
follows [29]:

Sg = diag(1, 1.1, 1.1, 1/τg, 1/τg, 1/τg, 1/τg, 1.2, 1.2),
(34)

where the relaxation time τg is a function of mobility as
follows:

τg = Mφ

c2
s

+ 1

2
. (35)

Noteworthily, the relaxation times in Eq. (34) yield the
stable and accurate performances.

In this study, the time derivative ∂t (φu) and the order-
parameter gradient ∇φ are calculated by the backward
difference and the isotropic central difference schemes as
follows [33]:

∂t (φu) = (φu)|t − (φu)|t−δt

δt
(36)

∇φ(x) =
∑

i

wieiφ(x + eiδt )

c2
s δt

. (37)

D. LB model for incompressible flows

The MRT-LB model for the hydrodynamic equation in
incompressible flows can be expressed as follows [20]:

fi(x + eiδt, t + δt ) = f̃i(x, t ), (38)

f̃ (x, t ) = f (x, t ) − M−1SM(f − feq) + M−1
(
I − 1

2 S
)
MG,

(39)

where fi is a particle distribution function with the dis-
crete particle velocity ei at position x and time t . f̃ =
[ f̃0, f̃1, . . . , f̃q−1]T, f = [ f0, f1, . . . , fq−1]T, and feq =
[ f eq

0 , f eq
1 , . . . , f eq

q−1]T also represent column vectors of
the postcollision, precollision, and equilibrium distribution
functions. S denotes a diagonal relaxation matrix, G =
[G0, G1, . . . , Gq−1]T a forcing term.

The equilibrium distribution function f eq
i is chosen as fol-

lows [20,24]:

f eq
i = p

c2
s

(wi − δ0i ) + ρsi(u), (40)

where δ0i is Kronecker delta, and si is defined as follows:

si(u) = wi

(
ei · u

c2
s

+ (ei · u)2

2c4
s

− u · u
2c2

s

)
. (41)

The forcing term Gi considering the density difference is
given by [24,36]

Gi = wi

(
ei · F − u · F

c2
s

+ (ei · u)ei

c4
s

· (F + c2
s ∇ρ

))
, (42)

where the density gradient is ∇ρ = (ρR − ρB)∇φ.
Thereafter, the equilibrium distribution functions and forc-

ing terms are expressed in the moment space as follows:

Mfeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
6p + 3ρu · u

−(9p + 3ρu · u)
ρux

−ρux

ρuy

−ρuy

ρ
(
u2

x − u2
y

)
ρuxuy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u · ∇ρ

6u · F
−6u · F − u · ∇ρ

Fx

−Fx

Fy

−Fy

2(uxFx − uyFy) + 2c2
s (ux∂xρ − uy∂yρ )

uxFy + uyFx + c2
s (ux∂yρ + uy∂xρ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The diagonal relaxation matrix S in the hydrodynamic
model is herein chosen as follows [37]:

S = diag(1, 1, 1, 1, 1.7, 1, 1.7, 1/τ , 1/τ ), (44)

where the relaxation time τ is directly related to the kinematic
viscosity ν as follows:

τ = ν

c2
s

+ 1

2
. (45)

After the streaming step, the macroscopic hydrodynamical
quantities such as pressure and velocity are determined by the
zeroth- and first-order moments of fi as follows [20]:

p = c2
s

1 − w0

(∑
i �=0

fi + δt

2
u · ∇ρ + ρs0(u)

)
, (46)

ρu =
∑

i

fiei + δt

2
F. (47)

The body force acting on the fluid comprises a surface
tension force Fs and other possible body force Fb as follows:

F = Fs + Fb. (48)

The continuum surface force model is directly utilized for
calculating Fs as follows [38]:

Fs = −σκ∇φ, (49)

κ = ∇S · n, (50)

where σ represents surface tension parameter. κ denotes a
local curvature of the interface, and the surface differential
operator is ∇S = (I − nn) · ∇.

III. MODEL VALIDATIONS

The proposed model was numerically validated via five
standard benchmark tests: diagonal translation [22,29,39]
and Zalesak’s disk rotation [20,22] tests for evaluating
the interface tracking under a predefined constant velocity
field, and static bubble [24], two radii bubbles [31,40], and
Rayleigh-Taylor instability (RTI) [20,41] tests for assessing
the immiscible fluid flow. For the simulations, W and λB were
set to 3 and 0.9, respectively, unless otherwise specified. Also,
in this study, we chose ψ = 0.495 for determining �̂I and
�ξ = 0.5 − φξ = 10−5. The selection of these parameters is
equivalent to a condition of ξ = 17.27 and the coarsening
process can be practically suppressed (see Appendix, Sec. 1).
Reportedly, the largest value δφmax of the fluctuation of the
order parameter was up to ∼10−3 in previous bubble simula-
tions by the LAC model [29] but those of this study could be

slightly different with them owing to the criterion of �B. A
squared domain was used with a periodic boundary condition
for all boundaries, except for the RTI test. L0 denotes a length
of a domain.

