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Excitation of high-intensity terahertz surface modes of plasma slab under action
of p-polarized two-frequency laser radiation
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The excitation of the terahertz (THz) high-intensity surface modes when the two-frequency p-polarized laser
radiation interacts with a plasma slab is studied. It was found that the significant amplification of the laser field in
the plasma slab occurs when p-polarized laser radiation is incident at the angle of total reflection. It is shown that,
under the action of laser radiation ponderomotive forces, the resonant excitation of the THz mode of the plasma
slab occurs if the frequency difference of the laser fields coincides with the eigenfrequency of the surface mode.
It is established that the giant increase in the energy flux density of the THz mode occurs when p-polarized laser
radiation is incident at the angle of total reflection on the near-critical plasma slab with rare electron collisions
if the conditions of resonant excitation are satisfied. It is shown that in this case the energy flux density of THz
mode can significantly exceed the laser intensity.
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I. INTRODUCTION

Interest in the generation of terahertz (THz) radiation is
associated with the possibilities of its use in scientific research
and practical applications [1]. At present, the most intense
THz radiation has been experimentally recorded upon laser ir-
radiation of lithium niobate crystals [2,3] and various organic
crystals [4,5]. The important parameter that characterizes the
generation of THz radiation under laser-matter interaction is
the conversion rate of the laser pulse energy into THz signal.
Under the action of laser pulses on gas jets in a vacuum
chamber, this coefficient has the small value of the order of
10−6–10−7 [6–11]. As the pressure in the gas jet increases, the
conversion efficiency can increase by two orders of magnitude
due to the formation of clusters [12,13]. The conversion rate
in the interaction of laser radiation with gases can be signif-
icantly increased if two-color (multicolor) pumping is used.
When a two-color (multicolor) laser pulse is focused in the
ambient air and a plasma filament is formed that emits THz
waves, this coefficient is of the order of 10−3 [14–17]. It was
experimentally and theoretically established that an increase
in the wavelength of two-color pumping to the midinfrared
range leads to an increase in the conversion coefficient up
to several percent [18]. Under laser action on metal targets,
the conversion rate changes from small values of the order
of 10−6–10−7 in experiments [19–23] to the value of 10−3 in
[24], where THz radiation was emitted from the rear surface
of a thin metal foil. It should be noted that the high efficiency
of THz radiation generation (up to 0.1%) takes place under
laser action on photoconductive media, when surfaces and
flat layers of photoconductors are irradiated [25,26], due to
the excitation of eigenmodes in these media. The efficiency
of the laser-to-THz energy conversion is significantly high
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and is equal approximately 3% at laser irradiation of non-
linear organic crystals [4,5] and lithium niobate crystals [2].
Theoretically, the sufficiently large value of the conversion
coefficient about 13% is predicted in [27], where the inter-
action of laser radiation with lithium niobate crystals cooled
to the temperature 10K is considered. The efficiency of THz
radiation generation can be significantly increased due to the
excitation of low-frequency eigenmodes in a material medium
under laser action. It was shown in [28] that the energy flux
density of THz modes of the plasma slab can be comparable to
the intensity of two-frequency s-polarized laser radiation if the
resonance condition is satisfied and the frequency difference
of the laser fields coincides with the frequency of the eigen-
mode. In this article, the excitation of the THz mode under
the action of two-frequency p-polarized laser radiation on the
slab of near-critical plasma is considered and it is shown that
the energy flux density of the THz mode can significantly
exceed the laser radiation intensity. This effect occurs due to
(a) the significant amplification of the p-polarized laser field
in the near-critical plasma slab when it is incident at the angle
of total reflection and (b) the resonant excitation of the THz
eigenmode of plasma slab when its frequency coincides with
the frequency difference of the laser fields. In the article, we
assume that the incident laser radiation has sufficiently large
spatial sizes and temporal duration, which allows us to use the
plane waves approximation.

