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Development of explicit formulations of G45-based gas kinetic scheme for simulation
of continuum and rarefied flows
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In this work, the explicit formulations of the Grad’s distribution function for the 45 moments (G45)-based gas
kinetic scheme (GKS) are presented. Similar to the G13 function-based gas kinetic scheme (G13-GKS), G45-
GKS simulates flows from the continuum regime to the rarefied regime by solving the macroscopic governing
equations based on the conservation laws, which are widely used in conventional Navier-Stokes solver. These
macroscopic governing equations are discretized by the finite volume method, where the numerical fluxes are
evaluated by the local solution to the Boltzmann equation. The initial distribution function is reconstructed
by the G45 distribution function, which is a higher order truncation of the Hermite expansion of distribution
function compared with the G13 distribution function. Such high order truncation of Hermite expansion helps the
present solver to achieve a better accuracy than G13-GKS. Moreover, the reconstruction of distribution function
makes the development of explicit formulations of numerical fluxes feasible, and the evolution of the distribution
function, which is the main reason why the discrete velocity method is expensive, is avoided. Several numerical
experiments are performed to examine the accuracy of G45-GKS. Results show that the accuracy of the present
solver for almost all flow problems is much better than G13-GKS. Moreover, some typical rarefied effects, such
as the direction of heat flux without temperature gradients and thermal creep flow, can be well captured by the
present solver.
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I. INTRODUCTION

In recent years, the Boltzmann equation has been widely
used to simulate multiscale flow problems which cover both
the continuum and rarefied flow regimes. Since the Boltz-
mann equation is free from the continuum assumption, some
ubiquitous rarefied effects, such as the direction of heat flux
without temperature gradients [1–3], thermal creep [4–6],
Knudsen paradox [7,8], and non-Newtonian behavior of shear
stress [9–11], can be well addressed. However, solving the
Boltzmann equation accurately and efficiently remains a
challenging problem. Till now, several strategies in the mi-
croscopic level, the mesoscopic level, and the macroscopic
level have been developed to achieve this goal. For example,
the direct simulation Monte Carlo (DSMC) [12–14] method
solves the Boltzmann equation by tracing the free transport
and collision of simulation particles in the microscopic level.
It is efficient and accurate for highly rarefied and hypersonic
flow problems. However, its computational cost is enormous
for continuum and near-continuum flows, and it suffers from
statistical error for these flow problems. The discrete veloc-
ity method (DVM) [15–17] is developed in the mesoscopic
level, and it solves the Boltzmann equation by evolving the
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gas distribution function in both the physical and velocity
spaces. Therefore, the real gas distribution function can be
addressed. Due to this feature, the DVM can simulate flows
in all flow regimes accurately, but this feature also leads to a
large amount of computational cost. Apart from the DSMC
method and the DVM, the moment method [18–21] solves the
Boltzmann equation by the macroscopic model. Compared
with the DSMC method and the DVM, the moment method
is efficient, and it has received a great success in different
kinds of multiscale flow problems [22–27]. In order to address
rarefied effects, a large number of high order moments are
involved in the moment method, which makes the governing
equations very complicated. Combining some good features
of the DVM and the moment method, a Grad’s distribution
function-based gas kinetic scheme [28] to simulate flows in
both the continuum and rarefied regimes was proposed in our
previous work, and the explicit formulations were developed
for Grad’s distribution function for the 13 moments-based gas
kinetic scheme (G13-GKS) [29]. In this work, we will further
develop this solver to improve its accuracy. But first, the DVM
and moment method will be introduced.

The DVM [15–17] solves the Boltzmann equation by trac-
ing the distribution function in both the physical space and
particle velocity space. That is, the particle velocity space
is discretized, and the discrete velocity Boltzmann equation
(DVBE) is solved. If the number of discrete velocities is large
enough, the discrete distribution function can well address the
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real gas distribution function, such that the flows in all flow
regimes can be simulated accurately. Within the framework
of the DVM, different algorithms have been developed to
reconstruct the numerical fluxes. For example, the conven-
tional DVM utilizes the upwind scheme to reconstruct the
numerical fluxes [30–34]. However, such a simple approach
is inefficient and inaccurate for flows in the continuum and
near-continuum regime because the collisional effect is not
considered when reconstructing the numerical fluxes. To over-
come this drawback of the conventional DVM, an improved
DVM was developed by Yang et al. [35]. The improved
DVM also solves the macroscopic governing equations. In
the solution process, the macroscopic governing equations
predict the equilibrium distribution function, which enables
the implementation of collisional effect when solving the
DVBE. Apart from the conventional and improved DVM, the
unified gas kinetic scheme (UGKS) [36–40] and the discrete
unified gas kinetic scheme (DUGKS) [41,42] utilize the in-
tegral solution and characteristic solution of the Boltzmann
equation to reconstruct the numerical fluxes, respectively. In
these two methods, the collisional effect is considered when
reconstructing the numerical fluxes, which makes them more
accurate and efficient than the conventional DVM for flows in
the continuum and near-continuum regime. Even though the
DVM can simulate flows in all flow regimes accurately, the
discretization in both the physical space and particle veloc-
ity space makes the DVM consume expensive computations
and memory storages. To avoid the discretization in particle
velocity space and further improve the efficiency in both
the continuum and rarefied regimes, the method which only
solves the problem in the physical space is desirable, and the
moment method is such a method.

The moment method [18–21] derives the macroscopic
equations of moments from the Boltzmann equation, in which
the distribution function is first expanded by Hermite poly-
nomials, and the Hermite expansion is truncated to a certain
order. The coefficients of the Hermite expansion are de-
termined by moment integrals of the distribution function.
Next, the truncated Hermite expansion is substituted into the
Boltzmann equation and the classical moment equations can
be obtained. In 1949, Grad [19] truncated the Hermite ex-
pansion to the third order and derived the well-known 13
moment equations. Certainly, the Hermite expansion with a
higher truncation order is closer to the real gas distribution
function, such that the moment equations with large moment
numbers can achieve a better accuracy. And the moment
equations with large moment numbers are tested by many
researchers [21,43,44]. At first, an algorithm to produce these
equations was proposed by Weiss [43] and further devel-
oped by Struchtrup [21] and Au [44]. These equations have
been tested for several one-dimensional problems, such as
shock waves [44], light scattering [43,45], heat transfer [21],
and sound propagation [43,45]. In the work of Weiss [43],
506 equations in a one-dimensional problem were computed,
which corresponds to 15 180 moments in a three-dimensional
case. The above mentioned moment equations are stable,
but they cannot predict continuous shock wave with large
Mach numbers due to their hyperbolic property. To over-
come this shortcoming, the Chapman-Enskog type expansion
and an order-of-magnitude approach were introduced into

the original moment equations, and the regularized moment
equations were proposed [20,46]. Thanks to the regulariza-
tion, the regularized moment equations are nonhyperbolic,
and they retain the stability of original moment equations.
The regularized moment equations are the most widely used
moment equations in recent years, and they have received
impressive success in several multiscale flow problems, such
as Couette flow [26,27], Poiseuille flow [26,27], lid-driven
cavity flow [23] and flow past a circular cylinder [24]. How-
ever, from the above analysis, we can see that the moment
method usually uses a large number of governing equa-
tions, and the governing equations for high order moments
are usually complicated, which limits the application of the
moment method in some practical problems. Furthermore,
adding higher order moments to achieve a better accuracy
needs additional complicated moment equations. Therefore,
developing a numerical scheme with the governing equations
based on the conservation laws is attractive. The Grad’s dis-
tribution function-based gas kinetic scheme [28] developed in
our previous work is such a numerical scheme.

The Grad’s distribution function-based gas kinetic scheme
was developed within the framework of the gas kinetic scheme
(GKS), which was proposed by Prendergast and Xu [47] and
further developed by Chae et al. [48], Xu [49], and others
[50,51]. GKS utilizes the finite volume method (FVM) to dis-
cretize the macroscopic governing equations. The numerical
fluxes of the GKS are evaluated by the local solution to the
Boltzmann equation, and the initial distribution function is
reconstructed by first order Chapman-Enskog expansion. The
GKS was further simplified by Shu and his co-workers, and
the gas kinetic flux solver (GKFS) was proposed [52–58].
The computational cost of the GKFS is comparable to the
conventional Navier-Stokes solver. However, limited by first
order CE expansion, the GKS can only simulate flows in the
continuum regime. To overcome this limitation, the Grad’s
distribution function was utilized to reconstruct the initial
distribution function [28,29]. Thanks to such reconstruction,
the Grad’s distribution function-based gas kinetic scheme
can give reasonable results for rarefied flows with moder-
ate Knudsen numbers, and the evolution of the distribution
function is avoided. In addition, this reconstruction makes the
explicit formulations of numerical fluxes available, and the ex-
plicit formulations of Grad’s distribution function for the 13
moments-based gas kinetic scheme (G13-GKS) were derived
in our previous work [29]. Since the discretization in particle
velocity space is not needed, the computational efficiency
of the G13-GKS is much improved compared with DVM.
Numerical experiments showed that the computational time
needed for the G13-GKS is about 1% of the DVM and twice
the Navier-Stokes solver for two-dimensional problems [29].
However, the G13-GKS may not satisfy the requirement of
accuracy under some circumstances with large Knudsen num-
ber. Inspired by the moment method, the accuracy can be
improved by using additional high order moments to describe
the flows [21,43–45]. That is, replacing the G13 distribution
function by the Grad’s distribution function with 45 moments
(G45). However, introducing higher order moments and deter-
mining them is not so easy and straightforward. The difficulty
for treating G13 and G45 is not the same level. In the mo-
ment method, if we want to utilize more moments to describe