A. Diagonal translation of circular interface

Interface tracking in the proposed model was validated by
the diagonal translation of a circular interface under a constant
velocity field u = (U0, U0). A circle of radius R = L0/5 was
initially placed at the center of the domain [see Fig. 2(a)].
To present the rate of error convergence according to grid
size, as conducted in Ref. [39], six domains of different sizes
were prepared with L0 = 100, 200, . . . , 600. The constant
velocity was U0 = 0.02, and the time interval for the circle
to return to the domain center depended upon the domain
size of T0 = L0/U0. The dimensionless Péclet number was
set as Pe = U0W

Mφ
= 60 so that the mobility was Mφ = 0.001.

To measure the error of the proposed model in time-periodic
problems, the L2 norm error of the order parameter was de-
fined as follows [39]:

Eφ (t ) =
√∑

x (φ(x, t ) − φ(x, 0))2∑
x (φ(x, 0))2 . (51)

To focus on diagonal translation in the proposed model,
the initial configuration of the order parameter φ(x, 0) and
the particle distribution functions gi(x, 0) were prepared from
another simulation under the zero-velocity field condition
u = 0 and iteration time T0. From Fig. 2(a), it is evident that
the final circle with bluish solid line after ten cycles under
u = (U0, U0) in the domain of L0 = 100 coincided with the
initial circle with red-colored dashed line. For the convergence
study, the relative error Eφ (T0) after one cycle was estimated
for a domain with different size [see Fig. 2(b)]. The conver-
gence rate was measured as 0.4 by linear regression, and it
was slightly lower than the results in Geier et al. (2015) [22]
and Hu et al. (2019) [29]. However, the magnitude of the
relative errors in this study was overall smaller than those in
the previous studies.

B. Zalesak’s rotation

A circular disk with a slot was placed at the center of the
domain and subjected to a vortex flow that rotated around the
pinned center. The domain size L0 was set as 200 with circle
radius R of 80 and slot width ls of 15. The time interval T0 =
L0/U0 was a duration of half rotation. U0 and Mφ were set as
0.02 and 0.001 such that Pe = 60. The constant velocity field
for the vortex flow was defined as follows:

ux(x, y) = −U0π

(
y

L0
− 1

2

)
, (52)

uy(x, y) = U0π

(
x

L0
− 1

2

)
. (53)

The initial configuration of the order parameter φ(x, 0)
was set by Eq. (4) using a signed distance from the initial
disk interface. Figure 3 shows the interface levels (φ = 0)
of the rotated disk from the initial configuration (t = 0) to
that after one cycle (t = 2T0). Evidently, the interface of the
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(a) (b)

FIG. 2. Diagonal translation of a circular interface: (a) Moved (blue solid line) and initial (red dashed line) configurations after ten cycles.
Gray arrows within a domain represent a constant velocity field u = (U0,U0 ). (b) Convergence rates of the L2 norm error for different domain
size L0 at one cycle (t = T0 ).

rotating disk maintained its initial geometry while the disk tip
experienced an unnoticeable squash within acceptable level
during the rotation. The disk returned to its original shape after
one cycle.

C. Static bubble

A static bubble test was conducted to validate the magni-
tude of spurious velocity, the isotropy of bubble shape, and
the development of pressure under the applied surface tension
force. The relationship of bubble radius R with pressure dif-
ference �p between the inside and outside of the bubble is
given by the Young-Laplace equation in 2D as follows:

�p = σ

R
. (54)

In this test, L0, Mφ , and σ were chosen as 201, 1/6, and
0.001, respectively. For the red and blue fluids, the density
was set as ρR = 1 and ρB = 0.001, respectively. The relax-
ation time was τ = 0.8 with respect to a kinematic viscosity
of ν = 0.1 for both fluids. The initial order parameter was
assigned as follows:

φ(x, t = 0) = −1

2
tanh

(
2

W
(|x − xc| − R)

)
, (55)

where xc represents the domain center.
Six circles with different radii from R = 10 to 60 were

initially placed at the domain center, and the iteration of each
simulation continued for t = 105 sufficient to attain the steady

state. Figure 4(a) shows that the density profile (circular sym-
bol) across the bubble center when R was 50 agreed well with
the analytic solution (solid line) that was the initial density
profile. The pressure profile in Fig. 4(b) was continuous near
the interface, and no sharp fluctuation was observed. The
isotropy in both the spurious velocity distribution and bubble
interface shape was satisfied, as seen in Fig. 4(c), partially
supporting that the surface tension force was well imple-
mented. In Fig. 4(c), the magnitude of the maximum spurious
velocity, |umax| was approximately 2.6 × 10−6. Furthermore,
the simulated pressure difference �p for different bubble radii
was consistent compared with the Young-Laplace equation, as
shown in Fig. 4(d).

