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Unsupervised topological learning for identification of atomic structures
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We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA)
concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic
positions and without a priori knowledge, our method allows for an autonomous identification of clusters
of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis
of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep
undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in
materials at the atomic scale.
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I. INTRODUCTION

Knowledge of microscopic events driving properties of
matter is of fundamental and technological interest. More
precisely, understanding the structure at the atomic scale is
crucial for the design of new materials, which can play a role
in solving contemporary economical and social issues such as
the reduction of energy consumption or new drug design [1].
However, detailed information on such a small spatial scale is
still out of reach experimentally.

To access physical and chemical properties at the atomic
scale, simulation tools such as molecular dynamics (MD) rep-
resent dedicated in-depth means [2]. Thanks to the increase of
computational power, such simulations can nowadays easily
reach millions of atoms evolving through several nanosec-
onds. Although production of large amounts of valuable data
has been streamlined, the processing of the “big data” is far
from being obvious and has led to the fourth paradigm [3] of
science in many scientific fields since the early 2000s. Like-
wise, in condensed matter physics and materials science, new
protocols and tools based on supervised learning and neural
networks [4–7] as well as unsupervised learning [8–12], or
even combinations of these approaches [13], are currently
built at an accelerated rate.

In this paper, we propose an unsupervised method to an-
alyze structural information, where descriptors from atomic
positions are constructed using persistent homology (PH), a
classical topological data analysis (TDA) tool [14]. Persistent
homology has been successfully applied to MD simulations
to analyze the medium-range structural environments [15] in
amorphous solids [16–18], ice [19], and complex molecular
liquids [20]. However, to the best of our knowledge, PH
has never been used as a descriptor to encode local atomic
structures, whereas it provides topological features at differ-
ent resolutions and for different levels of homology. Similar
local atomic structures, with respect to those topological

features, are clustered using a Gaussian mixture model
(GMM). To illustrate the potential of this approach, we
analyze here previous simulations of homogeneous crystal
nucleation of elemental zirconium (Zr) [21].

Section II is dedicated to a presentation of our method
illustrated on pure Zr simulations, while Sec. III presents and
discusses the physical results highlighted on these simula-
tions. Finally, Sec. IV draw the conclusions.

II. UNSUPERVISED LEARNING BASED ON
TOPOLOGICAL DESCRIPTORS

We present in this section the complete methodology be-
hind our unsupervised protocol, giving all the steps necessary
for its implementation.

A. Data production

Our unsupervised learning approach is illustrated on pure
Zr simulations. All the simulations mentioned in this pa-
per have been performed with the LAMMPS code [22] in the
isobaric-isothermal ensemble with the Nosé-Hoover thermo-
stat and barostat [23] and interatomic interaction described by
the MEAM potential [24] developed in Ref. [21]. For a de-
tailed description of the procedure of the simulation, we refer
the reader to Ref. [21], and only the essential characteristics
are recalled here. The phase space trajectory is obtained by
integrating Newton’s equations numerically using the Verlet’s
algorithm in its velocity form, with a time step of 2 fs. A
simulation box with N = 1 024 000 atoms is considered with
periodic boundary conditions (PBC) in the three directions
of space. This system is first equilibrated in the liquid state
above the melting points at T = 2500 K and quenched with
a cooling rate of 1012 K/s at ambient pressure down to the
nose of the time-temperature-transformation (TTT) curve at
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FIG. 1. Time-temperature-transformation curve with 1 024 000
atoms in a temperature range near the nose, which was obtained over
five independent runs for each temperature. Inset: Evolution of the
potential energy as a function of time along a nucleation process.
See more details in Ref. [21].

T = 1250 K as shown in Fig. 1. The homogeneous nucleation
process is then observed along this isotherm.

When the onset of nucleation is observed, typically at the
nucleation time, a N-atom configuration is extracted and its
inherent structure is used to build a training set. The inher-
ent structures [25] are obtained by minimizing the energy
by means of a conjugate gradient algorithm, implemented
in LAMMPS, to bring the system to its local minimum in the
potential energy surface to suppress the thermal noise.