The article has the following structure: in the second sec-
tion, the boundary problem for p-polarized two-frequency
laser radiation incident on a plasma slab with a subcritical
electron concentration is solved, and the spatial distribution of
the laser field inside the plasma slab is found. The pondero-
motive potential in the plasma at the difference frequency is
calculated and it is shown that it has the maximum value when
the laser radiation is incident at the angle of total reflection on
the plasma slab with the near-critical electron density. In the
third section, the excitation of the THz mode of the plasma
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FIG. 1. The incidence of two-frequency p-polarized laser radia-
tion on the plasma slab.

slab under the action of the ponderomotive force of laser radi-
ation at the difference frequency is considered. It is shown that
when laser radiation is incident at the angle of total reflection,
only the symmetric mode of the plasma slab is excited, for
which the space-time distribution of the electromagnetic field
in the plasma and in vacuum is found. It is established that
the significant increase in the THz mode field occurs under
resonance conditions, when its eigenfrequency coincides with
the frequency difference between the laser fields. In the fourth
section, the Poynting vector of the THz mode of the plasma
slab is calculated and the dependence of its absolute value on
the incidence angle of laser radiation and the slab thickness
is investigated. It is shown that the energy flux density of
the THz mode is maximum when the two-frequency laser
radiation is incident at the angle of total reflection on the
near-critical plasma slab with the thickness comparable to
the laser wavelength under resonance conditions, when the
difference between the laser frequencies coincides with the
eigenfrequency of the plasma slab mode. In the Conclusion
section, the main results of the article are presented and the
estimates for the energy characteristics of the THz mode
are given. It is shown that, under the conditions of modern
experiments, the energy flux density of the THz mode can
significantly exceed the laser radiation intensity.

II. BOUNDARY VALUE PROBLEM FOR p-POLARIZED
TWO-FREQUENCY LASER RADIATION

Let two waves of the p-polarized laser radiation with
constant amplitudes and close frequencies ω1, ω2 fall from
vacuum (z < −d) on the plasma slab occupying the space
region −d � z � d (see Fig. 1), where the frequency dif-
ference �ω0 = ω1 − ω2 > 0 is assumed to be small in
comparison with the frequencies themselves, �ω0 � ω0 =
(ω1 + ω2)/2. We will assume that the laser waves fall
at the angles α1, −α2, which are measured from the
normal to the plasma slab boundary and which are ap-
proximately equal, α1 − α2 � α = (α1 + α2)/2. If XOZ is
the incidence plane, then the wave vectors of the incident
waves have the form k1 = (ω1/c)[ez cos α1 + ex sin α1] and
k2 = (ω2/c)[ez cos α2 − ex sin α2], which corresponds to the

counterpropagation of the waves in the direction of the x axis
along the plasma slab boundary, where c is the speed of light,
and ex, ez are the basis vectors of the x and z axes, respec-
tively. Then, in vacuum, the magnetic field of the incident
p-polarized laser radiation can be represented in the following
form:

Binc
L (r, t ) = eyE0L

{
cos

[
ω1t−ω1

c
[(z+d ) cos α1 + x sin α1]

]

+ cos

[
ω2t − ω2

c
[(z + d ) cos α2 − x sin α2]

]}
,

(1)

where ey is the basis vector of the y axis, and E0L is the
amplitude electric field of the laser radiation, which we will
assume to be the same for both waves. Let the plasma electron
density N0e be less than the critical value N0e < Ncr , where
Ncr = meω

2
0/(4πe2), e, me are the charge and mass of the

electron.
Let us consider the boundary value problem for the inci-

dence of one wave with frequency ω1 and wave vector k1 on
the plasma slab. In this case, the distribution of the magnetic
field B(1)

L (r, t ) of the laser radiation at the frequency ω1 in the
whole space has the form

B(1)
L (r, t ) = 1

2
eyE0L exp

(
−iω1t + i

ω1

c
x sin α1

)

×
{

exp

[
i
ω1

c
(z + d ) cos α1

]

+ R(ω1, α1) exp

[
−i

ω1

c
(z + d ) cos α1

]}

+ c.c., z � −d, (2)

B(1)
L (r, t ) = 1

2
eyE0L exp

(
−iω1t + i

ω1

c
x sin α1

)

× 2ε1 cos α1

D(ω1, α1)
{exp [−ik1(z − d )]

× (ε1 cos α1 −
√

ε1 − sin2α1) − exp [ik1(z − d )]

× (ε1 cos α1 +
√

ε1 − sin2α1)}
+ c.c., −d � z � d, (3)

B(1)
L (r, t ) = −1

2
eyE0L exp

(
−iω1t + i

ω1

c
x sin α1

)