D. Two bubbles with different radii

The NAC model unavoidably includes the coarsening pro-
cess by which the smaller bubbles eventually disappear when
bubbles of different sizes coexist [30]. This property has often
been used to validate the numerical simulations of NAC mod-
els in various studies [31,40]. The coarsening phenomenon
is undesirable in two-phase fluid flows that do not involve a
phase separation or have a low solubility condition. Thus, the
proposed LHAC model intended to suppress the prescribed
loss of small features during the flow simulation, and it was
implemented to retain bubbles with different sizes for suffi-
cient simulation time. In the test of two bubbles with different
radii, the LHAC model was compared with the GHAC and

(a) t = 0 (b) 0 2t T  (c) 0t T  (d) 03 2t T  (e) 02t T  = = = =

FIG. 3. Rotation of Zalesak’s disk at Pe = 60. Blue and red lines represent the final and initial configurations, respectively.
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(a) (b)

(c) (d)

FIG. 4. Static bubble test: (a) density profile, (b) pressure profile, and (c) spurious velocity field (|umax| =∼ 2.6 × 10−6) with bubble
configurations (φ = −0.495, 0, and 0.495) for R = 50. (d) Comparison of estimated pressure difference and Young-Laplace equation.

LAC models, which were implemented by applying the global
weights λ = 0.9 and λ = 1, respectively. δφmax is measured as
follows:

δφmax(t )=max (|φ(x, t ) − sign(φ(x, t ))0.5|) for x ∈ �B(t ).
(56)

Two bubbles with different radii were initially placed in
a domain of L0 = 300. σ , Mφ , and τ were chosen as 0.01,
1/6, and 0.53, respectively. The densities of red and blue
fluids were set as ρR = 1 and ρB = 0.1, respectively. The
initial configuration of the order parameters was given as
follows:

φ(x, t = 0) = −1

2

(
tanh

(
2

W
(|x − x1| − R1)

)

+ tanh

(
2

W
(|x − x2| − R2)

)
− 1

)
, (57)

where R1 and R2 are 0.1L0 and 0.15L0, respectively. x1 and x2

are (0.25L0, 0.25L0) and (0.57L0, 0.57L0), respectively.
The simulation was conducted for sufficiently large itera-

tion numbers up to approximately 106, while the iterations in
the GHAC and LAC models stopped earlier, as the simulations

became trivial or inaccurate. Figure 5 shows the order parame-
ter distribution and interface lines (φ = 0) for different times.
The evolution of bubble radii over time is plotted in Fig. 6(a).
For the GHAC model, the smaller bubble gradually shrank
while the larger one enlarged [see Fig. 6(a)]. Noteworthily,
the volume increase for the larger bubble was equivalent to
the volume decrease for the smaller bubble, which eventually
disappeared before t = 105. Additionally, the center of each
bubble did not change with increasing iteration number. The
results of the LAC model simulation indicated that the radii
of both bubbles were approximately conserved during the
iterations [see Fig. 6(a)]. With increasing time, tiny speckles
emerged inside the bulk phases. Figure 6(b) shows the evolu-
tion of δφmax over time. δφmax almost remained approximately
0.005, and this value corresponds to 1

2 − ψ . This implies that
the order parameter fluctuation inside the bulk phase owing
to the numerical dispersion exceeds the criterion of a definite
interface region. Furthermore, both smaller and larger bub-
bles moved along left-bottom and right-bottom directions [see
Fig. 5(b)]. Noteworthily, all side boundaries were subjected
to a periodic condition. This kind of isotropy problem is
fundamentally initiated by the asymmetric order in floating-
point arithmetic operations [42]. The numerical dispersion
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(a) (b) (c)

FIG. 5. Evolution of two circles under different weighting schemes: (a) GHAC model (λ = 0.9), (b) LAC model (λ = 1), and (c) LHAC
model (λB=0.9). The spatial configuration of the order parameter (φ) (first three rows) at different times and the corresponding interface lines
(φ = 0) are illustrated. Note that all side boundaries are subjected to a periodic condition.

in the LAC model would accelerate the amplification of the
artifact owing to the negative feedback by the unexpected
surface tension force near speckles. Although this artifact may
be insignificant in case of a short simulation time, it would
critically affect the numerical accuracy and stability in the
case of a long simulation time, such as in a simulation of CO2

injection into porous media with low capillary numbers. In the
LHAC model, the radii and positions of both bubbles were
well maintained, and no new speckle was observed during the
simulation [see Figs. 5(c) and 6(a)]. The relative evolution of
R1 (i.e., small bubble) was only −0.1% at t = 106. δφmax grad-
ually decreased and then remained approximately 5 × 10−6

after t = 105 [see Fig. 6(b)]. In Appendix, Sec. 1, we present
the analytical solution of the bubble radii evolution in the
two-bubbles test, and the LB simulation results of the GHAC
and LHAC models were well consistent with the analytical
solution.