B. Data preparation

Local atomic structures in the configuration are defined
through a coordination sphere, consisting of a central particle
and its surrounding environment up to a chosen cut-off radius.
The cut-off radius is defined thanks to the radial distribution
function g(r), which gives the probability to find a particle at
a distance r from a particle at the origin and is defined by

g(r) = N

V

n(r)

4πr2�r
, (1)

where n(r) stands for the mean number of particles in a spher-
ical shell of radius r and thickness �r centered on the origin.
A typical representation of g(r) for the liquid state of Zr is
depicted in Fig. 2(a). Each minimum of the radial distribution
function can reasonably be used as a cut-off radius to obtain
local environments that represent consecutive neighbor shells
of each central particle. The first minimum (beyond the first
maximum) defines the end of the first neighbor shell (4.43 Å
from the central particle in Fig. 2(a)), the second minimum
defines the end of the second neighbor shell (7.28 Å from the
central particle), and so on.

Among the million particles in the configuration, local
atomic structures are subsampled to construct a training set for
the learning. To be representative of the configuration while
satisfying statistical independence, the subsampling should

FIG. 2. (a) Schematic illustration of the first and second neighbor
shells of a central particle (in red) with cut-off radii determined by
the radial distribution function g(r) of undercooled Zr at 1250 K.
(b) Flowchart illustrating how to define a training set with indepen-
dent structures. First, all particle positions in the simulation box are
randomly ordered and set in a list. Then, the first particle of this list
is set as a reference, and all particles which are closer than twice the
selected cut-off radius rc from this reference particle are removed.
Changing the reference particle, this process is iteratively repeated
until all central particles meet the distance criterion based on rc.

pave the whole simulation box with respect to the PBC. For a
given cut-off radius, the subsample is one among the (almost)
maximal sets such that the central particles of the local atomic
structures are separated by at least twice this cut-off radius.
More precisely, such sets are computed through an iterative
process summarized on the flowchart Fig. 2(b). The choice
of the cut-off radius (between first shell, second shell, etc.)
as well as the number of structures in the training set will be
justified in Sec. II C.

Once the central particles are identified, the Python pack-
age pyscal [26] is used on the full configuration to efficiently
extract the particles coordinates of the local atomic structures.

C. Persistent homology as a local atomic structure descriptor

To encode topological information of the local atomic
structures, we use PH, a popular TDA tool [27,28] that detects
relevant topological features from a point cloud.

Given a set of points X , one can construct a collection
of simplicial complexes [29], called Vietoris-Rips complexes
as follows. Given t � 0, we consider the simplicial complex
Xt which is the union of k-simplices for k ∈ N, where 0-
simplices are all the points of X , 1-simplices are segments
with extremities in X of length smaller than t , 2-simplices are
full triangles with vertices in X and distant of at most t from
one another, etc. In the end, we get an increasing sequence
(called filtration) X = (Xt )t�0 of simplicial complexes. A
schematic representation of this filtration process is depicted
in Fig. 3. Actually, since the number of points is finite,
changes in these complexes only appear at a finite sequence of
steps t1 < · · · < tn which gives a finite filtration of simplicial
complexes X0 = Xt0 ⊂ Xt1 ⊂ · · · ⊂ Xtn . For each space Xt of
the filtration, we compute the simplicial homology, which is
the sequence of their homology groups [Hk (Xt )]k�0, further
denoted (Hk )k�0 when the space is understood or not specified
for general consideration. The dimension of these homology
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FIG. 3. Schematic snapshots of the Vietoris-Rips complexes fil-
tration (Xt )t�0 applied to a local structure with two neighbor shells.
The barcode below encodes the persistence of each topological fea-
ture by a line starting at its birth (the radius where its appear) and
finishing at its death (the radius where it disappears). The colors
correspond to the homological dimension (red, blue, and green for
H0, H1, and H2 respectively) of each topological feature. The insert
represents the corresponding PD where each point corresponds to
a line and thus its associated topological feature with coordinates
(birth, death).

groups gives insights on the dataset. For instance, the dimen-
sion of H0 gives the number of connected components, the
dimension of H1 the number of holes, and the dimension of H2

the number of cavities inside the simplicial complex. Given a
filtration of simplicial complexes (Xt )t�0, one can keep track
of topological features (encoded by elements in the homology
groups) and how “persistent” they are, i.e., at which t they
appear (the birth) and at which t they disappear (the death).

A persistence diagram (PD) summarizes this information by
plotting the pair (birth, death) of each topological feature of
the filtration on a graph, as illustrated in Fig. 3 or Fig. 4.

Using Python packages gudhi [30] and ripser.py [31],
the individual PDs of the local atomic structures from the
previously extracted training set are computed for each ho-
mological dimensions H0, H1, and H2. To remove topological
noise when considering H1 and H2, we use a subsampling
approach as introduced in Ref. [32].

