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Machine learning of consistent thermodynamic models using automatic differentiation
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We propose a data-driven method to describe consistent equations of state (EOS) for arbitrary systems.
Complex EOS are traditionally obtained by fitting suitable analytical expressions to thermophysical data. A key
aspect of EOS is that the relationships between state variables are given by derivatives of the system free energy.
In this work, we model the free energy with an artificial neural network and utilize automatic differentiation
to directly learn the derivatives of the free energy. We demonstrate this approach on two different systems, the
analytic van der Waals EOS and published data for the Lennard-Jones fluid, and we show that it is advantageous
over direct learning of thermodynamic properties (i.e., not as derivatives of the free energy but as independent
properties), in terms of both accuracy and the exact preservation of the Maxwell relations. Furthermore, the
method implicitly provides the free energy of a system without explicit integration.
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I. INTRODUCTION

Thermophysical properties of liquids are routinely mea-
sured in laboratory and computational experiments and then
summarized in corresponding data sets [1–4]. However, the
amount of available data is small compared to the total number
of systems of interest for both pure components and mixtures
[5]. Given the time and resource cost of direct measure-
ments, scientists have used empirical functional forms for
equations of state (EOS), which model the relationship of
state variables like density, pressure, and temperature [6–8].
The derivation of those functional forms has been driven by
a combination of physical laws, statistical mechanics, and
choice of empirical functional forms [9,10]. Although these
approaches have proven useful, limitations in applicability
of statistical mechanics for complex systems and in choice
of functional form may hinder the development of a general
ansatz to estimate EOS. Therefore, we propose to utilize
automatic differentiation (AD) [11,12] in combination with
artificial neural networks (ANNs) [13] to model thermophys-
ical properties and to implicitly compute the free energy
of a system. AD consists of a set of high-level algorithms
for efficiently computing certain derivatives of computations
without numerical approximation. The goal of the proposed
method is to learn the properties of interest as a derivative
of a model free energy with respect to density, pressure, and
temperature, thereby ensuring the thermodynamic consistency
of the resulting model. This process can be applied regardless
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of the availability of free energy data in the examined data
set.

A similar philosophy has been utilized by Christensen et al.
to learn potential energy surfaces for atoms using response
operators [14]. Rather than kernel-based machine learning
(ML) methods applied by Christensen et al., we employ neural
networks, which is advantageous because the response func-
tions are automatically generated.

ML approaches to fitting EOS have recently been studied
[15,16]. EOS fits are often achieved by direct minimization
of the difference between a measured property and its corre-
sponding predicted value [17,18]. Although straightforward,
this direct approach can lead to inconsistencies in the EOS via
violation of the Maxwell relations, as we will show. Another
approach to model EOS is to train ML models to the function
that, when differentiated, generates the quantities of interest.
Those functions can either be particle-particle interactions
[19], the partition function [20], or the system’s free energy
[21]. However, those methods rely on accurate sampling of
the phase space, which for most systems is a nontrivial task.
Therefore, we propose an indirect method to model the free
energy of a system from data on the free energy derivatives,
which are easier to compute and thus effectively reduce the
number of expensive and complex computations of the phase
space. The power of neural networks to estimate a free en-
ergy has been demonstrated by Nicoli et al. in the context
of lattice fluid theory [22]. The authors train an estimator in
order to predict the free energy from data sets of microscopic
configurations. This is conceptually different from the method
proposed here, which learns from thermodynamic observables
that can be, for example, measured in experiment. We suggest
training a NN in order to predict derivatives of the free en-
ergy and by doing so implicitly matching the underlying free
energy.
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FIG. 1. (a) Loss function for the FE-NN model. Blue corresponds to the training set and orange to the validation set. (b) Loss function for
the MT-NN model. Blue corresponds to the training set and orange to the validation set.

II. METHOD

While the model could be based in any thermodynamic
potential, in this work we choose to start with the Helmholtz
free energy A defined in the canonical ensemble:

A(N,V, T ) = U − T S. (1)

A is a function of the particle number N , the volume V , and
temperature T . U is the internal energy of a system, and S
is the entropy. Thermophysical properties such as pressure
P, chemical potential μ, and the entropy S can be computed
from first-order partial derivatives of the free energy: P =
−( ∂A

∂V )N,T , μ = ( ∂A
∂N )V,T , S = −( ∂A

∂T )V,T , U = A + T S = A −
T ( ∂A

∂T )V,T . Further, properties like the isothermal compress-
ibility β, the thermal pressure coefficient γ , the isochoric heat
capacity cv , and the thermal expansion coefficient α can be
computed from first-order derivatives of the thermophysical
properties P and U :
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α = βγ . (5)

While these relations are well known, it is difficult to solve
them in practice because either the functional form of the
free energy is not known or it is too complicated to directly
compute the free energy in order to apply numerical differen-
tiation. Therefore, we propose that the free energy of a system
Â be described with a learned function f̂ which depends on
the density ρ = N/V and the temperature T . f̂ is expressed in
form of an ANN, whose parameters � (weights and biases for
each layer) are optimized during learning:

Â = N f̂�[ρ, T ]. (6)

The factor N ensures that the learned free energy Â is an
extensive function, whereas the learning itself is performed
on intensive variables.