To assess the effect of λB, we additionally conducted the
two-bubbles test by the LHAC model for different λB values
as 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99. The simulations also
finished at t = 106. Figure 6(c) presents the relative evolution
of bubble radii at t = 106 against the initial bubbles. As λB

increased, the relative evolution of bubble radii decreased. The
maximum and minimum magnitudes of the relative evolution
of R1 were −0.21% at λB = 0.1 and −0.084% at λB = 0.99,
respectively. Figure 6(d) presents δφmax at t = 106 for dif-
ferent λB values. As λB increased, δφmax increased but was
still below 10−5. If λB was in the range from 0 to 0.99, then
the relative evolution of R1 and value of δφmax by the LHAC
model were in a sufficiently acceptable range compared to the
other models. Therefore, this validation shows that the coars-
ening process and numerical dispersion can be sufficiently
suppressed in the LHAC model compared to the GHAC and
LAC models.
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(a) (b)

(c) (d)

FIG. 6. Comparison of LHAC model with other models in evolution of (a) radii of bubbles and (b) the largest value of the fluctuation of
the order parameter δφmax in �B for time. Effect of λB in LHAC model: (c) evolution of radii of bubbles and (d) δφmax at t = 106.

E. RTI problem

In the previous two tests, the numerical dispersion induced
by spurious velocity was considered without complex inter-
face dynamics. To evaluate the performance of the proposed
HAC model in more complex interface dynamics with sup-
pressing δφmax, the RTI test, which has been frequently used
in the validation of two-phase LB models [19,20,43,44], was
conducted. RTI, a fundamental interface instability, occurs
when a heavier fluid resides on a lighter one. The density
difference and a small perturbation of the interface result
in characteristic flow behavior over several stages, which
eventually develops towards a chaotic state [45]. Three dimen-
sionless numbers, Atwood number (A), Péclet number (Pe),
and Reynolds number (Re), are usually used to demonstrate
the flow characteristics in RTI as follows:

A = ρR − ρB

ρR + ρB
, Pe = λ0

√
gL0

Mφ

, and Re = L0

ν

√
AgL0

1 + A
, (58)

where g is a gravitational acceleration.
The domain size was set as L0 × 4L0, and a solid wall

was placed at the top and bottom sides. A periodic condition

was imposed on the left and right boundaries. The initial
configuration of φ was given as follows:

φ(x, y, 0) = −1

2
tanh

(
2L0 + 0.05L0 cos

(
2πx

λ0

)
− y

)
× in (x, y) ∈ [0, L0] × [0, 4L0] (59)

where λ0 represents wavelength of the phase interface for
imposing the initial perturbation.

The hydrostatic pressure at the initial state was expressed
as follows:

p(x, y, 0) = g
∫ 4L0

y
ρ(x, y, 0)dy. (60)

The simulation parameters were chosen as L0 = λ0 = 256,√
gL0 = 0.04, σ = 5 × 10−5, Pe = 1000, A = 0.1, and ρR =

1. The validation was conducted for different Re values of 30,
150, and 3000. The spatial configuration of φ and correspond-
ing �I are presented for a normalized time t∗ = t

√
Ag/λ0

in Fig. 7. Once the simulation started, the heavy (red) fluid
gradually penetrated the light (blue) one along the centerline
by forming a mushroom shape from its initial finger shape.
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* 1t = * 2t = * 3t = * 4.2t =
(a)

(b)

(c)

FIG. 7. Phase distribution (left) and interface region �I (right) in the RTI tests for different normalized times under Re = (a) 30, (b) 150,
and (c) 3000. In the captured interface map, the reddish color indicates �̂I .

Simultaneously, the bubble of the light fluid raised beside the
finger of the heavy fluid. As Re increased [see Figs. 7(a) and
7(b)], the pileus stretched more from the front of the spike
to the rising bubble over time. As Re further increased [see
Fig. 7(c)], the induced vorticity broke continuously developed
phases by a single interface before the chaotic stage and then
the broken small speckles penetrated the rising bubbles and
falling spike chaotically. Among cases, the interface region

�I was well outlined, and the order parameter φ for each fluid
was uniformly distributed in �B during the complex interface
motions. The front positions in the spike of the heavy fluid
(y < 2L0) and bubble of the light fluid (y > 2L0) were fairly
consistent with those in a previous study that used the CH
model under the same conditions [20] for different Re values,
as shown in Fig. 8(a). δφmax exceeded 10−4 after t∗ = 1−1.3
but was under 10−3 (< 1

2 − ψ) [see Fig. 8(b)]. For Re = 3000
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(a) (b)

FIG. 8. (a) Evolution of front positions in a rising bubble and a sinking spike. (b) The largest value of the fluctuation of the order parameter
δφmax.

and t∗ = 4.2, a small violation of symmetry in the spatial dis-
tribution of φ was observed in the rising bubble regions [see
inside two boxes of black lines in Fig. 7(c)]. The asymmetry
is essentially attributed to asymmetric order in floating-point
arithmetic operations in the numerical simulation [42]. Gen-
erally, diffusion reduces instability growth rate [46]. Although
asymmetry was not achieved under the same conditions as
those in the previous study [20], the local spreading of φ

near the interface was pronounced. Thus, compared with the
previous study, the stronger antidiffusion nature preserving
the interface thickness and suppressing the numerical dis-
persion in the LHAC model might amplify the asymmetry.
Nevertheless, the results of the RTI simulation support that
the LHAC model is adequately accurate and stable at some
level of complex interface dynamics.