While PDs are usually compared using the Bottleneck
distance, their space equipped with this metric cannot be
embedded into a Euclidean space nor even a normed vec-
tor space [33]. To tackle this problem, several mapping into
vector spaces have been proposed in the literature. In this
paper, we use a method developed in Ref. [34] and classically
used to study three-dimensional shapes. Each coordinate of
the topological vector is associated to a pair of points (x, y) in
a PD D for a fixed level of homology, except for the infinite
point, and is calculated by

mD(x, y) = min{‖x − y‖∞, d�(x), d�(y)}, (2)

where d�(·) denotes the �∞ distance to the diagonal, and
those coordinates are sorted by decreasing order. To reduce
the dimension, a number of coordinates equal to the number
of points in the PD for the current homological dimension is
kept, as proposed in the gudhi’s package. Remark that the
dimension of each topological vector depends on the local
atomic structure, so we fill in each vector with a noninforma-
tive value to reach the maximal dimension of the descriptor
space. Here we decided to fill the vectors with the value −1
instead of 0 as proposed in Ref. [34], as distances between
points in PDs are always nonnegative, and a zero, i.e., two
points of the PD with the same birth and death, corresponds
to relevant information in our context.

To highlight the importance of these zeros in our topologi-
cal vectors, let us consider Zr atoms on a body-centered cubic
(bcc) lattice up to the second neighbor shell (7.16 Å from
the central particle) and Zr atoms on a face-centered cubic
(fcc) lattice in the same shell as shown in Fig. 4. Even though
these structures are fundamentally different, it can be noted
that the only thing that differs between the topological vectors

FIG. 4. (a) Zr atoms on a bcc lattice and the corresponding PD. (b) Zr atoms on a fcc lattice and the corresponding PD. The homological
dimensions H0, H1, and H2 are depicted in red, blue, and green respectively. As these structures are on periodic lattices, all topological features
of the filtration from a specific homological dimension have the same pair (birth, death).
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FIG. 5. (a) Empirical correlation matrix (absolute value) between several descriptor families: BAA, CNA, TDA, and BOOA. Low values
are white, high values are red. We distinguish between the descriptors by black lines, and between levels of homology with a blue line (H0

and H1). (b) PDs of a local atomic structure with one and two neighbor shells. The yellow line corresponds to a threshold computed with the
subsampling approach to remove the noise.

obtained from each structure is the dimension of the vector
(64+120 [0] values for the bcc lattice, 140+52+68 [0] values
for the fcc lattice). Thus, if we fill the smaller with zeros, then
we will obtain two identical vectors, i.e., the same point in the
descriptor space.

Finally, to illustrate the relevance of our topological sig-
nature to study the local atomic structures, we confront it on
our Zr simulation to widely used classical physical descriptors
such as the bond angle analysis (BAA) [35], the common
neighbor analysis (CNA) [36], and the bond-orientational or-
der analysis (BOOA) [37], in its averaged definition [38]. The
latter computes the order parameters q̄l given by

q̄l (i) =

√√√√√ 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣
1

Ñb(i)

Ñb(i)∑
k=0

qlm(k)

∣∣∣∣∣∣

2

(3)

with the complex vector

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(ri j ), (4)

in which Ñb(i) is accounting for all the neighbors of a central
particle i plus i itself, Nb(i) for the sole number of nearest
neighbors and Ylm(ri j ) are the spherical harmonics functions
of the vector ri j from particle i to j, with l an integer ranging
from 2 to 12 and m ∈ [−l,+l]. A direct comparison of the
CNA and BOOA, both being mostly used, can be found in
Ref. [39]. These classical descriptors characterize the radial
and/or angular distribution of bonded pairs of atoms in the
coordination sphere. The averaged version of the BOOA is