× 4ε1 cos α1

√
ε1 − sin2α1

D(ω1, α1)

× exp

[
i
ω1

c
(z − d ) cos α1

]
+ c.c., z � d,

(4)

where k1 = (ω1/c)
√

ε1 − sin2α1 is the z component of
the wave number of laser radiation in the plasma layer,
ε1 ≡ ε(ω1) = 1 − (ω2

p/ω
2
1 )(1−iνei/ω1) is the plasma dielec-

tric constant at the frequency ω1, ωp =
√

4πe2N0e/me is
the plasma frequency, νei is the frequency of electron-ion
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collisions, and the expressions for the reflection coefficient
R(ω1, α1) and dispersion function D(ω1, α1) have the form

R(ω1, α1) = exp (2ik1d ) − exp (−2ik1d )

D(ω1, α1)

× (ε1 cos α1 −
√

ε1 − sin2α1)

× (ε1 cos α1 +
√

ε1 − sin2α1), (5)

D(ω1, α1) = (ε1 cos α1 −
√

ε1 − sin2α1)2 exp (2ik1d )

− (ε1 cos α1 +
√

ε1 − sin2α1)2 exp (−2ik1d ).
(6)

This magnetic field distribution of the laser radiation at
the frequency ω1, Eqs. (2)–(6), is obtained by solving the
Maxwell equations in vacuum and in the plasma slab and

using the continuity conditions of the tangential components
of the electromagnetic field at both plasma-vacuum interfaces,
taking into account the form of the incident p-polarized wave
(1). From Eqs. (2)–(6) it follows that in a collisionless plasma
(Imε1 = 0), when the condition Reε1 = sin2α1 is fulfilled, the
reflection coefficient is equal to R1(ω1, α1) = 1 and the mag-
netic field of the laser radiation at z � d is equal to zero [see
Eq. (4)]. This means that, under the condition Reε1 = sin2α1,
the total reflection effect of the incident laser radiation with
frequency ω1 from the plasma slab takes place in the absence
of collisions of electrons. For laser radiation at the frequency
ω2, the distribution of the magnetic field B(2)

L (r, t ) can be
easily obtained from Eqs. (2)–(6) by replacing ω1 → ω2 and
α1 → −α2.

Using the expression for the magnetic field (3), we find the
distribution of the electric field of the laser radiation at the
frequency ω1 in the plasma slab,

E(1)
L (r, t ) = −1

2
exp

(
−iω1t + i

ω1

c
x sin α1

)
2E0L cos α1

D(ω1, α1)
{[ε1 cos α1 +

√
ε1 − sin2α1]

× [ex

√
ε1 − sin2α1 − ez sin α1] exp[ik1(z − d )] + [ε1 cos α1 −

√
ε1 − sin2α1]

× [ex

√
ε1 − sin2α1 + ez sin α1] exp[−ik1(z − d )]} + c.c., −d � z � d. (7)

If the inequality |k1|d � 1 is satisfied, expression (7) is noticeably simplified and takes the form

E(1)
L (r, t ) = 1

2
exp

(
−iω1t + i

ω1

c
x sin α1

)
E0L cos α1

× ex
[
ε1 cos α1 + i ω1

c (z − d )
(
ε1 − sin2α1

)] − ez sin α1
[
1 + i ω1

c (z − d )ε1 cos α1
]

[
ε1 cos α1 − i ω1

c d
(
ε1 − sin2α1

)][
1 − i ω1

c dε1 cos α1
] . (8)

From formula (8) it follows that when the laser radiation
is incident at the angle of total reflection Reε1 = sin2α1,
the noticeable amplification of the laser field occurs in the
plasma slab with the near-critical electron concentration,
when Reε1 → 0. Note that the similar effect of the amplifi-
cation of a p-polarized laser pulse field under the condition of
its total reflection from the boundary of a semi-infinite plasma
was considered earlier in [29].