IV. IMMISCIBLE FLUID INJECTION SIMULATION

The numerical stability improved by the proposed model
allows conducting flow simulations of immiscible fluid in-
jection (e.g., CO2 storage study) through porous media that
involve complex pore geometry, inlet-outlet boundary condi-
tions, and large simulation time.

The injected and displaced fluids were supercritical carbon
dioxide (SCO2) and brine, respectively, whose pressure and
temperature condition were chosen as 7.45 MPa and 35 ◦C,
respectively [47]. Two-dimensional porous media were con-
structed by modifying an x-ray computed tomographic image
of Ottawa 20–30 sand by image processing such as bina-
rization, watershed, and morphological erosion of randomly
selected solid grains [see Fig. 9(a)]. The inlet comprised a
bundle of 50 injection holes (Nin = 50) and a buffer zone
in series. The height of the flow domain had 1176 pixels.
Each injection hole had 20 × 50 pixels [see Fig. 9(b)]. The
buffer and porous zones had widths of 250 and 3224 pixels,
respectively. The image resolution was 5 μm/pixel. The im-
permeable solid walls were set to the top and bottom sides
of the domain. SCO2 was injected at a volumetric flow rate Q
into the domain. For that, the individual injection pressure p(a)

in
imposed at the ath injection hole was calculated according to
Appendix, Sec. 2, to meet the volumetric flow rate at the hole,
Q(a)

in (= Q/Nin) [see Fig. 9(b)]. In our experience, reentrant
flow can sometimes occur near the inlet boundary even in
satisfying the target volumetric flow rate, if applying a single
injection pressure value to the inlet plane without injection
hole structure. This reentrant flow increases the local velocity
and then reduces the numerical stability of the LB simulation.

3474

3224 (Porous zone)250

1176

enoz r effuB

yradnuob  telnI

O
utlet boundary

Solid wall

Solid wall

(a) (b)

FIG. 9. (a) Initial configuration of drainage simulation [red: brine (wetting fluid), blue: SCO2 (nonwetting fluid), gray: solid]. (b)
Nonwetting fluid is injected through injection holes placed at serration grooves on the left side. Wetting fluid outflows through the right
outlet boundary where pressure is constrained constantly. The top and bottom boundaries are sealed by solid walls.
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t = 2 105

t = 4 105

t = 6 105

t = 1 106

t = 1.8 106

A

B

C1

C2

(a) (b)

FIG. 10. Evolution of injected and displaced fluid configurations in the (a) LHAC and (b) GHAC models for t (105) = 2, 4, 6, 10, and 18.

To prevent that, in this study, the injection boundary plane was
forcibly partitioned into multiple injection holes via which
SCO2 could be uniformly injected. Additionally, the con-
stant order parameters of SCO2 (φ = −0.5) and brine (φ =
0.5) were imposed to the inlet and outlet boundaries during
the simulation. The detailed implementation is described in
Appendix, Sec. 2.

The properties of each fluid in the physical and LB systems
used in this study are presented in Table I. Hereinafter, the
values of quantities follow the LB unit system, and the units
are omitted, unless specified. The order parameter at the solid
wall, φwall, was determined by a geometrical formulation with
a weighted averaging scheme for a directional derivative to
impose the target contact angle θ [14]. The dimensionless
capillary number was Ca = μCO2UCO2

σ
= 10−5 at which UCO2

denotes the Darcy velocity of SCO2 over the flow domain.
UCO2 , Q, and Q(a)

in were 4.925 × 10−4, 0.5792, and 0.0116,
respectively. Mφ and W were 1/6 and 3, respectively. The
pore space in the inlet zone and the porous zone was initially
filled by SCO2 (nonwetting fluid) and brine (wetting fluid), as
shown in Fig. 9. For comparison, the injection simulation was
conducted by the LHAC and GHAC models. The simulation
continued until the front of the injected SCO2 reached the
outlet boundary.

Figures 10(a) and 10(b) show the evolutions of injected
SCO2 (blue) and displaced brine (red) at t = 2, 4, 6, 10,
and 18 × 105 time steps in the LHAC and GHAC models.
Noteworthily, the overall invasion patterns of SCO2 were sim-
ilar in both models during the simulations. As the injection
continued, SCO2 invaded in the form of a common capillary

TABLE I. Fluid properties used in the drainage simulation (pressure: 7.45 MPa, temperature: 35 ◦C).