preferred over the regular definition as a considerable im-
provement of the accuracy by taking into account information
from the neighboring particles beyond the first neighbor shell.
Figure 5(a) gives an empirical correlation matrix between
the coordinates of our TDA descriptor, BAA, BOOA, and
CNA. This matrix is constructed on a sample of approximately
25 000 local structures extracted as described in Sec. II B with
a cut-off radius corresponding to the first minimum of the
radial distribution function. The latter choice was made as a
descriptor, as the CNA cannot be applied beyond the first shell
of neighbors. The empirical correlation matrix shows that the
topological signature is highly correlated with all the other
descriptors. Some specificities of the data are highlighted:
As all local neighborhood contain at least 10 particles, the
first 10 components of H0 are highly correlated; they are
correlated with high values of H1, too, because most of the
local structures have few H1 components (50% of the popula-
tion has fewer than five components); H2 components are not
depicted here as there is none in local atomic structures with
only the first neighbor shell; the correlation matrix associated
to the CNA is sparse, because only a few bonds, which are
the first ones in the matrix (using the indexing of Faken and
Jónsson [40]: [666] and [444] for the bcc ordering and [555],
[544], and [433] for the icosahedral ordering), are present in
most of the structures. It also explains the low correlation
between the last bonds in the matrix of CNA with the other
descriptors.

This example on the first neighbor shell illustrates how rel-
evant signatures from H0 and H1 are. To increase the number
of H0 and H1 components and also to capture information
on H2 (which appears when considering more than just one
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neighbor shell), we built a training set of 5314 local atomic
structures with two neighbor shells to construct our model,
approaching the intermediate order. This leads here to 68 H0

components, 100 H1 components, and 22 H2 components,
instead of only 17 H0 components and 18 H1 components
with one neighbor shell. Figure 5(b) shows a representative
example of the differences in the PDs of a structure with
one neighbor shell and the same structure with two neighbor
shells. The second neighbor shell plays also a crucial role in
the structural description [41,42].

Albeit considering higher-order shells is possible with our
persistent homological description of local structures, the ad-
vantage we gain in topological information is balanced by a
too-high spatial resolution of the local structures, leading to
a loss of information in the GMM clustering. Thus, we have
restricted ourselves to the second neighbor shell, through a
trade-off between the structural information and a coarsening
of the spatial resolution, already observed for the averaged
BOOA [38]. Note that the reason for using the radial distribu-
tion function g(r) to determine the second shell of neighbors is
to fulfill this compromise; adaptive methods which are more
general, such as SANN [43] or RAD [44] algorithms being
limited to the first shell of neighbors. It is worth mentioning
that the clustering remains essentially unchanged by varying
the cut-off radius by ±5% about the second minimum, which
is compatible with the volume change during the crystal nu-
cleation.

D. Gaussian mixture model clustering

A GMM groups data points into clusters within an unsu-
pervised way through a mixture of M Gaussian distributions
[φ( · ; μm, �m)]1�m�M of weights (αm)1�m�M as

M∑
m=1

αmφ( · ; μm, �m), (5)

where μm is the mean and �m the covariance matrix of
the mth Gaussian distribution. After standardizing the de-
scriptor space, an expectation-maximization algorithm [45]
is used as an iterative method to estimate the unknown pa-
rameters (αm, μm, �m)1�m�M . We use the implementation in
the Python package scikit-learn [46] with full covariance
matrices and 3000 k-means [47] initializations.

To select the number of Gaussian components, i.e., the
number of clusters, the integrated completed likelihood
(ICL) [48] criterion has been used:

ICL = −2 ln(L̂) + D ln(n) − 2
n∑

k=1

M∑
m=1

τ̂m,kln(τ̂m,k )

= BIC − 2
n∑

k=1

M∑
m=1

τ̂m,kln(τ̂m,k ), (6)

where L̂ denotes the likelihood evaluated on the estimator,
D the number of parameters to be estimated [D = M(d +
d2 + 1), with d the dimension of the topological vectors], and
τ̂m,k denotes the probability to belong to the mth component
conditionally to the observation xk . The ICL generalizes the
widely used Bayesian information criterion (BIC) [49] to clus-

FIG. 6. ICL criterion on the training set. Its minimum corre-
sponds to the maximum likelihood, which leads to the optimal
number of clusters to build the model.

tering methods by adding an entropic penalty computed from
the posterior probabilities of the data to be assigned to each
Gaussian component. The number of clusters in the model is
set to the number achieving the minimum of ICL.

III. APPLICATION OF THE UNSUPERVISED APPROACH
ON ELEMENTAL ZIRCONIUM SIMULATIONS

We focus in this section on the application of our
method, called TDA-GMM, to elemental Zr simulations. It
demonstrates that this protocol provides relevant structural
information in a context as challenging as homogeneous
nucleation.