045302-2



DEVELOPMENT OF EXPLICIT FORMULATIONS OF … PHYSICAL REVIEW E 105, 045302 (2022)

the nonequilibrium flows, additional moment equations are
needed. The moment equations for high order moments are
very complicated, and solving these equations is tedious work.
A main contribution of the present work is that a simple
and efficient way is utilized to determine the high order
moments, which is an iteration process. That is, the high
order moments at the cell interfaces are calculated by moment
integrals, then their values at cell centers are calculated by
the linear interpolation method. With the G45 distribution
function reconstructed, the numerical fluxes of the G45 dis-
tribution function based-gas kinetic scheme (G45-GKS) can
be calculated, and the explicit formulations of these numerical
fluxes are first derived in this paper. In addition, the accuracy
and efficiency of the G45-GKS are examined by several nu-
merical examples. Numerical results show that the G45-GKS
can achieve much better accuracy than the G13-GKS in most
cases, especially for flows dominated by the variation of tem-
perature. Although some high order moments are involved in
the G45-GKS, the computational efficiency of the G45-GKS
is still much higher than that of the DVM.

II. METHODOLOGY

A. Boltzmann equation and macroscopic governing equations

The macroscopic governing equations in this work are
derived from the Boltzmann equation with the BGK collision
model [59], which is written as

∂ f

∂t
+ ξx

∂ f

∂x
+ ξy

∂ f

∂y
= g − f

τ
, (1)

where f is the phase state of gas and g is the equilibrium
state. τ is the collisional time step, which means that the
gas distribution function will approach its equilibrium state
within τ . Both f and g are the functions of physical space
x = (x, y), particle velocity space ξ = (ξx, ξy), phase energy
ζ , and time t . Specifically, the equilibrium state is given as the
Maxwellian distribution function:

g = ρ

(
λ

π

)3/2

e−λ[(ξx−U )2+(ξy−V )2+ζ 2], (2)

where ρ and U , V are the density and macroscopic veloc-
ity components in the x and y direction, respectively. λ =
1/(2RT ), where R is the gas constant and T is the temperature.
To obtain the macroscopic governing equations from Eq. (1),
a vector of moments ϕ is introduced first, which is written as

ϕ = (
1, ξx, ξy,

1
2

(
ξ 2

x + ξ 2
y + ζ 2))T

, (3)

and the conservative variables can be connected to ϕ by the
moment integrals of gas distribution function:

W = (ρ, ρU, ρV, ρE )T =
∫

ϕ f d�, (4)

where d� = dξxdξydζ is the volume element in the particle
velocity space. Then, multiplying the Boltzmann equation
with ϕ and performing integration over the particle velocity

space we can get

∂

∂t

∫
ϕ f d� + ∂

∂x

∫
ξxϕ f d� + ∂

∂y

∫
ξyϕ f d�

=
∫

ϕ
g − f

τ
d�. (5)

According to the compatibility condition, the right-hand
side of Eq. (5) is equal to 0. Therefore, Eq. (5) can be rewritten
as

∂W
∂t

+ ∂Fx

∂x
+ ∂Fy

∂y
= 0, (6)

where Fx and Fy are the fluxes in the x direction and y
direction, and they are written as

Fx = (
F x

1 , F x
2 , F x

3 , F x
4

)T = ∫
ξxϕ f d� , (7)

Fy = (
F y

1 , F y
2 , F y

3 , F y
4

)T =
∫

ξyϕ f d�. (8)

The macroscopic governing equations used in this work are
shown in Eq. (6). They can be used to simulate flows in all
flow regimes if and only if the distribution function f is accu-
rately approximated. In order to solve the governing equations
numerically, they are discretized by the finite volume method:

dW
dt

+ 1

	

Nf∑
i=1

F iSi = 0, (9)

where Nf is the number of cell interface, 	 is the area of
cell, F i and Si are the numerical fluxes at cell interface i and
the length of cell interface i, respectively. Depending on the
direction, the numerical fluxes F i can be calculated by Eq. (7)
or Eq. (8) with the distribution function f reconstructed at the
cell interface. In the next section, the method to reconstruct the
distribution function f at the cell interface will be introduced.

B. Reconstruction of distribution function at the cell interface

Similar to the G13-GKS [29], the distribution function f
at the cell interface is calculated by the local solution to the
Boltzmann equation. In this work, we might assume that the
midpoint of the cell interface is located at the original point
(x = 0, y = 0) for simplicity, and the distribution function at
the cell interface is written as

f (0, 0, t + δt ) = δt

τ + δt
g(0, 0, t + δt )

+ τ

τ + δt
f (−ξxδt,−ξyδt, t ), (10)

where f (0, 0, t + δt ) and g(0, 0, t + δt ) are the distribution
function and equilibrium distribution function at the cell in-
terface, and f (−ξxδt,−ξyδt, t ) is the distribution function at
the surrounding point of cell interface. δt is the streaming
time step. g(0, 0, t + δt ) can be reconstructed by the conserva-
tive variables at the cell interface at t + δt . These conservative
variables can be calculated by f (−ξxδt,−ξyδt, t ) with the
help of the compatibility condition, which will be introduced
in the following subsection. Therefore, our task is to re-
construct f (−ξxδt,−ξyδt, t ) now. Similar to the G13-GKS,
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f (−ξxδt,−ξyδt, t ) is approximated by the second order inter-
polation as

f (−ξxδt,−ξyδt, t )=
{

f l − ∂ f l

∂x ξxδt − ∂ f l

∂y ξyδt, ξx > 0

f r − ∂ f r

∂x ξxδt − ∂ f r

∂y ξyδt, ξx < 0
,

(11)
where f l and f r are the distribution functions at the left and
right side of the cell interface. These distribution functions
should be reconstructed appropriately to simulate flows in
both the continuum regime and rarefied regime. In this work,
these distribution functions are reconstructed by Grad’s distri-
bution function for 45 moments (G45), which is written as in
Refs. [19,26,27]:

fG45 = g

[
1 + σi jCiCj

2pRT
+ Ciqi

pRT

(
C2

5RT
− 1

)

+ mi jkCiCjCk

6p(RT )2 + Ri jCiCj

4p(RT )2

(
C2

7RT
− 1

)

+ �

8pRT
×

(
C4

15(RT )2 − 2C2

3RT
+ 1

)

+ φi jklCiCjCkCl

24p(RT )3 + ψi jkCiCjCk

12p(RT )3

(
C2

9RT
− 1

)

+ Ci	i

40p(RT )2

(
C4

7(RT )2 − 2C2

RT
+ 5

)]
, (12)

where g is the Maxwellian distribution function given in
Eq. (2), Ci = ξi − ui is the peculiar velocity in the i direction
(ui is the flow velocity in the i direction). p is the pres-
sure. σi j are the stresses and qi are the heat fluxes, while
mi jk, Ri j,�, φi jkl , ψi jk,	i are the higher order moments. All
these high order moments are defined by the moment integrals
of distribution function as in Refs. [26,27]:

σi j =
∫

C〈i C j〉 f d�, (13)

qi =
∫

1

2
CiC

2 f d�, (14)

mi jk =
∫

C〈i CjCk〉 f d�, (15)

Ri j =
∫

C〈i C j〉C2 f d� − 7RT σi j, (16)

� =
∫

C4 f d� − 15pRT, (17)

φi jkl =
∫

C〈i CjCkCl〉 f d�, (18)

ψi jk =
∫

C〈i CjCk〉C2 f d� − 9RT mi jk, (19)

	i =
∫

CiC
4 f d� − 28RT qi. (20)

In Eqs. (13)–(20), the angular brackets denote the trace free
part of the symmetric tensor, and they are expressed by [27]

C〈i C j〉 = CiCj − 1
3δi jCkCk, (21)

C〈i CjCk〉 =CiCjCk− 1
5 (CiCrCrδ jk+CjCrCrδik+CkCrCrδi j ),

(22)

C〈iCjCkCl〉 = CiCjCkCl − 1
7 (C〈iCj〉CrCrδkl + C〈iCk〉CrCrδ jl

+ C〈iCl〉CrCrδ jk + C〈 jCk〉CrCrδil+C〈 jCl〉CrCrδik

+ C〈kCl〉CrCrδi j ) − 1
15 (δi jδkl

+ δikδ jl + δilδ jk )CrCrCsCs. (23)

Once the distribution function at the cell interface is recon-
structed, the numerical fluxes can be calculated by substituting
f (0, 0, t + δt ) into Eqs. (7) and (8). In the next section, the
basic formulations for the numerical fluxes in the x direction
will be derived, while the basic formulations for the numerical
fluxes in the y direction are given in Appendix C.