From now on we refer to this model as the Free Energy
Neural Network (FE-NN) model. The parameters � are opti-
mized by minimization of the following loss function:

L[�] = λP

[
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Â − T

(
∂Â
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, (7)

where Â is the learned free energy, and λP, λμ, and λU are
weighting parameters whose exact forms are

λP = 1
1
l

∑l
i=1(Pi − 〈P〉)2

= 1

σP
, (8)
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Ni

)2 = 1

N2σU
N

, (10)

where l equals the number of points in a corresponding data
set and all variables have the same meaning as previously
defined. Each term of the loss function is normalized with
the corresponding variance σ . We desire to ensure that all
terms in the loss are intensive; therefore for the internal energy
we have to take the particle number N into account. The
loss function summarizes the main idea of this work: We are
utilizing AD within the model to seek the best approximation
for the free energy A subject to the known values of thermo-
physical properties P, μ, and U . This is in addition to the
standard use of AD in computing the derivative of the loss
function with respect to the parameters, ∇�L, to update the
network; multiple, nested calls to AD are made to achieve
fitting to the derivatives of the free energy. Thus if we learn
the derivatives of the free energy, we implicitly also model
the free energy of the system without performing an explicit
integration. At the same time, we can further utilize AD to
compute second derivatives β, γ , and cv . This enables a com-
plete and consistent thermodynamic modeling technique for
an arbitrary material from data. We contrast this with a typical
ML approach, where differences between target and predicted
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TABLE I. Mean absolute error between predicted and true data
generated from the VdW EOS for the following: the chemical poten-
tial μ, pressure P, internal energy U , and isothermal compressibility
β. For the FE-NN model, we also give the corresponding errors for
the free energy A and entropy S.

Model μ P U A S β

FE-NN 0.0009 0.0003 0.0010 0.0005 0.0032 0.2331
MT-NN 0.0172 0.0023 0.0042 — — 1.0270
KRR 0.0038 0.0077 0.0002 — — 16.2914

properties are directly minimized. For this Multi-Task Neural
Network (MT-NN) model the loss function takes the follow-
ing form: L[�] = λP[P̂ − P]2 + λμ[μ̂ − μ]2 + λU [Û − U ]2,

where P̂, Û , and μ̂ indicate the properties learned by the
network. The MT-NN uses the same weight functions λ and
intensive learning formulation as the FE-NN; inputs are in-
tensive, and the extensive energy is predicted with a scaling
factor of N .

III. TRAINING PROCEDURE AND DATA PREPARATION

A. Van der Waals equation of state

The first test case for both ML models is the the van der
Waals equation of state (VdW EOS) defined by its underlying
free energy:

A(N,V, T ) = −NkBT

[
1 + ln

(
(V − Nb)T 3/2

N


)
− aN2

V

]
.

(11)
For constants, a = 0.01, b = 0.01, and 
 = 1.0, we generate
1000 random state points for each independent variable. For
N , 1000 values are generated in the range between 0.5 and 2.
For V , 1000 random values are generated in the range between
3 × 2.8 and 3/2.8. This leads to reduced volumes v = V/N in
the range between 20 vc and 500 vc, where vc is the critical
volume. Finally, for T 1000 values are randomly generated
in the range between (8/27)/3 and (8/27) × 3, leading to
temperatures above and below the critical temperature of the
VdW gas. This represents a physical but simple thermody-
namic system of a low-density gas. The true values for the free
energy are computed according to Eq. (11) for this data set.
By applying automatic differentiation on that free energy the
corresponding true values for pressure P, chemical potential
μ, internal energy U , and entropy S are obtained. As stated
above, learning of the FE-NN model is performed on a per-
atom (intensive) basis. We feed ρ = N/V and T to the neural
network, and all extensive target properties are normalized
with the corresponding particle number. The initial weights
of the ANN are assigned with the Xavier function [23] with

FIG. 2. Maxwell relation for the VdW EOS evaluated from
(a) the FE-NN, (b) the MT-NN, and (c) the KRR model.

a gain of 1.5. Training is performed for 10 000 epochs with
a batch size of 20. Each neuron is activated with the Softmax
function [24,25]. The Adam optimizer is applied to minimize
the loss function with an initial learning rate of 0.001. If the
loss function does not change over 500 epochs, the learning
rate is automatically decreased by a factor of 0.5. We train
both the FE-NN model and MT-NN model, to 20% of the 3000
data points, use 10% for validation, and test on the remaining
70%.