A. Learning the model

As mentioned in Sec. II B, a configuration is chosen in
course of the nucleation process, where the supercooled liquid
coexists with crystalline nuclei, to capture all structural atomic
events of interest. Figure 6 depicts the ICL computed on
the extracted training set as described in Sec. II C, leading
to select seven clusters [39]. Each cluster Ci is represented
by the local structure that is the closest to the mean of the
corresponding Gaussian component, as illustrated in Fig. 7(a).
Meanwhile classical embeddings [39,50,51] do not allow to
visually interpret the width and shape of the different Gaus-
sians, an analysis of the eigenvalues of the covariance matrices
highlights the different elliptical shapes. This proves the ne-
cessity of GMM over simpler unsupervised algorithms such
as k-means which would only be suitable to fit hyperspheres.

Once the model is learned, it can be applied to new
uncategorized local atomic structures through their topolog-
ical signatures. The robustness of our model is checked by
considering a test set consisting of all the structures in the
configuration but the one in the training set. Most of the
structures in this test set (99.998%) have probabilities beyond
0.999 to be in one cluster of the model, and the remaining
ones still have probabilities higher than 0.5. Further analysis
of the fit of the model to the test set is performed using
the Mahalanobis distance (MaD) [52], which computes the
distance between an empirical Gaussian distribution and a
dataset. Using hard-assignment to affect each structure to a
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FIG. 7. (a) Representation in the real space of the local structures
assigned to each cluster Ci. (b) Snapshot of the one million atoms in
the simulation box after the clustering in the descriptor space. In the
inset, the classification obtained from an adaptative CNA method is
depicted.

cluster, we compute the MaD for each cluster between the
test set and the multivariate Gaussian distribution. Outliers are
then considered based on the interquartile range rule. Table I
presents the percentage of structures in each cluster viewed
as outliers according to this criterion: more than 96% of the
structures in the test set have a MaD in agreement with their
assigned Gaussian distribution of the model.

The final clustering is shown in Fig. 7(b) on the entire
configuration depicted in the real space of the simulation box
with the help of OVITO [53]. In the inset, the classification
found by a classical adaptative CNA algorithm as imple-
mented in OVITO is represented for comparison. In contrast to
TDA-GMM, only two types of structures that correspond to
strictly crystalline or icosahedral structures were successfully
identified.

B. Description of the bulk crystal and liquid

We have first applied our model to a configuration with
N = 128 000 atoms in the bulk crystal and liquid at T =
1250 K. Figure 8 and Table II shows the results obtained in
both cases through the central atoms of the local structures
associated with each cluster.

The structures of the bulk crystal are classified as local
structures in cluster C1. Referring to Fig. 7(a), the atoms of
the mean local structure associated with C1 are indeed on a
periodic lattice. In the bulk liquid, more than 99.96% of the

TABLE I. Proportions of structures and percentage of outliers in
each cluster of the test set based on the interquartile range rule on the
MaD between the test set and their assigned multivariate Gaussian
distribution of the model in the descriptor space.

Clusters C1 C2 C3 C4 C5 C6 C7 Total

Proportion (%) 11.70 7.22 9.28 24.45 33.46 11.03 2.86 100
Outliers (%) 2.47 2.12 6.29 3.25 3.67 3.88 3.06 3.56

FIG. 8. Snapshots at T = 1250 K of Zr bulk crystal (a) and liquid
(b) brought in their inherent local structures. Atoms are colored
according to the cluster they belong to (see Fig. 7).

identified local structures belong to clusters C3,C4,C5,C6,
and C7. From this simple application, and without any
information about the physical nature of the atomic structures,
the trained TDA-GMM model distinguishes solidlike from
liquidlike clusters.

C. Description of the homogeneous crystal nucleation

During the process of homogeneous nucleation along an
isotherm, the internal energy of the system undergoes a
sharp drop. It follows the growth of the nuclei that carry
the crystalline periodicity, until the state of least energy is
reached. To autonomously detect these nuclei among the
clusters obtained by the TDA-GMM method, five configu-
rations along an isotherm at the nose of the TTT at T =
1250 K with N = 1 024 000 atoms are selected. They range
from the onset of nucleation at 160 ps from the quench,
up to a configuration in the polycrystalline bulk at 1560 ps.
The model built in Sec. III A corresponds to a configura-
tion in the course of nucleation at 360 ps. Table III shows
the evolution of the proportion of each cluster in these
configurations.