C. Basic formulation of numerical fluxes in the x direction

Substituting f (0, 0, t + δt ) into Eq. (7), we can get the
numerical fluxes in the x direction as

Fx =
∫

ξxϕ

[
δt

τ + δt
g(0, 0, t + δt )

+ τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�. (24)

For simple denotation, the Fx in Eq. (24) can be divided
into two parts:

Fx= δt

τ + δt
Fx(0) + τ

τ + δt
Fx(1), (25)

where

Fx(0) =
∫

ξxϕg(0, 0, t + δt )d�, (26)

Fx(1) =
∫

ξxϕ f (−ξxδt,−ξyδt, t )d�. (27)

Fx(0) is contributed by the equilibrium distribution function
at the cell interface, while Fx(1) is contributed by the distribu-
tion function at the surrounding points of cell interface. To
calculate Fx(0), the conservative variables at the cell interface,
which can be used to reconstruct the equilibrium distribution
function, should be calculated first. According to the compat-
ibility condition, the conservative variables can be calculated
by the distribution function at the surrounding points of cell
interface, which is written as in Ref. [29]:

W =
∫

ϕ f (−ξxδt,−ξyδt, t )d�. (28)

Substituting Eq. (11) into Eq. (28), we can get

W =
∫

ξx>0
ϕ f ld� +

∫
ξx<0

ϕ f rd�

− δt
∂

∂x

(∫
ξx>0

ϕξx f ld� +
∫

ξx<0
ϕξx f rd�

)

− δt
∂

∂y

(∫
ξx>0

ϕξy f ld� +
∫

ξx<0
ϕξy f rd�

)
, (29)
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and the numerical fluxes Fx(0) can be given based on the
variables calculated in Eq. (29):

Fx(0) =
∫

ϕg(0, 0, t + δt )d� =

⎛
⎜⎜⎝

ρU
ρU 2 + p

ρUV
(ρE + p)U

⎞
⎟⎟⎠. (30)

Similar to Eq. (29), the numerical fluxes Fx(1) can be given
by substituting Eq. (11) into Eq. (27), which is expressed as

Fx(1) =
∫

ξx>0
ξxϕ f ld� +

∫
ξx<0

ξxϕ f rd�

− δt
∂

∂x

(∫
ξx>0

ϕξxξx f ld� +
∫

ξx<0
ϕξxξx f rd�

)

− δt
∂

∂y

(∫
ξx>0

ϕξxξy f ld� +
∫

ξx<0
ϕξxξy f rd�

)
.

(31)

Now our task is to present the explicit formulations of
Eq. (29) and Eq. (31). Looking at these formulations in de-
tail, we can see that they are composed of two types of
moment integrals:

∫
ξx>0 ξ i

xξ
j

y ζ k f ld� and
∫
ξx<0 ξ i

xξ
j

y ζ k f rd�,
where i, j, k = 0, 1, 2, . . .. In the following of this section, the
moment integrals of G45 distribution function are denoted as
in Ref. [60]:

ρ〈. . .〉>0 =
∫

ξx>0
(. . .) fG45d�

ρ〈. . .〉<0 =
∫

ξx<0
(. . .) fG45d�. (32)

Therefore, Eqs. (29) and (31) can be given explicitly
by 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0 with their derivatives. Then

we need to derive the explicit formulations of 〈ξ i
xξ

j
y ζ k〉>0

and 〈ξ i
xξ

j
y ζ k〉<0. Because the G45 distribution function is

a Maxwellian distribution function multiplying a polyno-
mial of Cx, Cy, and ζ , it is easier to get 〈ξ i

xC
j

y ζ k〉>0 and
〈ξ i

xC
j

y ζ k〉<0 first, and then use them to calculate 〈ξ i
xξ

j
y ζ k〉>0

and 〈ξ i
xξ

j
y ζ k〉<0. To calculate 〈ξ i

xC
j

y ζ k〉>0 and 〈ξ i
xC

j
y ζ k〉<0, the

moment integrals of Maxwellian distribution function are
needed. Here, we denote the moment integrals of Maxwellian
distribution function as

ρ〈. . .〉e =
∫

(. . .)gd� ρ〈. . .〉e
>0 =

∫
ξx>0

(. . .)gd�

ρ〈. . .〉e
<0 =

∫
ξx<0

(. . .)gd�, (33)

where “e” means that they are moment integrals of equilib-
rium distribution function. Then we have〈

Cn
x

〉e = 〈
Cn

y

〉e=〈ζ n〉e

=
⎧⎨
⎩

1, n = 0
0, n = 2k − 1, k = 1, 2, 3, . . .

(2k − 1)!!
/

(2kλk ), n = 2k, k = 1, 2, 3, . . .

(34)

and

〈
ξ 0

x

〉e
>0 = 1

2
[1 + erf (

√
λlU l )],

〈
ξ 1

x

〉e
>0 = U l

〈
ξ 0

x

〉e
>0 + 1

2

e−λl (U l )2

√
λlπ

,

〈
ξ k+2

x

〉e
>0 = U l

〈
ξ k+1

x

〉e
>0 + k + 1

2λl

〈
ξ k

x

〉e
>0, k = 0, 1, 2, ..., (35)

〈
ξ 0

x

〉e
<0 = 1

2
erfc(

√
λrU r ),

〈
ξ 1

x

〉e
<0 = U r

〈
ξ 0

x

〉e
<0 − 1

2

e−λr (U r )2

√
λrπ

,

〈
ξ k+2

x

〉e
<0 = U r

〈
ξ k+1

x

〉e
<0 + k + 1

2λr

〈
ξ k

x

〉e
<0, k = 0, 1, 2, .... (36)

With the help of the moment integrals given in Eqs. (34)–
(36), the moment integrals 〈ξ i

xC
n
x C j

y ζ k〉e
>0 can be expressed

as 〈
ξ i

xC
n
x C j

y ζ k
〉e
>0

= 〈
ξ i

xC
n
x

〉e
>0

〈
C j

y

〉e〈
ζ k

〉e
, (37)

where

〈
ξ i

xC
n
x

〉e
>0 = (−1)n−m

n∑
m=0

n!

m!(n − m)!

〈
ξm+i

x

〉e
>0(U l )n−m. (38)

Next, 〈ξ i
xC

j
y ζ k〉>0 can be given with the help of 〈ξ i

xC
n
x C j

y ζ k〉e
>0.

For simple denotation, we define a function �(σ ), which is
written as

�(σ ) = σxx

2pRT

〈
ξ i

xC
2
x C j

y ζ k
〉e
>0

+ 2
σxy

2pRT

〈
ξ i

xC
1
x C j+1

y ζ k
〉e
>0

+ σyy

2pRT

〈
ξ i

xC
0
x C j+2

y ζ k
〉e
>0

−
(

σxx

2pRT
+ σyy

2pRT

)〈
ξ i

xC
0
x C j

y ζ k+2
〉e
>0

. (39)

The function � for other high order moments, such as �(q)
and �(m), is shown in Appendix A. Now we can get the
moment integral 〈ξ i

xC
j

y ζ k〉>0 as〈
ξ i

xC
j

y ζ k
〉
>0

= 〈
ξ i

xC
0
x C j

y ζ k
〉e
>0

+ �(σ ) + �(q) + �(m)

+ �(R) + �(�) + �(φ) + �(ψ ) + �(	).
(40)

Next, 〈ξ i
xξ

j
y ζ k〉>0 can be calculated by 〈ξ i

xC
j

y ζ k〉>0 using bino-
mial theory:

〈
ξ i

xξ
j

y ζ k
〉
>0

=
j∑

m=0

j!

m!( j − m)!