B. Lennard-Jones system

The data in [26] provide a suitable test case for the two ML
approaches to estimate EOS. Thermodynamic properties have
been collected from finite-size molecular dynamics simula-
tion of the Lennard-Jones (LJ) fluid that covers homogeneous
phases, vapor-liquid equilibrium, and regions above and be-
low the critical point of the models. However, not all data
sets summarized therein contain all thermophysical proper-
ties. Therefore, we first extract all data sets which contain the
following thermophysical properties: μ, P, U , α, β, γ , and
cv . Second, some regions in phase space are sparsely sampled
and are thus difficult to learn. As such, we include only points
with temperature T < 2 and a density ρ > 0.05. All values
are given in LJ units. In the end, we extract data for 1721
state points. In the data set only the excess part of properties
like the chemical potential are provided; thus we manually
added the ideal gas contribution where needed. Further, the
data set contains only information on the density and not on
particle numbers and volume. We therefore generated random
particle numbers in the range between 0 and 1, and computed
the volume according to V = N/ρ. Training is performed in
total on 70% on the data total: 40% are used for direct training,
and 30% are considered for validation. The test set contains
the remaining 30%. The hyperparameters for learning are the
same as for the VdW EOS.

IV. RESULTS

In the following, we show results from the subsequent
network architecture for the free energy model: one input

TABLE II. Standard deviations (σ ) for the mean absolute error values reported in Table I.

Model σμ σP σU σA σS σβ

FE-NN 3.37 × 10−4 5.8 × 10−5 4.11 × 10−4 3.79 × 10−4 1.871 × 10−3 8.38474 × 10−2

MT-NN 1.83860 × 10−2 2.5586 × 10−3 5.2906 × 10−3 — — 1.100733
KRR 9.11 × 10−4 1.3077 × 10−3 0 — — 9.84037
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FIG. 3. (a) Loss function for the FE-NN model. Blue corresponds to the training set and orange to the validation set. (b) Loss function for
the MT-NN model. Blue corresponds to the training set and orange to the validation set.

layer with two neurons, three hidden layers with 16 neurons,
and one output layer with one neuron for free energy. The
ANN for the multitask learner has the same internal structure,
but one output layer each for P̂, Û , and μ̂. Results for other
architectures are presented in corresponding Tables S I–III and
S V–VII in the Supplemental Material [27]. Our models are
implemented in PyTorch [28].

A. Van der Waals equations of state

We first assess the two models on the the VdW EOS.
This simple test case allows a comparison of the ML models
with an analytical expression. In Fig. 1(a) we show the loss
function of the FE-NN model as a function of the number of
epochs. The blue line corresponds to the randomly selected
20% training data, whereas the orange line corresponds to the
10% of the training data which are used for validation. As
one sees, the learning rate is lowered, which means a low-cost
combination of parameters is found. Additionally, the final
model chosen is the one that minimizes the validation error,
also known as an early stopping procedure. In Fig. 1(b) we
show the loss function of the MT-NN model, which shows
similar behavior. In Table I we present the mean absolute
error (MAE) values between the ground truth and the ML
predictions. The MAE values are averaged over four ML runs,
each initialized with a different random seed for the training,

validation, and test splitting. For more details see Table S IV
[27]. One sees that the FE-NN is consistently more accurate
than the MT-NN. In addition we also present results for a
kernel ridge regression (KRR) ML model for μ, P, and U .
This model has been established in [18] to learn P and U for
LJ fluids. The model utilizes a polynomial kernel of the fourth
order:

K (xi, x j ) = (
γ xT

i x j + c0
)4

, (12)

where xi and x j are input features. γ and c0 are optimized
using a grid search where the optimization scoring function
was the mean absolute percent error of the correspond-
ing thermodynamic property. The conditioning factor α [see
Eq. (14)] in the KRR process is set to one. As one sees, with
KRR one obtains MAE values which are intermediate to the
NN models for the three target properties μ, P, and U . In
Table II we show the standard deviation for the MAE values
computed over the different random seeds used to split the
data (see Table S IV for more information [27]). We see that
on average the standard deviations for the FE-NN model are
at least one order of magnitude smaller than for the MT-NN
model. The KRR model is again intermediate between the
two NN models. This confirms the higher accuracy of the FE-
NN model over the MT-NN model indicated from the MAE
values. Moreover, in Table I we present the MAE values for
the free energy A and the entropy S using the FE-NN. These