Local structures from clusters C1 and C2 follow a fast
growth until they become the majority in the final bulk.
Conversely, the other clusters undergo a more or less sharp
decrease in their proportions over time. As mentioned in
Sec. III B, local structures from C1 correspond to a crys-
talline ordering whereas atoms of the mean local structure
associated with C2 are on a partial periodic lattice. Figure 9
represents the snapshots of these clusters in these different
configurations. The other clusters, classified as liquid, show
that apart from the nuclei, there exist complex structural

TABLE II. Proportion of each cluster Ci in the bulk crystal and
liquid.

Bulk Crystal Liquid

C1 (%) 100 0.00
C2 (%) 0 0.03
C3 (%) 0 6.49
C4 (%) 0 29.83
C5 (%) 0 45.22
C6 (%) 0 14.70
C7 (%) 0 3.72
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TABLE III. Proportion of each cluster Ci at different times of
the nucleation process. Superscripts (M) and (S) correspond, respec-
tively, to the configuration used to train the model and the solidified
configuration.

Time (ps) 160 200 240 280 310(M ) 1560(S)

C1 (%) 0.25 0.95 2.85 6.83 12.66 67.21
C2 (%) 0.67 1.37 2.76 4.96 6.85 22.65
C3 (%) 7.37 7.68 8.18 8.75 8.51 6.99
C4 (%) 29.99 29.47 28.41 26.52 24.22 1.58
C5 (%) 43.69 42.87 40.99 37.42 33.78 0.90
C6 (%) 14.44 14.14 13.48 12.36 11.16 0.35
C7 (%) 3.59 3.53 3.32 3.15 2.82 0.31

heterogeneities in the supercooled liquid, which we describe
in Sec. III E, and which are successfully highlighted by the
TDA-GMM method. Such an assessment has recently been
brought out as well in supercooled liquid mixtures by an-
other unsupervised method based on an information-theoretic
approach [12].

The independent nuclei formed by local structures from
C1 and/or C2 are extracted using a distance-based neigh-
boring criterion as implemented in OVITO. This criterion is
set as the first minimum of g(r) in such a manner that two
particles are connected if they are at a distance less than
or equal to this threshold. The size distributions of these
independent nuclei are then obtained by accounting for all
atoms of the overlapping local atomic structures of two neigh-
bor shells defined by each central particle belonging to C1

and/or C2. The critical size is estimated by the smallest cluster
that persists over the several configurations of nucleation,
with at least the same number of atoms. In such a high
undercooling regime, this leads to a critical nucleus size of
70–80 atoms.

D. Translational and orientational orderings

Two physical orderings which have been shown to be im-
portant parameters driving nucleation are the translational and
orientational orderings [54–56].

With the nuclei previously identified, their centers of mass
are easily inferred. Based on these positions, the spatial evolu-
tion of the translational ordering from the nuclei to the liquid
can be quantified through density. The density is indeed the
dedicated indicator to measure the fluctuations in the relative
positions of neighboring atoms: for each cluster Ci and its
relative number of atoms Ki(rn) in a spherical shell of volume
Vs extending from the center of a nucleus to a distance rn

to (rn + ε) with ε = 1 Å, the radial partial atomic density
profiles ρi(rn) are computed as:

ρi(rn) = Ki(rn)

Vs
, with Vs = 4

3
π

[
(rn + ε)3 − r3

n

]
. (7)

On the other hand, the analysis of the orientational ordering
provides information on the fluctuations in relative geometric
bonding between neighboring atoms. Such a characteriza-
tion can be performed with help of the classical methods
mentioned in Sec. II C. For instance, the BOOA has shown
to be successful to analyze the crystallization of colloidal
suspensions [57,58]. Here, following the indexing of Faken
and Jónsson, the CNA was performed in each cluster as a
representative measure [59]. We checked, as indicated by the
high correlations in Fig. 5(a), that these two methods give
similar information about the orientational ordering [39].