〈
ξ i

xC
m
y ζ k

〉
>0

(V l )
j−m

. (41)

〈ξ i
xξ

j
y ζ k〉<0 can be calculated using a similar method with

the integrations conducted at the right side of cell interface.
Based on 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0, we can define a set of

parameters Mi jk as

Mi jk =
∫

ξ i
xξ

j
y ζ k f (−ξxδt,−ξyδt, t )d�, (42)
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and Mi jk can be expressed as

Mi jk = ρ l
〈
ξ i

xξ
j

y ζ k
〉
>0

+ ρr
〈
ξ i

xξ
j

y ζ k
〉
<0

− δt
∂

∂x

(
ρ l

〈
ξ i+1

x ξ j
y ζ k

〉
>0

+ ρr
〈
ξ i+1

x ξ j
y ζ k

〉
<0

)
− δt

∂

∂y

(
ρ l

〈
ξ i

xξ
j+1

y ζ k
〉
>0

+ ρr
〈
ξ i

xξ
j+1

y ζ k
〉
<0

)
, (43)

where the derivatives in Eq. (43) are calculated by the central
difference scheme. With the help of Mi jk , the conservative
variables at the cell interface can be expressed by

ρ = M000, (44)

ρU = M100, (45)

ρV = M010, (46)

ρE = 1
2 (M200 + M020 + M002). (47)

Subsequently, the numerical fluxes Fx(0) can be given by
Eq. (30) using the conservative variables calculated from
Eqs. (44)–(47), and we can also get the numerical fluxes Fx(1)

by

F x(1)
ρ = M100, (48)

F x(1)
ρU = M200, (49)

F x(1)
ρV = M110, (50)

F x(1)
ρE = 1

2 (M300 + M120 + M102). (51)

D. Basic formulations for high order moments

After computing the numerical fluxes, the stresses, heat
fluxes, and other high order moments should also be updated
to reconstruct the distribution function at the surrounding
points of cell interface for the next time step. In the moment
method [46], these high order moments are determined by
solving complicated differential equations, which makes the
solution process of the moment method very tedious. In this
work, according to the definition of these high order moments,
they are calculated directly by the moment integrals of distri-
bution function, which is inspired from DVM [17]. Thanks
to this strategy, the solution process to determine these high
order moments is simple and straightforward.

For example, the shear stresses at the cell interface can be
expressed by substituting Eq. (10) into Eq. (13):

σxx =
∫ (

CxCx − 1

3

(
C2

x + C2
y + ζ 2

))[
δt

τ + δt
g(0, 0, t + δt ) + τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�,

σxy =
∫

CxCy

[
δt

τ + δt
g(0, 0, t + δt ) + τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�,

σyy =
∫ (

CyCy − 1

3

(
C2

x + C2
y + ζ 2

))[
δt

τ + δt
g(0, 0, t + δt ) + τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�. (52)

Similarly, the heat fluxes at the cell interface can be expressed by substituting Eq. (10) into Eq. (14):

qx = 1

2

∫
CxC

2

[
δt

τ + δt
g(0, 0, t + δt ) + τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�,

qy = 1

2

∫
CyC

2

[
δt

τ + δt
g(0, 0, t + δt ) + τ

τ + δt
f (−ξxδt,−ξyδt, t )

]
d�. (53)

To get the explicit formulations of the high order moments, a new set of parameters �i jk is introduced first:

�i jk = τ

τ + δt

∫
Ci

xC
j

y ζ k f (−ξxδt,−ξyδt, t + δt )d�. (54)

�i jk can be given with the help of Mi jk and the binomial theory as

�i jk = τ

τ + δt

i∑
n=1

j∑
m=1

(−1)n+m i!

(i − n)!n!

j!

( j − m)!m!
MnmkU

nV m. (55)

With the help of �i jk , the stresses given by Eq. (52) can be
expressed as

σxx = 1
3 (2�200 − �020 − �002),

σxy = �110,

σyy = 1
3 (2�020 − �200 − �002). (56)

In the same way, the heat fluxes given by Eq. (53) can be
expressed as

qx = 1
2 (�300 + �120 + �102),

qy = 1
2 (�210 + �030 + �012). (57)

For other high order moments, they can also be calculated
by �i jk , and their formulations are shown in Appendix B.
Note that the above high order moments are calculated at the
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cell interface. Once they are available, we can use them to
update their values at the cell center through interpolation. For
uniform Cartesian mesh, their values at the cell center can be
taken as the average values of cell interface, which is the same
as the G13-GKS [29].

E. Implementation of boundary condition

In order to simulate flows in both the continuum regime
and rarefied regime, the Maxwellian boundary condition with
the isothermal wall is implemented in the present solver. This
boundary condition is also used in the DVM [17] and the
G13-GKS [29]. Under this boundary condition, the gas par-
ticles collide with the wall and reflect back with a Maxwellian
distribution function, which is written as

fR(0, 0, t ) = ρW

(
1

2πRTW

)3/2

e−[(ξx−UW )2+(ξy−VW )2+ζ 2/2RTW ],

(58)
where fR(0, 0, t ) is the distribution function of reflecting par-
ticles at the wall (x = 0, y = 0). The temperature TW and
macroscopic velocities UW , VW of this distribution function
are determined by the wall. The density ρW should be deter-
mined specifically to guarantee that no particle penetrates the
wall.

Here, the left boundary is taken as an example, and the
density ρW is determined by

ρW = −
∫
ξx<0 ξx f (−ξxδt,−ξyδt, t )d�(

1
2πRTW

)3/2 ∫
ξx>0 ξxe−1/2RTW [(ξx−U )2+(ξy−V )2+ζ 2]d�

.

(59)
With the help of Mi jk , ρW can be given by

ρW = −
Mr

100 − ∂Mr
200

∂x − ∂Mr
110

∂y

UW
2 [1 + erf (

√
λW UW )] + 1

2
exp (−λW U 2

W )√
λW π

. (60)

Till now, the distribution function of the reflecting gas par-
ticles is determined. And the distribution function of gas
particles at the internal interface is still reconstructed by the
G45 distribution function. Using these distribution functions,
the numerical fluxes and high order moments at the left wall
can be calculated. Similarly, the numerical fluxes and high
order moments at other boundaries can also be calculated.

F. Determination of collision time and streaming time step

Now looking back to Eq. (25), there are still two parame-
ters, the relaxation time τ and streaming time step δt , which
need to be determined. The relaxation time τ is defined by

τ = μ

p
, (61)

where μ is the dynamic viscosity, which is determined by
different collision models, such as the hard sphere (HS) model
and the variable hard sphere (VHS) model.

The streaming time step δt is related to the distribution
function at the cell interface. And the principle to determine
δt is that the free transport distance of the particle should be
smaller than half of the cell size, which means

ξxδt � 1
2�x, ξyδt � 1

2�y (62)

Theoretically, the domain of particle velocity is ξx, ξy ∈
(−∞,∞). However, the infinite value of ξx and ξy will lead
to δt → 0, which will eliminate the effect of the collisional
term in the Boltzmann equation. To resolve this problem, a
reference velocity Uref is introduced to cut off the infinite
domain of particle velocity, and the streaming time step is
determined by

δt = Minimum(�x,�y)

2Uref
. (63)

Under this situation, only the particles with velocity
ξx, ξy ∈ (−Uref ,Uref ) are considered for the streaming pro-
cess, and the particles with velocity beyond the above domain
are ignored. Then, we should check whether particles ignored
due to the cutting off have an effect on the results obtained.
In fact, if Uref is large enough, and the gas particles satisfy
the Maxwellian distribution function, most of the particles
are distributed within ξx, ξy ∈ (−Uref ,Uref ). For example, if
Uref is set as max(U,V ) + 2.0

√
2RT , over 99.0666% of the

particles are in the domain of ξx, ξy ∈ (−Uref ,Uref ). And if
Uref is increased to max(U,V ) + 2.5

√
2RT , the above per-

centage is increased to 99.9186%. For flows in the continuum
and transition regime, the values of high order moments are
small, such that both the G13 and G45 distribution functions
will not deviate from the Maxwellian distribution function
much. Therefore, when Uref is large enough, only a few par-
ticles are ignored for the streaming process when the initial
distribution function is reconstructed by the G13 or G45 dis-
tribution function. The previous test based on the G13-GKS
has demonstrated that when Uref is large enough, it has almost
no effect on the results obtained for both the continuum and
rarefied regime [29]. Therefore, we need to set an adequate
value of Uref to guarantee that most particles are considered
for the streaming process and the insufficient collisional effect
is avoided. In the numerical experiments of this work, the Uref

is set as 5.0
√

2RT0 (T0 is the temperature of the reference
state).

G. Computational sequence

(1) Calculate the moment integrals of the G45 distribu-
tion function 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0, and calculate their

derivatives by the central difference scheme. Use 〈ξ i
xξ

j
y ζ k〉>0

and 〈ξ i
xξ

j
y ζ k〉<0 to calculate the parameters Mi jk by Eq. (43).

(2) With the help of Mi jk , calculate the conservative vari-
ables at the cell interface W using Eqs. (44)–(47). Then use
W to calculate the numerical fluxes F (0)

x by Eq. (30).
(3) With the help of Mi jk , calculate the numerical fluxes

F (1)
x by Eqs. (48)–(51).
(4) Determine the relaxation time τ by Eq. (61) and stream-

ing time step δt by Eq. (63).
(5) Calculate the total numerical fluxes Fx by Eq. (25).
(6) Starting from Mi jk , calculate �i jk by Eq. (55).
(7) With the help of �i jk , calculate the high order moments

at the cell interface using Eqs. (56) and (57). Then use the lin-
ear interpolation method to calculate the high order moments
at the cell center.

(8) Use a similar way to calculate the numerical fluxes in
the y direction.
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(9) Solve the macroscopic governing Eq. (9) by the three-
stage Runge-Kutta scheme.

(10) Repeat steps (1)–(9) until the converged solution is
reached.