Physical system LB system

Brine (R) SCO2 (B) Brine (R) SCO2 (B)

ρ 1000 kg/m3 348 kg/m3 1 0.348
μ 7.1 × 10−4 Pa · s 2.8 × 10−5 Pa · s 8.3333 × 10−3 3.2864 × 10−4

σ 23.5 mN/m 1.6187 × 10−2

θ eq 30◦
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fingering pattern such that many patches of brine surrounded
by the fingers and solid grains were trapped. However, de-
tailed differences between both models can be easily observed
in Fig. 10. As intended, in the proposed model, the trapped
patches of brine were almost preserved during the injection
time unless they were displaced. In the GHAC model, contrar-
ily, some of the trapped patches disappeared by the coarsening
process during the simulation. For instance, at the early stage
(t = 2 × 105), as the volume of brine trapped between grains
shrank (in yellow circle A), SCO2 filled that space so that
the other finger of SCO2 (in yellow circle B) less invaded an
equivalent amount of brine. At the breakthrough time, many
of the small patches disappeared. Overall, the large patches
survived more than small patches. In the multiple bubbles test
(see Sec. III D), compared with larger bubbles, smaller bub-
bles tended to disappear more rapidly; this is because bubbles
are perfectly spherical, and the rate of the coarsening process
depends on the interfacial curvature of an object. In this simu-
lation, the interfacial curvature was affected by the interaction
of pore structure, contact angle, and dynamic motions. Ac-
cordingly, a patch larger than other surviving small patches
disappeared by the coarsening phenomenon (in yellow circles
C1 and C2). Consequently, the front of the invading SCO2

reached the outlet boundary slightly faster in the LHAC model
than in the GHAC model because brine was more trapped in
form of patches in the LHAC model. Conversely, the GHAC
model tends to overestimate the saturation of SCO2 at the
breakthrough.

V. SUMMARY

In previous phase-field LB models based on the LAC
or NAC or GHAC model, the numerical dispersion or the
coarsening phenomenon was an obstacle in the study of in-
compressible two-phase fluid flows. To counter this drawback,
we introduced the LHAC model in the phase-field LB model.
The local weights for the LAC and NAC source terms were
differently applied to the interface and bulk phase regions,
which were determined by applying binary thresholding and
morphological dilation to the spatial distribution of the order
parameter. To validate the LHAC model, we used five stan-
dard benchmarks. The results in the interface tracking and
the hydrodynamics were sufficiently correct. Additionally, the
numerical dispersion and the coarsening phenomenon were
considerably reduced compared with the LAC and GHAC
models, respectively. Moreover, to test the performance in
porous media flows, a drainage simulation of SCO2 in a het-
erogeneous pore structure saturated by brine was conducted
by the LHAC and GHAC models. The SCO2 invasion fol-
lowed the capillary fingering pattern in both models, and the
overall features were similar to each other. However, owing
to the coarsening phenomenon, the brine patches trapped be-
tween grains were fairly underestimated in the GHAC model,
but the LHAC model could correctly depict them. This result
supports that the proposed LHAC model can somewhat pre-
serve small features in the long-time simulation of two-phase
fluid flows such as a drainage process under low capillary
number.
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APPENDIX

1. Analytical solution of multiple bubbles system in LHAC
and GHAC models

While the source term of the LAC model DL is conserva-
tive, the source term of the NAC model DNL is only globally
conservative but locally nonconservative, which causes the
coarsening process. This section validates that the LHAC
model can better mitigate the coarsening process than the
GHAC model by comparing the mass transfer rates from a
small bubble to a large bubble.

The flow is set to a stationary condition [i.e., u(x) = 0] and
a bubble of a radius Rj is exclusively placed in a subdomain
�̄ j . Herein, the subscript j indicates the jth bubble in N
bubbles. The analytical solution of the order-parameter profile
of the jth bubble, φ j , can be approximated in the form of
a hyperbolic tangent function as Eq. (55) for both the LAC
and NAC models. So, φ j in the GHAC model also has the
same form by the linearity. Similarly, in the LHAC model,
let us suppose the interface configuration of the jth bubble
having the radius Rj in the subdomain �̄ j practically follows
the equilibrium profile of the order parameter φ j as

φ j (r, t )=−1

2
tanh

(
2

W
(r − Rj (t ))

)
for x ∈ �̄ j and r =|x|,

(A1)
where r is a distance from the center of �̄ j and x are the local
coordinates in �̄ j .