This translational and orientational orderings analysis
shows us a general behavior, even for the precritical nuclei,
which is depicted in Fig. 10. Figure 10(a) reveals that all the
nuclei emerge with a translational ordering which corresponds
to the density of the bulk crystal. Despite the small density
window between the bulk crystal and liquid at T = 1250 K,
it is clearly spotted that the sum of the respective densities
ρi of the clusters Ci associated with the nuclei or liquid
leads to the density values of the bulk crystal and liquid,
respectively. Fig. 10(b) confirms the crystalline structures in
C1 and C2 which exhibit bcc bonds ([666]: 8, [444]: 6) and
thus a concurrent emergence of the orientational ordering in
the nucleation process. The slight percentage of icosahedral
bonds [555] in C2 tends to explain the partial periodicity
observed in Fig. 7(a). On the other hand, the local structures
from clusters C4 to C7 share strong fivefold symmetries bonds
characteristics of the undercooled liquid, although they also
possess nonnegligible relative bcc bonds. About 4% of [666]
in these clusters are in excess to form bcc structures and have
the potential to combine with [555] bonds to form Z14, Z15,
and Z16 Frank-Kasper polyhedra [60]. This can lead to a
geometrical frustration able to slow down the onset of the nu-
cleation in the liquid part [61,62]. Lastly, C3 is a more peculiar
case, with a strong distribution at the border of nuclei while
also being present in the deeper liquid. Its presence in the
frontier region is explained by the spatial resolution already
mentioned in Sec. II C, while its presence in the liquid can be
seen as a precursor for the emergence of the embryos. This is
in agreement with the latest view of a heterogeneous scenario
in which precursors of the crystalline ordering arise from
structural heterogeneities in the liquid [63–65] and which we
develop in Sec. III E.

FIG. 9. Snapshots of configurations along nucleation at the nose of the TTT of Zr at T = 1250 K. The local structures in the clusters C1

and C2 identified as carrying the crystalline periodicity are depicted through their central particle in red and pink, respectively.
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FIG. 10. (a) Representation on a nucleus of the typical transla-
tional ordering of the nuclei and their surrounding liquid through the
radial density profile of the Ci clusters. The corresponding densities
of the bulk crystal and undercooled liquid have been determined at
T = 1250 K and constant ambient pressure. This behavior of the
translational ordering is representative of all nuclei in the configu-
rations, even the precritical ones. (b) Typical orientational ordering
of the Ci clusters in the configurations through CNA. [555], [544],
and [433] stand for fivefold symmetries bonds and, [666] and [444]
for bonds relative to a bcc crystal ordering.

There is no consensus in the literature for a general
pathway of the nucleation process of materials, which
seems to be system dependent: Hard spheres systems un-
dergo concurrent translational and orientational ordering [56],
whereas a decoupling of these two symmetries has been
observed in colloidal systems [54]. For a pure metal like
Zr, our unsupervised analysis brings us to the conclu-
sion that the translational and orientational orderings arise
synchronously.

E. Liquid heterogeneities

To assess the scenario mentioned in Sec. III D, heterogene-
ity at an early nucleation stage is evaluated by a comparison
of the distribution of atoms belonging to each cluster against
the uniform distribution. As the comparison of distribu-
tions is particularly complex in three dimensions since the

TABLE IV. The p values computed on the projection of atomic
positions at an early nucleation stage (160 ps) onto each direction of
the simulation box from a KS test against the uniform distribution.

p value x y z

C1 0.000 0.000 0.000
C2 0.000 0.000 0.000
C3 0.000 0.000 0.000
C4 0.000 0.000 0.007
C5 0.001 0.000 0.000
C6 0.007 0.331 0.001
C7 0.192 0.156 0.005

empirical cumulative distribution function is not defined, a
Kolmogorov-Smirnov (KS) test [66] was performed on the
projection of atomic positions in the three directions of space.
For a level 0.01, if the uniform distribution is rejected on at
least one projection, it is rejected for the entire multivariate
dataset. Table IV depicts the results through the p values of
the test obtained from the configuration at 160 ps. For all the
clusters the test is always rejected, meaning that their distri-
butions are not uniform, in other words, indicating structural
heterogeneities in the simulation box.

IV. CONCLUSIONS

We used PH, a main computational tool in TDA, to build
descriptors of local atomic structures. A GMM allowed us
to autonomously identify clusters of similar local structures
in the space of these topological descriptors. We applied
this unsupervised approach to the analysis of several MD
configurations of Zr in the challenging context of homoge-
neous nucleation. We highlighted some interesting properties
of the phenomenon such as a concurrent emergence of the
translational and orientational orderings and structural het-
erogeneities in the undercooled liquid. A closer look at the
nucleation process of other pure metals has been investigated
through this TDA-GMM method in our latest work [67]. An
extension of the analysis on multicomponent systems where
chemical orderings arise would be especially relevant for fur-
ther inspection and control of such mechanisms to enhance
materials design. More generally, this unsupervised learning
methodology opens the door to further study of structure-
dependent phenomena at the atomic scale.
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