III. NUMERICAL EXAMPLES

In this section, some practical flow problems, such as flows
arising from temperature discontinuity, thermal cavity flows
induced by temperature gradients, thermal transpiration flow,
and lid-driven cavity flow, are utilized to test the accuracy of
the present solver. In addition, the ability of the present solver
to capture some physical properties of rarefied flow, such
as the direction of heat flux without temperature gradients
and thermal creep, is also validated. For flows in the con-
tinuum regime, the results of the conventional Navier-Stokes
solver [61] and the circular function-based gas kinetic scheme
(CGKS) [53] are used as the benchmark data. For flows in the
rarefied regime, the results of the DVM [17] are used as the
benchmark data.

A. Case 1: Flows arising from temperature discontinuity

The first test case is the flows arising from temperature
discontinuity. This test case was studied by regularized mo-
ment equations [22], the UGKS [39], the DVM [62], and
the G13-GKS [29] before. The computational domain of this
test case is a square cavity with length L = 1 m. The com-
putational domain is divided uniformly into 60 × 60 cells,
and the Gauss-Hermite quadrature with 28 × 28 mesh points
is used for the DVM. The temperature of the bottom wall
of this square cavity is set as TH = 2T0 = 546 K, while the
temperature of other three walls is set as TC = T0 = 273 K.
The Knudsen number is defined as

Kn = λ0/L, (64)

where λ0 is the mean free path of particle at the reference state,
and it is related to the dynamic viscosity μ0 at the reference
state by

λ0 = 4α0(5 − 2w0)(7 − 2w0)

5(α0 + 1)(α0 + 2)
√

2πRT0

μ0

ρ0
, (65)

where ρ0 is the density of the reference state. α0 and w0

are parameters of the intermolecular interaction models of
the reference state. In this work, the HS model is used for the
reference state, such that α0 = 1 and w0 = 0.5. The dynamic
viscosity μ is determined by

μ = μ0

( T

T0

)w

, (66)

where w is equal to 0.81 in this test case. To compare the
accuracy and efficiency of the present solver with the G13-
GKS, cases with Kn = 0.01, 0.075, 0.15, and 0.3 are tested.

The results obtained by the DVM [17], the G13-GKS, and
the present solver with different Knudsen numbers are shown
in Figs. 1–4. From Fig. 1, we can see that both the results of
the G13-GKS and the present solver can match the DVM data
well for Kn = 0.01. Next, the Knudsen number is increased
to 0.075. We can see from Fig. 2 that the results predicted
by the G13-GKS start to deviate from the DVM slightly, and
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T 0

y/L

G13-GKS

G45-GKS

DVM

0.00 0.25 0.50 0.75 1.00
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T 0

x/L

G13-GKS

G45-GKS

DVM

FIG. 1. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.01.

the results predicted by the present solver can still match the
DVM data very well. For Kn = 0.15, the deviation between
the results of the G13-GKS and the DVM becomes larger
compared with that for Kn = 0.075, but the results predicted
by the G45-GKS can agree with the DVM data. When the
Knudsen number is increased to 0.3, the G13-GKS cannot
obtain accurate results. Nevertheless, the G45-GKS can also
predict quite accurate results under this Knudsen number.
Based on the above analysis, a primary conclusion can be
made that the accuracy is improved apparently after using the
G45 distribution function to initialize the distribution func-
tion at the surrounding points of the cell interface. And this
primary conclusion can also be confirmed by the following
numerical test cases.

Next, the convergence history of the G45-GKS is compared
with that of the G13-GKS in Fig. 5. As shown in Fig. 5, the
residual of the G45-GKS decreases quickly for all Knudsen
numbers, and this decrease is quicker for a larger Knudsen
number. Such quick convergence indicates that the stability of
the G45-GKS is pretty good. Also, we can see that the conver-
gence history of the G45-GKS is very close to the G13-GKS.
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FIG. 2. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.075.

The reason for this phenomenon was indicated in the moment
method [19,46]. That is, the values of high order moments
are usually much smaller than those of low order moments. It
is the low order moments that dominate the results obtained,
while the high order moments mainly make corrections on
the results. In addition, we compare the computational effi-
ciency of the G13-GKS and G45-GKS. For Kn = 0.001, the
G13-GKS uses 188.42 s to get the converged results, while
the G45-GKS uses 764.99 s. For Kn = 0.075, the G13-GKS
uses 64.17 s to get the converged results, while the G45-GKS
uses 278.73 s. For Kn = 0.15, the computational time for the
G13-GKS is 45.58 s, while this time for the G45-GKS is
215.94 s. When Kn is increased to 0.3, the computational time
for the G13-GKS is 48.41 s, while this time for the G45-GKS
is 192.08 s. From the above test, we can see that the G45-GKS
uses about four times the computational time of the G13-GKS
to get converged results. The reason is that more high order
moments are needed to calculate in the G45-GKS, and the
G45 distribution function is more complicated than the G13
distribution function. Nevertheless, since the computational
time needed for the G13-GKS is just about 1% of that for
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1.8
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FIG. 3. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.15.

the DVM [29], the computational efficiency of the G45-GKS
is still much higher than for the DVM.

B. Case 2: Thermal cavity flows induced by temperature
gradients at wall

The second test case is the flows arising from tempera-
ture gradients, and this test case was studied by Yang et al.
[63] using the moment methods. The schematic diagram of
this test case is shown in Fig. 6. For a cavity with length
L = 1 m, the temperature at the left and right walls is kept
as 263 K. At the top wall and bottom wall, the temperature Tf

increases linearly from TC = 263 K to TH = 283 K in the left
half of the domain and decreases linearly from TH = 283 K
to TC = 263 K in the right half of the domain. The computa-
tional domain is divided uniformly into 60 × 60 cells, and the
Gauss-Hermite quadrature with 28 × 28 mesh points is used
for the DVM. In this test case, the Knudsen number is defined
by Eq. (64) and the viscosity at the reference state is given by
Eq. (65). And the real viscosity is given by Eq. (66) with the
reference temperature given as T0 = 273 K.

045302-9



LIU, SHU, CHEN, LIU, YUAN, AND YANG PHYSICAL REVIEW E 105, 045302 (2022)

0.00 0.25 0.50 0.75 1.00
1.0

1.2

1.4

1.6

1.8

T/
T 0

y/L

G13-GKS

G45-GKS

DVM

0.00 0.25 0.50 0.75 1.00
1.00

1.05

1.10

1.15

1.20

1.25

1.30

T/
T 0

y/L

G13-GKS

G45-GKS

DVM

FIG. 4. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.3.

Results of the DVM [17], the G13-GKS, and the G45-GKS
with different Knudsen numbers (Kn = 0.01, 0.075, 0.15, and
0.3) are compared. These results are shown in Figs. 7–10.
Similar to the last test case, both the G13-GKS and the G45-
GKS can predict accurate results when Kn is equal to 0.01.
When Kn is increased to 0.075, a little difference between the
results of the DVM and G13-GKS appears, but the G45-GKS
can also predict accurate results under this Knudsen number.
After increasing Kn further to 0.15, the deviation between the
results of the DVM and G13-GKS gets larger, but the results
of the G45-GKS can still match the DVM data well. Next,
the Knudsen number is increased to 0.3, which is quite large.
Under this Knudsen number, the deviation between the results
of the G13-GKS and the DVM is quite large. In addition, the
results predicted by the G45-GKS cannot match the DVM
data well. Nevertheless, the results predicted by the G45-GKS
are much closer to the DVM data compared with those pre-
dicted by the G13-GKS. The results of the thermal cavity
flows induced by temperature gradients help us to confirm
that the G45-GKS can predict much more accurate results
compared with the G13-GKS.
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FIG. 5. Convergence history of flows arising from tempera-
ture discontinuity for Kn = 0.01, Kn = 0.075, Kn = 0.15, and
Kn = 0.3.

C. Case 3: Lid-driven cavity flow

Next, the lid-driven cavity flow is simulated to examine the
accuracy of the present solver for both the continuum and
rarefied flow problems. This test case has been studied by
John et al. [64,65] using the DSMC method, by Huang et al.
[40] using the UGKS, by Rena et al. [23] using the moment
method, and by Yang et al. [17] using the DVM. The computa-
tional domain of this test case is a cavity with length L = 1 m.
The computational domain is divided uniformly into 60 × 60
cells, and the Gauss-Hermite quadrature with 28 × 28 mesh

FIG. 6. Schematic diagram of thermal cavity flows induced by
temperature gradients at wall.
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FIG. 7. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.01.

points is used for the DVM. The wall temperature is kept at
TW = T0 = 273 K. The U velocity of the top wall is equal
to 0.15

√
2RT0, and the other walls remain stationary. The

reference viscosity μ0 is determined by Eq. (65), and the real
viscosity is given by Eq. (66).

At the beginning, the performance of the present solver
for the rarefied flow problem is examined by comparing the
results of the G13-GKS and G45-GKS with different Knudsen
numbers. As shown in Figs. 11 and 12, when Kn = 0.01 and
Kn = 0.075, both the results predicted by the G13-GKS and
G45-GKS can match those of the DVM basically. When the
Knudsen number is increased to 0.3, from Fig. 13, the results
predicted by the G13-GKS and G45-GKS deviate from the
DVM data. Nevertheless, we can see that the results predicted
by the G45-GKS are more accurate than those predicted by the
G13-GKS, which demonstrates that the G45-GKS can access
rarefied flow problems with a larger Knudsen number.