(a) (b)

FIG. 4. The LJ system. Color indicates isothermal compressibility β. (a) Data; training points (circles) and validation and testing points
(triangles). (b) FE-NN. Note that the model predicts an unstable region even when no data are available in this region of phase space.
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quantities are completely unavailable in the MT-NN and KRR
model, but easy to compute with the FE-NN using AD. Al-
though A and S are not explicitly part of the training, the
FE-NN achieves high accuracy for both properties, whereas
the MT-NN and the KRR have no notion of these two quanti-
ties. Information regarding the free energy and entropy enter
the training data only through their derivatives, and as a con-
sequence MT-NN and KRR fail to infer prediction functions
which can be consistently thermodynamically integrated, be-
cause the Maxwell relations are violated as we will show.
Only the FE-NN model is able to implicitly learn the free
energy of a system because it treats μ, P, and U as true deriva-
tives of a single state function and thus produces predictions
which can be consistently thermodynamically integrated. In
addition, we assess the performance of the three models in
predicting the isothermal compressibility. The analytical value
for β for the VdW EOS is

β = − 1

V

1(
∂P
∂V

)
T

= − 1

V

1
2aN2

V 3 − NkT
(V −Nb)

. (13)

The values for the ML models are obtained from differen-
tiation of the learned pressure with respect to the volume
[see Eq. (2)]. For the NN models this is easily be obtained
via AD from the network architecture, whereas for KRR we
differentiate via the equation

ypred(x) = K (x, xi )α = (
γ xT

i x + c0
)4

α, (14)

∂ypred(x)

∂q
= 4γ x j (γ xT x j + c0)3α

∂x

∂q
, (15)

where ypred is a predicted quantity (μ, P, or U ) from the Kernel
model, q is a thermodynamic input (N , V , or T ), and all other
variables are as previously defined. From the MAE of β (see
Table I) one sees that results for the FE-NN are more accurate
than for the MT-NN for which the MAE is about five times
larger. The KRR model has the largest MAE value for β.
Besides the higher accuracy in reproducing thermophysical
properties, only the FE-NN is able to construct a consistent
thermodynamic model. To show this, we validate both models
against the Maxwell relation:(

∂P

∂N

)
S,V

= −
(

∂μ

∂V

)
S,N

. (16)

The derivatives for the NN model are again obtained via AD
and for KRR via Eq. (15). From Fig. 2 one sees that only the
FE-NN can exactly recover the Maxwell relation, whereas the
other two models show deviations from exact correlation. This
demonstrates explicitly that there is no free energy state func-
tion that corresponds to the predictions of the MT-NN and the
KRR approach, highlighting the key advantage of the FE-NN
approach. In light of the fact that the this dilute VdW system is
so simple, this shows that there is a fundamental inconsistency
that arises when applying ML to thermodynamic data without
respecting the Maxwell relations, which can be overcome with
the FE-NN.

B. Lennard-Jones equations of state

In order to show the generality of the method, we now
move to the more applied example, EOS for LJ fluids [29]. In

FIG. 5. Maxwell relation for the LJ EOS evaluated from (a) the
FE-NN and (b) the MT-NN.

Fig. 3(a) we show the loss function of the FE-NN model as a
function of the number of epochs. The blue line corresponds to
the randomly selected 40% of the data which has been used for
training, whereas the orange line corresponds to left-out 30%
of the training data set against which the model is validated.
We can see that for both data sets the loss function is well
optimized. In Fig. 3(b) we show the loss function of the
MT-NN model as a function of the number of epochs. The
MT-NN learner shows acceptable minimization of the loss
over the training data. However, for validation it reaches a
plateau value, which indicates overfitting and consequently
will lead to poor transferability. We want to emphasize that
overfitting does not occur in general for the MT-NN model.
We tested different network architectures (see Tables S V–VII
[27]) and different random seeds (Table S VIII [27]) to split
the data into training, validation, and test, and only in some
cases is the overfitting observed. In Fig. 4(a) we illustrate
some of the phase space covered. Figure 4(b) shows the FE-
NN reconstruction in this space. In Fig. 5 we validate both
methods against the Maxwell relation of Eq. (16), and see
again that only the FE-NN can accurately recover it, just as in
the VdW system. Table III presents the MAE values for both
models for first- and second-order thermodynamic properties
on the LJ system. The FE-NN again does consistently better
than the MT-NN, especially for the second-order derivatives.
MAE values are averaged over four independent runs using
different seed values for training, validation, and test splitting
(see Table S VIII [27]), the corresponding standard deviations
are reported in Table IV. The large deviations for β and cv