In the LHAC model, even though some discontinuity of
the order parameter occurs in an instant by the discontinuous
weight 	 for the source terms under the coarsening process,
they might be diffused and converge to the equilibrium profile
quickly. For the sake of simplicity in the volume integral,
the subdomain �̄ j was assigned to a bounded set that is a
circular one of diameter Lj as �̄ j = {y||y| � Lj/2}. It is also
assumed that the subdomains are independent of each other
except for the Lagrange multiplier λ, which is shared over the
entire domain �̄(= �̄1 ∪ �̄2 ∪ · · · ∪ �̄N ) for the global mass
conservation. In other words, all subdomains �̄ j are disjoint
sets. The instantaneous change rate of the order parameter by
the source terms just prior to the diffusion process under the
stationary condition can be yielded from Eq. (3) as

∂φ j

∂t
= DNL, j = (1 − 	 j )Mφ

32φ j
(

1
2 + φ j

)(
1
2 − φ j

)
W 2

+ γ
(

1
2 + φ j

)(
1
2 − φ j

) = (1 − 	 j )a j + γ b j . (A2)
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FIG. 11. One-dimensional profiles of φ j a j , and bj for a bubble
with Rj = 30, Mφ = 1

16 , and W = 3.

Figure 11 illustrates the 1D profiles of φ j , a j , and b j across
the interface and bulk fluid regions for a bubble with Rj = 30,
Mφ = 1/6, and W = 3. It is obvious that the magnitude of the
linear combination of aj and b j , which is the source of non-
conservation in local mass is higher in the interface region �I

than in the bulk phase region �B. This implies the source term
of the NAC model should be excluded in �I to suppress the
coarsening process. After applying the above source term, the
order parameter φ j (r, t + δt ) follows the equilibrium profile
corresponding to the updated bubble radius Rj (t + δt ).

The volume integral of φ j (r, t ) over the sub-domain �̄ j is
expressed as

� j (t ) = � j (Rj (t )) =
∫

�̄ j

φ jdV =
∫ L j/2

0
2πrφ j (r, t )dr

= Ej (Lj/2, t ) − Ej (0, t ), (A3)

with

Ej (x, t ) = π

8

(
W 2Li2

(−e(4/W ){[Rj (t )−x]})
− 4πW x ln

(
e(4/W ){[Rj (t )−x]} + 1

)− 4πx2), (A4)

where Li2 is Spence’s function.
By the volume integral of Eq. (A2), the change rate of � j

is also obtained as

∂� j

∂t
= �̇ j =

∫
�̄ j

DNL, jdV = Aj + γ Bj, (A5)

where

Aj (t ) = 2πMφ (1 − λB)

W

(
W −4ξe−(2ξ/W )−W e−(4ξ/W )

1+e−(4ξ/W ) + 2e−(2ξ/W )

− W

1+e−{[4Rj (t )]/W } +
(W +2Lj )e

2
W (L j−2Rj (t )) + W

1 + 2e
2

W (L j−2Rj (t )) + e−[(4L j )/W ]

)
,

(A6)

Bj (t ) = πW 2

8
ln

(
1 + e−{[4Rj (t )]/W })(
1 + e

2
W (L j−2Rj (t ))

)
+ πW

4

Lj(
1 + e− 2

W (L j−2Rj (t ))
) , (A7)

γ (t ) = −
∑N

j=1 Aj (t )∑N
j=1 Bj (t )

. (A8)

We evaluated � j (t + δt ) from � j (t ) by the time integral
to Eq. (A5) by the Dormand-Prince method and then found
Rj (t + δt ) satisfying Eqs. (A3) and (A4) for the obtained
� j (t + δt ) via a root-finding method. Repeating the above
procedures, we could analytically evaluate the change of bub-
ble radii for given ξ .

As in Sec. III D, the analytical solution for the two-bubbles
test was examined. The seven values of ξ uniformly selected
as 0, 3, . . ., and 18 were used to show how more effectively
the LHAC model mitigates the coarsening process than the
GHAC model. Other parameters are identical to the values of
the previous example. Note that ξ for �ξ = 10−5 in Sec. III D
is approximately 17.27. Figure 12(a) presents the evolution
of R1 for time t ranged in 104–108 in the analytical solution
of the two-bubbles test. The line of ξ = 0 corresponds to the
GHAC model. The analytical solution of ξ = 0 was in good
agreement with the LB simulation result. This implies that
the LB schemes do not affect the coarsening process, which
is just a fundamental nature in the NAC source term. As
expected, it was obtained that the greater the ξ , the smaller the
shrinkage rate of the small bubble. The LB simulation result
of the LHAC model obtained in Sec. III D is placed near the
line of ξ = 18. The relative evolution of R1 at ξ = 18 was
−0.059% at t = 106. This is well consistent with −0.1% of
the LB simulation result. Furthermore, it was observed that
the shrinkage of the small bubble for ξ � 6 stops at a certain
critical radius Rcrit,1 whereas the bubbles for ξ = 0 and 3
finally disappear. The critical radius Rcrit,1 of bubble 1 satisfies
following condition:

�̇1(Rcrit,1) = 0 and Rcrit,1 > 0. (A10)

Instead of solving Eq. (A10) directly, we obtained the
linear relation of Rcrit,1 for ξ by the least-square fitting for the
computed four points in ξ = 6–15 as shown in Fig. 12:

Rcrit,1

W
= 0.453 43

(
ξ

W

)
− 0.515 99 with R2 = 0.999 99

(A11)
Extrapolating Eq. (A11), we can conclude that bubble

1 may survive after ξ = 3.4139 at the given two-bubbles
test condition. Although the LHAC model cannot completely
eliminate the coarsening process, the rate of unwanted mass
transfer is substantially reduced enough on the LB simulation
timescale.