For lid-driven cavity flow, a well-known rarefied effect
is the direction of heat flux without temperature gradients.
the DVM, the moment method, and the G13-GKS have
demonstrated their ability to capture this important property
[17,23,29]. Next, the temperature contour and corresponding
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FIG. 8. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.075.

heat fluxes predicted by the present solver are plotted to
show the ability of the present solver to capture this property.
Results of Kn = 0.01 and Kn = 0.15 are shown in Figs. 14
and 15, respectively. When Kn = 0.01, both the G13-GKS
and G45-GKS can predict reasonable temperature contour.
And we can see that the heat fluxes predicted by the DVM,
G13-GKS, and G45-GKS go from the upper left corner (low
temperature region) to the upper right corner (high tempera-
ture region). In the rest regions of the cavity, the heat fluxes
go from the high temperature region to the low temperature
region as ordinary continuum flow since the nonequilibrium
effect in these regions is weaker. Next, the Knudsen number
is increased to 0.15, compared with the G13-GKS, the G45-
GKS can predict a maximum temperature and a minimum
temperature much closer to those of the DVM. In addition,
from the heat flux shown in Fig. 15, the direction of heat flux
without temperature gradients can be well captured by both
the G13-GKS and G45-GKS.

After validating the present solver for flows in the rarefied
regime, the accuracy of the present solver for flows in the con-
tinuum regime is then examined by computing the lid-driven
cavity flow with Re = 100, 400, and 1000. And the results
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FIG. 9. Temperature along the vertical centerline (top) and hori-
zontal centerline (bottom) of the cavity for Kn = 0.15.

obtained from the incompressible Navier-Stokes solver [61],
the CGKS [53], the G13-GKS, and the G45-GKS are shown
in Figs. 16–18. From these figures, we can see that the results
obtained by the G45-GKS are pretty accurate, and they are the
same as the results obtained by the G13-GKS. Therefore, we
can conclude that the present solver is quite accurate for flows
in the continuum regime, and the high order moments have
little effect on the results when the flow is in the continuum
regime.

D. Case 4: Thermal transpiration flow

In the last test case, the ability of the present solver to
capture the direction of heat flux without temperature gradi-
ents is validated. In this test case, the ability of the present
solver to capture another important rarefied effect, the thermal
creep, is examined. This test case was studied by Masters and
Ye [66] using the OSIP-DSMC method, by Xu et al. [39]
using the UGKS, and by Yang et al. [67] using the DVM.
The schematic diagram of this test case is shown in Fig. 19,
where we consider a sealed two-dimensional microchannel
whose length is five times the width. The computational
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FIG. 10. Temperature along the vertical centerline (top) and hor-
izontal centerline (bottom) of the cavity for Kn = 0.3.

domain is divided uniformly into 200 × 40 cells, and the
Gauss-Hermite quadrature with 28 × 28 mesh points is used
for the DVM. The left wall of the channel is set as T1 =
273 K, while the right wall of the channel is set as T2 =
573 K. At the top and bottom walls, the temperature varies
linearly along the channel. The pressure inside the channel
is initialized uniformly as 1 atm, such that the mean free
path of gas molecules is 64 nm [39]. In the previous work
[39], it was reported that when the flow is in the continuum
regime, the Navier-Stokes (NS) equations predict a uniform
pressure solution and a pure diffusion temperature solution
without velocity field. When the flow turns to a free molec-
ular regime, the pressure is no longer uniform, and the fluid
molecules will creep from the low temperature region to the
high temperature region, which is called thermal creep flow
[5]. And the effect of thermal creep flow has been applied in
Knudsen pumps such as micropumps and macroscale vacuum
pumps [68].

The pressures along the horizontal centerline for differ-
ent Knudsen numbers are shown in Fig. 20. Since the flows
are in the transition regime in this test case, the pressure is
not uniform, and the gradient of the pressure increases as
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FIG. 11. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Kn = 0.01.

the Knudsen number increases. When Kn is equal to 0.016
(the width of the channel is 4 μm), the gradient of pres-
sure is quite small. We can see that the gradient of pressure
predicted by the G13-GKS is larger than that predicted by
the DVM [67], while the gradient of pressure predicted by
the G45-GKS is close to that predicted by the DVM. For
larger Knudsen numbers (Kn = 0.064 and 0.16, the widths
of the channel are 1 μm and 400 nm), the profiles of pressure
predicted by the G13-GKS deviate from those predicted by
the G45-GKS apparently, while the pressures obtained by
the G45-GKS can match the DVM data basically. When the
Knudsen number reaches 0.64 (the width of the channel is
100 nm), the results obtained by the G13-GKS and G45-
GKS cannot match the DVM data well. Nevertheless, the
G45-GKS can achieve a much better accuracy compared with
the G13-GKS.

Next, the temperature contours and streamlines obtained
by the DVM, G13-GKS, and G45-GKS for different Knud-
sen numbers are shown in Fig. 21 to demonstrate that the
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FIG. 12. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Kn = 0.075.

present solver has the ability to capture the thermal creep
flow. From Fig. 21 we can see that when Kn = 0.016 and
0.064, the temperature contours and streamlines predicted by
the DVM, G13-GKS, and G45-GKS are almost the same.
When Kn is increased to 0.16, the streamlines obtained by
the DVM and G45-GKS are the same, but the streamlines
obtained by the G13-GKS are not smooth. Under these three
Knudsen numbers, the flows go from the high temperature
region to the low temperature region along the horizontal
centerline of the channel. When Kn is increased to 0.64,
thermal creep occurs, and flows go from the low temperature
region to the high temperature region along the horizon-
tal centerline, and we can see that both the G13-GKS and
G45-GKS can capture this phenomenon well. Compared
with the G13-GKS, the G45-GKS can predict streamlines
closer to those predicted by the DVM. All these results
demonstrate that the G45-GKS is much more accurate than
the G13-GKS.
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FIG. 13. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Kn = 0.3.

E. Case 5: One-dimensional shock structure

In the last test case, the performance of the G45-GKS for
the shock problem is examined. This test case was studied
by the DVM by Yang et al. [17]. The reference viscosity
is given by μ0 = (5

√
πρ0U0L0)Kn0/16, where the reference

states ρ0, U0, and L0 are set as 1. The dynamic viscosity is
given by Eq. (66) with w = 0.5. In this test case, the reference
Knudsen number Kn0 is set as 1, and different Mach numbers
(Ma = 1.2 and 1.6) are used to simulate the shock problem.
For Ma = 1.2, the computational domain is x ∈ [−25, 25],
while the computational domain is x ∈ [−10, 10] for Ma =
1.6. In this simulation, these computational domains are dis-
cretized uniformly into 100 cells. When Ma = 1.2, the results
of density, stress, and heat flux are shown in Fig. 22. For
this small Mach number, both the G13-GKS and the G45-
GKS can predict accurate results. Furthermore, the Mach
number is increased to 1.6, and the results are shown in
Fig. 23. Under such Mach number, the results of the G13-
GKS deviate from those of the DVM apparently, while the
results of the G45-GKS can still match those of the DVM.

FIG. 14. Temperature contours and corresponding heat fluxes of
DVM (top), G13-GKS (middle), and G45-GKS (bottom) for Kn =
0.01.

It can be seen from these results that the accuracy of the
G45-GKS is better than that of the G13-GKS for the shock
problem.

IV. CONCLUSIONS

In order to improve the accuracy of the G13-GKS, the
explicit formulations of the G45 function-based gas kinetic
scheme (G45-GKS) are developed in this work. Similar to the
G13-GKS, the G45-GKS simulates flows from the continuum
regime to the rarefied regime by solving the macroscopic
governing equations based on the conservation laws. During
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FIG. 15. Temperature contours and corresponding heat fluxes of
DVM (top), G13-GKS (middle), and G45-GKS (bottom) for Kn =
0.15.

the solution process, the governing equations are discretized
by the FVM, and the numerical fluxes are evaluated by a
local solution to the Boltzmann equation. To simulate flows in
the rarefied regime, the initial distribution function is recon-
structed by the truncated Hermite expansion of distribution
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FIG. 16. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Re = 100.

function, namely the Grad’s distribution function. To achieve
better accuracy than the G13-GKS, the Hermite expansion is
truncated partly to the fifth order, which is the G45 distribu-
tion function. Thanks to the high order truncation of Hermite
expansion, the G45-GKS can achieve much better accuracy
than the G13-GKS. After the reconstruction, the evolution of
distribution function is avoided, and the numerical fluxes are
evaluated by the local solution to the Boltzmann equation.
Therefore, the G45-GKS can achieve a much better compu-
tational efficiency compared with the DVM.