were found to be associated with the critical region [see phase
diagrams in Figs. S4 (A)–(C) and (H)–(I) [27]]. This high-
lights possible grounds for improvement in the model; smooth
models can encounter difficulties in the presence of first- or
second-order phase transitions. Finally, we present a practical
demonstration of the model in Fig. 6. The FE-NN was applied
to a 1000 × 1000 grid of points covering the full range of

TABLE III. Mean absolute error between predicted and true
data obtained from the LJ EOS [26]. Thermophysical properties
considered are the isothermal compressibility β, thermal pressure
coefficient γ , isochoric heat capacity cv , and thermal expansion
coefficient α.

Model μ P U β γ cv α

FE-NN 0.051 0.028 0.010 3.623 0.144 0.131 0.613
MT-NN 0.112 0.064 0.038 14.175 0.648 0.145 7.174
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TABLE IV. Standard deviations (σ ) for the mean absolute error values reported in Table III.

Model σμ σP σU σβ σγ σcv
σα

FE-NN 1.74 × 10−2 1.78 × 10−2 5.6 × 10−3 1.4631 7.22 × 10−2 6.40 × 10−2 2.932 × 10−1

MT-NN 6.08 × 10−2 3.26 × 10−2 2.69 × 10−2 8.8227 4.455 × 10−1 7.00 × 10−2 3.5797

temperatures and densities present in the LJ data set. This
process is extremely fast, taking less than 10 s on standard
laptop CPU. We then used the Maxwell construction numer-
ically to define the pressure as a function of density through
the coexistence region for each isotherm. We plot the density
and specific internal energy with respect to the pressure and
temperature in the vicinity of the critical point. The locations
where the Maxwell construction was applied are plotted as a
dashed line ending in a star; we emphasize that this line was
constructed using the model itself. Immediately visible in the
plot is the classic structure of the first-order liquid-gas phase
transition and its associated critical point. This recapitulates
the classic textbook picture of a low-density gas comprising
unbound particles, a high-density liquid comprising bound
particles, and a continuous supercritical region that connects
them. The plots are also smooth, showing that the outputs of
the neural network are well behaved and do not contain any
significant high-frequency artifacts.

V. CONCLUSION

In conclusion, we compared a standard Multi-Task model
(MT-NN) to a Free Energy Neural Network (FE-NN) trained
to predict free energy implicitly using automatic differentia-
tion. We showed that only the FE-NN model is able to yield
a consistent thermodynamic model that obeys the Maxwell
relations. Further, it more accurately learns all thermodynamic
properties for both test cases, the VdW and the LJ data sets.
Additionally, for the VdW EOS we indeed provided evidence
that the FE-NN implicitly learns the free energy and entropy
accurately without including them explicitly in the training of
the model. Because the Maxwell relations are satisfied, the
learned free energy model is suitable for the computation of
thermodynamic cycles or the embedding of the model in a
larger simulation context (e.g., hydrodynamic or kinetic evo-

lution). This implicit learning of free energies may as well be
useful beyond learning EOS. The free energy is a fundamental
property in biophysical systems [30] and for the development
of coarse-grained models [31,32]. However, to be applicable
for those more complex problems further improvements may
be desired. To improve the behavior near a phase transition,
it is possible to add another layer of automatic differentia-
tion during training in order to include second-order partial
derivatives in the model construction. Or if the analytic struc-
ture of the phase transition is known, future work may allow
one to build this structure into the FE-NN, by designing a
singularity in the activation functions that corresponds to the
universality class of the transition. Generalizing the FE-NN
technique to different thermodynamic potentials and to mul-
ticomponent systems is straightforward, and the analytical
advantages will undoubtedly transfer, but the empirical error
of such models has yet to be established. Whereas all these ap-
proaches suggest further improvements, the presented FE-NN
model is the first step to elegantly learn thermodynamic prop-
erties and their generating free energy, without requiring the
simulations to measure the free energy itself, and in prin-
ciple without the need of advanced or enhanced simulation
techniques [33–36]; simulations to measure thermodynamic
responses (free energy derivatives) are often more straightfor-
ward, can be performed in the most convenient ensemble, and
are easily parallelized across the thermodynamic phase space.
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