2. Implementation of boundary conditions at the open boundary

For the hydrodynamic LB part, we applied the inflow
boundary condition for determining unknown fi at the inlet
boundary �in(= �

(1)
in ∪ �

(2)
in ∪ · · · ∪ �

(Nin )
in ) after the streaming

step. Kang et al. [14] introduced the inflow boundary that can
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(a) (b)

FIG. 12. (a) Analytical solution of bubble radii evolution in the two-bubbles test with different ξ values and (b) critical radius of the small
bubble for ξ .

attain a target volumetric flow rate by manipulating the inlet
pressure using the nonequilibrium part bounceback (NEBB)
scheme for the pressure boundary proposed by Zou and Hu
[48]. Suppose that no surface tension force and density gradi-
ent are at the ath inlet boundary plane �

(a)
in , the inlet pressure

p(a)
in is uniform, the volumetric flow rate is Q(a)

in , and the nor-
mal direction vector outward the domain is nb. An averaged
particle distribution function f̄ (a)

i at the inlet boundary �
(a)
in is

given as follows:

f̄ (a)
i = 1

A(a)
in

∑
x∈�

(a)
in

fi(x), (A12)

where A(a)
in represents the area of �

(a)
in .

By taking area averages in Eqs. (46) and (47) over �
(a)
in , the

averaged pressure and momentum can be given as follows:

p(a)
in � c2

s

1 − w0

(∑
i �=0

f̄ (a)
i + ρins0

(
ū(a))), (A13)

ρinū(a) =
∑

i

f̄ (a)
i ei + δt

2
F̄(a)

b , (A14)

where F̄(a)
b represents the averaged “other possible body

force” acting on �in.
If ū(a) has only a velocity component normal to �

(a)
in in case

the unit normal vector outward from � is nb, then the normal
component in Eq. (A14) is given as follows:

ρinū(a) · (−nb) = ρin
Q(a)

in

A(a)
in

= ρinu(a)
in

= −
∑
i �=0

ei · nb f̄ (a)
i − δt

2
F̄(a)

b · nb. (A15)

The summation of f̄ (a)
i for i > 0 in Eq. (A13) can be

expressed as sum of known and unknown populations after
the streaming step. One has∑

i �=0

f̄ (a)
i =

∑
i �=0 &

ei·nb<0

f̄ (a)
i +

∑
i �=0 &

ei·nb�0

f̄ (a)
i , (A16)

where f̄ (a)
i for ei · nb � 0 and ei · nb < 0 are known and un-

known particle distribution functions, respectively, after the
streaming step.

Similarly, Eq. (A15) can be expressed as

ρinu(a)
in =

∑
i �=0 &

ei·nb<0

f̄ (a)
i −

∑
i �=0 &

ei·nb>0

f̄ (a)
i − δt

2
F̄(a)

b · nb. (A17)

Equation (A17) is substituted into Eq. (A16) to eliminate
the unknown particle distribution functions f̄ (a)

i of ei · nb < 0
as∑

i �=0

f̄ (a)
i =

∑
i �=0 &

ei·nb<0

f̄ (a)
i +

∑
i �=0 &

ei ·nb�0

f̄ (a)
i =

∑
i �=0

(1 + ei · nb) f̄ (a)
i

+ ρinu(a)
in + δt

2
F̄(a)

b · nb. (A18)

Substituting Eq. (A18) into Eq. (A13), the inlet pressure
can be calculated to obtain the target volumetric flow rate Q(a)

in

at �
(a)
in as follows:

p(a)
in = c2

s

1 − w0

(∑
i �=0

(1 + ei · nb) f̄ (a)
i + ρinu(a)

in

(
1 − w0

u(a)
in

2c2
s

)

+ δt

2
F̄(a)

b · nb

)
. (A19)

Using the inlet pressure p(a)
in , unknown particle distribution

functions fi of ei · nb < 0 for each node at �i
in can be deter-

mined by the NEBB pressure boundary of Zou and He [48].
For the phase-field LB part, the remainder of the order

parameter, δuφ, is weighted using the directional weight wi

and is distributed to the unknown gi to impose the target
order parameter φ on the open boundary. δuφ, which is the
difference between the target order parameter φ and the sum
of known gi, is calculated as follows:

δuφ = φ −
∑

ei·nb�0

gi. (A20)
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The unknown particle distribution function gi is then cal-
culated as follows:

gi = αiδuφ for ei · nb < 0, (A21)

with

αi = wi∑
e j ·nb<0 w j

. (A22)
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