Several numerical examples are simulated to test the accu-
racy of the present solver. According to the numerical results
obtained, the G45-GKS can predict accurate results for flows
in the continuum regime. For flows in the rarefied regime, the
accuracy of the G45-GKS is much improved compared with
the G13-GKS although more computational time is needed.
Thanks to the improvement of accuracy, the G45-GKS can
access a wider range of Knudsen numbers than the G13-GKS,
which makes the G45-GKS a more attractive method for some
practical multiscale flow problems.
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FIG. 17. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Re = 400.
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APPENDIX A: COMPLETE SET OF FORMULATIONS OF
THE MOMENT INTEGRALS OF G45 DISTRIBUTION

FUNCTION

In this appendix, the complete set of formulations of the
moment integrals of the G45 distribution function used in
Sec. II C will be given. In Sec. II C, 〈ξ i

xC
j

y ζ k〉>0 is given in
Eq. (40), and �(σ ) is given in Eq. (39). In this appendix, �(q),
�(m), �(R), �(�), �(φ), �(ψ ), and �(	) will be given to
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FIG. 18. U velocity along the vertical centerline (top) and V
velocity along the horizontal centerline (bottom) of the cavity for
Re = 1000.

complete the full formulation of 〈ξ i
xC

j
y ζ k〉>0:

�(q) = 0.4λ
qx
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x C j

y ζ kC2
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FIG. 19. Schematic diagram of thermal transpiration flow.
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FIG. 20. Pressure along the horizontal centerline for Kn = 0.016
(top left), Kn = 0.064 (top right), Kn = 0.16 (bottom left), Kn =
0.64 (bottom right).
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FIG. 21. Temperature contours and streamlines for Kn = 0.016,
Kn = 0.064, Kn = 0.16, Kn = 0.64.
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FIG. 22. Density (top), stress, and heat flux (bottom) of one-
dimensional (1D) shock structure with Ma = 1.2. Red dashed line:
stress of G13-GKS; blue line: stress of G45-GKS; black circle: stress
of DVM; dark green dashed line: heat flux of G13-GKS; magenta
line: heat flux of G45-GKS; orange circle: heat flux of DVM.
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FIG. 23. Density (top), stress and heat flux (bottom) of 1D shock
structure with Ma = 1.6. red dashed line: stress of G13-GKS; blue
line: stress of G45-GKS; black circle: stress of DVM; dark green
dashed line: heat flux of G13-GKS; magenta line: heat flux of G45-
GKS; orange circle: heat flux of DVM.
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− 〈
ξ i

xC
0
x C j+3

y ζ k
〉e
>0

)

− 3

(
ψxxx

12p(RT )3 + ψxyy

12p(RT )3

)(
2λ

9

〈
ξ i

xC
1
x C j

y ζ k+2C2
〉e
>0

− 〈
ξ i

xC
1
x C j

y ζ k+2
〉e
>0

)

− 3

(
ψxxy

12p(RT )3 + ψyyy

12p(RT )3

)(
2λ

9

〈
ξ i

xC
0
x C j+1

y ζ k+2C2〉e
>0

− 〈
ξ i

xC
0
x C j+1

y ζ k+2〉e
>0

)
, (A6)

�(	) = 	x

40p(RT )2

(
4λ2

7

〈
ξ i

xC
1
x C j

y ζ kC4
〉e
>0

− 4λ
〈
ξ i

xC
1
x C j

y ζ kC2
〉e
>0

+ 5
〈
ξ i

xC
1
x C j

y ζ k
〉e
>0

)

+ 	y

40p(RT )2

(
4λ2

7

〈
ξ i

xC
0
x C j+1

y ζ kC4〉e
>0

− 4λ
〈
ξ i

xC
0
x C j+1

y ζ kC2〉e
>0

+ 5
〈
ξ i

xC
0
x C j+1

y ζ k
〉e
>0

)
. (A7)

APPENDIX B: BASIC FORMULATIONS OF HIGH ORDER MOMENTS

In Sec. II D, the formulations of stresses and heat fluxes are given with the help of �i jk . Next, other high order moments,
such as mi jk , Ri j , �, φi jkl , ψi jk , and 	i introduced in Eqs. (15)–(28) should also be calculated. In this appendix, the explicit
formulations of other high order moments are given with the help of �i jk defined by Eq. (54):

mxxx = �300 − 3
5 (�300 + �120 + �102),

mxyy = �120 − 1
5 (�300 + �120 + �102),

myyy = �030 − 3
5 (�210 + �030 + �012),

mxxy = �210 − 1
5 (�210 + �030 + �012), (B1)

Rxx = 1
3 (2�400 + �220 − �040 + �202 − 2�022 − �004) − 7σxx,

Rxy = 1
3 (�310 + �130 + �112) − 7σxy,

Ryy = 1
3 (−�400 + �220 + 2�040 − 2�202 + �022 − �004) − 7σyy, (B2)

� = �400 + 2�220 + �040 + 2�202 + �022 + �040 − 15
δt

τ + δt
ρ(RT )2, (B3)

φxxxx = 1
35 (8�400 − 24�220 − 24�202 + 3�040 + 6�022 + 3�004),

φxxyy = 1
35 (−4�400 + 27�220 − 3�202 − 4�040 − 3�022 + �004),

φyyyy = 1
35 (3�400 − 24�220 + 6�202 + 8�040 − 24�022 + 3�004),

φxxxy = 1
7 (4�310 − 3�130 − 3�112),

φxyyy = 1
7 (−3�310 + 4�130 − 3�112), (B4)

ψxxx = 1
5 (2�500 − �320 − 3�140 − �302 − 6�122 − 3�104) − 9RT mxxx,

ψxyy = 1
5 (−�500 + 3�320 + 4�140 − 2�302 + 3�122 − �104) − 9RT mxyy,

ψxxy = 1
5 (4�140 + 3�230 − �050 + 3�212 − 2�032 − �014) − 9RT mxxy,

ψyyy = 1
5 (−3�140 − �230 + 2�050 − 6�212 − �032 − 3�014) − 9RT myyy, (B5)
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	x = �500 + 2�320 + �140 + 2�302 + 2�122 + �104 − 28RT qx,

	y = �410 + 2�230 + �050 + 2�212 + 2�032 + �014 − 28RT qy. (B6)

APPENDIX C: BASIC FORMULATIONS OF NUMERICAL
FLUXES AND HIGH ORDER MOMENTS AT THE

HORIZONTAL CELL INTERFACE (IN THE y DIRECTION)

In the main text of this paper, the numerical fluxes and
high order moments at the vertical cell interface (in the x
direction) are given. In this appendix, the explicit formulations
of numerical fluxes and high order moments at the horizontal
cell interface (in the y direction) will be given. Similar to
numerical fluxes in the x direction, the numerical fluxes in
the y direction can also be derived from the moment integrals
of the G45 distribution functions 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0

with their derivatives. In this appendix, 〈· · · 〉>0 or 〈· · · 〉<0

mean that the integral domain of ξy is (0,+∞) or (−∞, 0),
while the integral domain of ξx and ζ is (−∞,+∞). To
calculate 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0, the moment integrals of

〈Ci
xξ

j
y ζ k〉>0 and 〈Ci

xξ
j

y ζ k〉<0 are calculated first. To calculate
〈Ci

xξ
j

y ζ k〉>0 and 〈Ci
xξ

j
y ζ k〉<0, the moment integrals are needed.

The moment integrals of the Maxwellian distribution function
should be given first. In the main text, 〈Cn

x 〉e, 〈Cn
y 〉e, and 〈ζ n〉e

have been given by Eq. (34), and the moment integrals of
〈ξ n

y 〉e
>0 and 〈ξ n

y 〉e
<0 are given as

〈
ξ 0

y

〉e
>0

= 1

2
[1 + erf (

√
λlV l )],

〈
ξ 1

y

〉e
>0

= V l
〈
ξ 0

y

〉e
>0

+ 1

2

e−λl (V l )2

√
λlπ

,

〈
ξ k+2

y

〉e
>0

= U l
〈
ξ k+1

y

〉e
>0

+ k + 1

2λl

〈
ξ k

y

〉e
>0

, k = 0, 1, 2, ... (C1)

and

〈
ξ 0

y

〉e
<0

= 1

2
erfc(

√
λrV r ),

〈
ξ 1

y

〉e
<0

= V r
〈
ξ 0

y

〉e
<0

− 1

2

e−λr (V r )2

√
λrπ

,

〈
ξ k+2

y

〉e
<0

= V r
〈
ξ k+1

y

〉e
<0

+ k + 1

2λr

〈
ξ k

y

〉e
<0

, k = 0, 1, 2, ..., (C2)

where l and r mean the bottom side and the upper side of
cell interface. Take the moment integrals at the bottom side of
cell interface as an example. At first, we need to calculate the
moments:

〈
ξ j

y Ci
xC

n
y ζ k

〉e
>0

= 〈
Ci

x

〉e〈
ξ j

y Cn
y

〉e
>0

〈ζ k〉e, (C3)

where 〈ξ k
y Cn

y 〉e
>0 is calculated by binomial theorem as

〈
ξ k

y Cn
y

〉e
>0

= (−1)n−m
n∑

m=0

n!

m!(n − m)!

〈
ξm+k

y

〉e
>0

(V l )n−m.

(C4)

Next, with the help of 〈ξ j
y Ci

xC
n
y ζ k〉e

>0, we can calculate 〈Ci
xξ

j
y ζ k〉>0, which is given as〈

Ci
xξ

j
y ζ k

〉
>0

= 〈
ξ j

y Ci
xC

0
y ζ k

〉e
>0

+ �(σ ) + �(q) + �(m) + �(R) + �(�) + �(φ) + �(ψ ) + �(	), (C5)

where

�(σ ) = σxx

2pRT

〈
ξ j

y Ci+2
x C0

y ζ k
〉e
>0

+ 2
σxy

2pRT

〈
ξ j

y Ci+1
x C1

y ζ k
〉e
>0

+ σyy

2pRT

〈
ξ j

y Ci
xC

2
y ζ k

〉e
>0

−
(

σxx

2pRT
+ σyy

2pRT

)〈
ξ j

y Ci
xC

0
y ζ k+2

〉e
>0

, (C6)

�(q) = 0.4λ
qx

pRT

〈
ξ j

y Ci+1
x C0

y ζ kC2
〉e
>0

+ 0.4λ
qy

pRT

〈
ξ j

y Ci
xC

1
y ζ kC2

〉e
>0

− qx

pRT

〈
ξ j

y Ci+1
x C0

y ζ k
〉e
>0

− qy

pRT

〈
ξ j

y Ci
xC

1
y ζ k

〉e
>0

, (C7)

�(m) = mxxx

6p(RT )2

〈
ξ j

y Ci+3
x C0

y ζ k
〉e
>0

+ 3
mxyy

6p(RT )2

〈
ξ j

y Ci+1
x C2

y ζ k
〉e
>0

− 3

(
mxxx

6p(RT )2 + mxyy

6p(RT )2

)〈
ξ j

y Ci+1
x C0

y ζ k+2
〉e
>0

+ myyy

6p(RT )2

〈
ξ j

y Ci
xC

3
y ζ k

〉e
>0

+ 3
mxxy

6p(RT )2

〈
ξ j

y Ci+2
x C1

y ζ k
〉e
>0

− 3

(
mxxy

6p(RT )2 + myyy

6p(RT )2

)〈
ξ j

y Ci
xC

1
y ζ k+2

〉e
>0

, (C8)

�(R) = Rxx

4p(RT )2

(
2λ

7

〈
ξ j

y Ci+2
x C0

y ζ kC2〉e
>0

− 〈
ξ j

y Ci+2
x C0

y ζ k
〉e
>0

)
+ 2

Rxy

4p(RT )2

(
2λ

7

〈
ξ j

y Ci+1
x C1

y ζ kC2〉e
>0

− 〈
ξ j

y Ci+1
x C1

y ζ k
〉e
>0

)

+ Ryy

4p(RT )2

(
2λ

7

〈
ξ j

y Ci
xC

2
y ζ kC2

〉e
>0

− 〈
ξ j

y Ci
xC

2
y ζ k

〉e
>0

)

−
(

Rxx

4p(RT )2 + Ryy

4p(RT )2

)(
2λ

7

〈
ξ j

y Ci
xC

0
y ζ k+2C2

〉e
>0

− 〈
ξ j

y Ci
xC

0
y ζ k+2

〉e
>0

)
, (C9)

�(�) = �

8pRT

(
4λ2

15

〈
ξ j

y Ci
xC

0
y ζ kC4

〉e
>0

− 4λ

3

〈
ξ j

y Ci+2
x C0

y ζ kC2
〉e
>0

+ 〈
ξ j

y Ci
xC

0
y ζ k

〉e
>0

)
, (C10)
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�(φ) = φxxxx

24p(RT )3

〈
ξ j

y Ci+4
x C0

y ζ k
〉e
>0

+ φyyyy

24p(RT )3

〈
ξ j

y Ci
xC

4
y ζ k

〉e
>0

+4
φxxxy

24p(RT )3

〈
ξ j

y Ci+3
x C1

y ζ k
〉e
>0

+ 4
φxyyy

24p(RT )3

〈
ξ j

y Ci+1
x C3

y ζ k
〉e
>0

+6
φxxyy

24p(RT )3

〈
ξ j

y Ci+2
x C2

y ζ k
〉e
>0

− 6

(
φxxxx

24p(RT )3 + φxxyy

24p(RT )3

)〈
ξ j

y Ci+2
x C0

y ζ k+2〉e
>0

− 6

(
φxxyy

24p(RT )3 + φyyyy

24p(RT )3

)〈
ξ j

y Ci
xC

2
y ζ k+2〉e

>0

− 12

(
φxxxy

24p(RT )3 + φxyyy

24p(RT )3

)〈
ξ j

y Ci+1
x C1

y ζ k+2
〉e
>0

+
(

φxxxx

24p(RT )3 + 2
φxxyy

24p(RT )3 + φyyyy

24p(RT )3

)〈
ξ j

y Ci
xC

0
y ζ k+4

〉e
>0

, (C11)

�(ψ ) = ψxxx

12p(RT )3

(
2λ

9

〈
ξ j

y Ci+3
x C0

y ζ kC2
〉e
>0

− 〈
ξ j

y Ci+3
x C0

y ζ k
〉e
>0

)

+ 3
ψxyy

12p(RT )3

(
2λ

9

〈
ξ j

y Ci+1
x C2

y ζ kC2
〉e
>0

− 〈
ξ j

y Ci+1
x C2

y ζ k
〉e
>0

)

+ 3
ψxxy

12p(RT )3

(
2λ

9

〈
ξ j

y Ci+2
x C1

y ζ kC2
〉e
>0

− 〈
ξ j

y Ci+2
x C1

y ζ k
〉e
>0

)

+ ψyyy

12p(RT )3

(
2λ

9

〈
ξ j

y Ci
xC

3
y ζ kC2

〉e
>0

− 〈
ξ j

y Ci
xC

3
y ζ k

〉e
>0

)

[4pt] − 3

(
ψxxx

12p(RT )3 + ψxyy

12p(RT )3

)(
2λ

9

〈
ξ j

y Ci+1
x C0

y ζ k+2C2
〉e
>0

− 〈
ξ j

y Ci+1
x C0

y ζ k+2
〉e
>0

)

− 3

(
ψxxy

12p(RT )3 + ψyyy

12p(RT )3

)(
2λ

9

〈
ξ j

y Ci
xC

1
y ζ k+2C2

〉e
>0

− 〈
ξ j

y Ci
xC

1
y ζ k+2

〉e
>0

)
, (C12)

�(	) = 	x

40p(RT )2

(
4λ2

7

〈
ξ j

y Ci+1
x C0

y ζ kC4〉e
>0

− 4λ
〈
ξ j

y Ci+1
x C0

y ζ kC2〉e
>0

+ 5
〈
ξ j

y Ci+1
x C0

y ζ k
〉e
>0

)

+ 	y

40p(RT )2

(
4λ2

7

〈
ξ j

y Ci
xC

1
y ζ kC4

〉e
>0

− 4λ
〈
ξ j

y Ci
xC

1
y ζ kC2

〉e
>0

+ 5
〈
ξ j

y Ci
xC

1
y ζ k

〉e
>0

)
. (C13)

With the help of Eq. (C6) and the binomial theorem, the
〈ξ i

xξ
j

y ζ k〉>0 can be calculated as

〈
ξ i

xξ
j

y ζ k
〉
>0

=
i∑

m=0

i!

m!(i − m)!

〈
Cm

x ξ j
y ζ k

〉
>0

(U l )
i−m

. (C14)

Similar to the above strategy, 〈ξ i
xξ

j
y ζ k〉<0 can be calculated

with the integrals conducted at the upper side of cell interface.
With the help of 〈ξ i

xξ
j

y ζ k〉>0 and 〈ξ i
xξ

j
y ζ k〉<0, the parameter

Mi jk can be defined by Eq. (43). And the conservative vari-
ables at the cell interface can be calculated by Eqs. (44)–(47).
Therefore, Fy(0) can be calculated from these conservative
variables:

Fy(0) =

⎛
⎜⎜⎝

ρV
ρUV

ρV 2 + P
(ρE + p)V

⎞
⎟⎟⎠, (C15)

and the numerical flux Fy(1) can be given as

F y(1)
ρ = M010, (C16)

F y(1)
ρU = M110, (C17)

F x(1)
ρV = M020, (C18)

F y(1)
ρE = 1

2 (M210 + M030 + M012). (C19)

After calculating the numerical fluxes at the cell inter-
face, the high order moments at the cell interface should be
calculated. Starting from Mi jk , the parameters �i jk can be
calculated by Eq. (55). Then the stresses and heat fluxes can
be calculated by Eqs. (56) and (57), respectively, and the other
high order moments can be calculated by the equations given
in Appendix B.
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