Using a similar expression for the electric field of laser
radiation in the plasma slab at the frequency ω2, we can cal-
culate the ponderomotive potential at the difference frequency
�ω0 if we use the formula

�(r, t ) = me

e

〈
V(1)

L (r, t )V(2)
L (r, t )

〉
, (9)

where the velocity of electrons V(i)
L in the field of laser ra-

diation with frequency ωi and electric field E(i)
L (r, t ), here

i = 1, 2, is determined from the equation

∂

∂t
V(i)

L (r, t ) = e

me
E(i)

L (r, t ), (10)

and the angle brackets 〈. . .〉 in (9) denote averaging over
the oscillation period of the laser field. Let both waves of
laser radiation fall at the angle of total reflection, which, tak-
ing into account the approximate coincidence of frequencies
ω1 ≈ ω2 ≈ ω0 and angles of incidence α1 ≈ α2 ≈ α, is deter-

mined by the formula

sin2α = ε′(ω0) (11)

or cos2α = ω2
p/ω

2
0, where ε′(ω0) = Reε(ω0) is the real part

of the plasma dielectric constant. Then, taking into account
Eqs. (8)–(11), the ponderomotive potential at the difference
frequency can be written as

�(r, t ) = 1
2�1 exp (−i�ω0t + 2 ik0x sin α) + c.c., (12)

where its amplitude has the form

�1 = VE

2ω0
E0L

sin2αcos2α[
sin2α cos α + k0dε′′(ω0)

]2 + ε′′2(ω0)cos2α
,

(13)

where k0 = (ω1 + ω2)/2c = ω0/c, VE = eE0L/(meω0) is the
velocity of the electron oscillations in the field of laser radi-
ation; ε′′(ω0) = Imε(ω0) is the imaginary part of the plasma
dielectric constant, which is small due to inequality νei � ω0.
It should be noted that formula (13) was obtained under the
condition

k0d
√

ε′′(ω0) � 1, (14)

which follows from the inequality |k1|d � 1 [see Eq. (8)]
taking into account relation (11). The ponderomotive potential
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(13) is maximum

�1,max = VE

4ω0

E0L

ε′′(ω0)

1

k0d +
√

1 + k2
0d2

, (15)

when laser radiation is incident on the slab of near-critical
plasma at the angle of total reflection

sin2α = ε′(ω0) =
√

1 + k2
0d2ε′′(ω0), (16)

which, due to the inequality (14), is sufficiently small. Under
the action of the ponderomotive potential of laser radiation
(12), (13), electromagnetic fields are excited in the plasma
slab at the difference frequency. In this case, in accordance
with Eqs. (15) and (16), the strongest effect can be expected
for the almost normal incidence of p-polarized two-frequency
laser radiation on the plasma slab with the near-critical elec-
tron concentration (16), when the ponderomotive potential has
the maximum value (15).

Equations (12)–(16) were obtained in the linear approxi-
mation without taking relativistic effects into account, when
Eq. (10) was used. Therefore, the formulas for the pondero-
motive potential (12)–(16) are applicable when the following
condition is fulfilled:

V 2
E

4c2
� νei

ω0

(
k0d +

√
1 + k2

0d2
)
. (17)

This inequality follows from the condition that the velocity
of motion of electrons in plasma in the field of laser radiation
(8) is small compared to the speed of light.

III. EXCITATION OF THz MODES OF THE PLASMA SLAB
UNDER PONDEROMOTIVE ACTION OF p-POLARIZED

TWO-FREQUENCY LASER RADIATION

To describe the excitation of THz eigenmodes of the
plasma slab under the action of ponderomotive forces of
the p-polarized two-frequency laser radiation, we will use
Maxwell’s equations for the electric E(r, t ) and magnetic
B(r, t ) fields, as well as the equation for the electron velocity
V(r, t ) (see, for example, [28,29]),

rotB(r, t ) = 1

c

∂

∂t
E(r, t ) + 4π

c
e Ne(z)V(r, t ),

rotE(r, t ) = −1

c

∂

∂t
B(r, t ),

(
∂

∂t
+ νei

)
V(r, t ) = e

me
[E(r, t ) − ∇�(r, t )], (18)

where Ne(z) = N0e[θ (z + d ) − θ (z−d )] is the coordinate-
dependent electron density, which is zero in vacuum (z <

−d, z > d) and is equal to N0e in the plasma slab (−d � z �
d), and θ (z) is the unit Heaviside step function. In accordance
with the form of the ponderomotive potential (12), all physical
quantities at the difference frequency can be represented in the
following form:

{E(r, t ), B(r, t ), V(r, t )}
= 1

2 {E1(z), B1(z), V1(z)}
× exp (−i�ω0t + 2 ik0x sin α) + c.c. (19)

Taking into account the space-time dependence (19), from
the set of Eqs. (18) follows the equation for the amplitude of
the y component of the magnetic field B1(z) = eyB1(z),

d

dz

{
1

ε(�ω0, z)

d

dz
B1(z)

}
−

{
4k2

0sin2α

ε(�ω0, z)
− �ω2

0

c2

}
B1(z)

= −2k0 sin α

c �ω0
�1(z)

d

dz

{
ω2

p(z)

ε(�ω0, z)

}
, (20)

where ωp(z) =
√

4πe2Ne(z)/me, ε(�ω0, z) = 1 − [ω2
p(z)/

�ω2
0](1−iνei/�ω0) are the Langmuir frequency and dielec-

tric constant of the plasma, depending on the z coordinate,
respectively, it is also assumed that the inequality �ω0 
 νei

is satisfied. In this case, the components of the electric field
are expressed in terms of the magnetic field by the following
relations:

E1,x(z) = − ic

�ω0ε(�ω0, z)

×
{

d

dz
B1(z) + 2

k0ω
2
p(z)

c �ω0
sin α �1(z)

}
,

E1,z(z) = − c

�ω0ε(�ω0, z)

×
{

2k0 sin α B1(z) + ω2
p(z)

c �ω0

d

dz
�1(z)

}
. (21)

Solving Eq. (20) in plasma slab and vacuum and taking into
account the continuity boundary conditions of the tangential
components of the low-frequency electromagnetic field at the
plasma-vacuum interface, after simple calculations, we obtain
the following distribution of the magnetic field in the whole
space:

B(r, t ) = 1
2 eyB1(z) exp (−i�ω0t + 2 ik0x sin α) + c.c.,

(22)
where

B1(z) = 2ω0

�ω0
k2

p sin α exp [κ0(z + d )]

×
{

�−
Ta(�ω0)

+ �+
Ts(�ω0)

}
, z � −d, (23)

B1(z) = 2ω0

�ω0
k2

p sin α

{
�−

Ta(�ω0)

cosh (κz)

cosh (κd )

− �+
Ts(�ω0)

sinh (κz)

sinh (κd )

}
, −d � z � d, (24)

B1(z) = 2ω0

�ω0
k2

p sin α exp [−κ0(z − d )]

×
{

�−
Ta(�ω0)

− �+
Ts(�ω0)

}
, z � d, (25)

where the dispersion functions of the symmetric Ts(�ω0) and
antisymmetric modes Ta(�ω0) have the form [30]

Ts(�ω0) = κ coth (κd ) + κ0ε(�ω0),

Ta(�ω0) = κ tanh (κd ) + κ0ε(�ω0), (26)
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where κ0 =
√

4ω2
0sin2α−�ω2

0/c, κ =√
4ω2

0sin2α−�ω2
0ε(�ω0)/c, �± = [�1(−d ) ± �1(d )]/2,

kp = ωp/c, ε(�ω0) = 1 − (ω2
p/�ω

2

0
)(1−iνei/�ω0). Note

that the name of the mode (symmetric or antisymmetric)
is associated with the form of the spatial distribution of
the electric field component E1,x(z) in the plasma slab,
which is directed along the boundary (see [30]). For the
symmetric mode, this component of the electric field is
proportional to the hyperbolic cosine E1,x(z) ∝ cosh(κz),
and for the antisymmetric mode, to the hyperbolic sine
E1,x(z) ∝ sinh(κz).

It follows from the Eqs. (23)–(26) that the low-frequency
magnetic field is determined by the values of the ponderomo-
tive potential �1(−d ), �1(d ) only at the boundaries of the
plasma slab. In the general case, when the dispersion functions
Ts(�ω0) and Ta(�ω0) vanish the symmetric and antisymmet-
ric modes of the plasma slab are excited. However, in our case
of the incidence of laser radiation at the angle of total reflec-
tion (11) when the amplitude of the ponderomotive potential
has the form (13), only the symmetric mode of the plasma
layer is excited. This is due to the equality to zero �− = 0,
since the ponderomotive potential does not depend on the
spatial z coordinate [see Eq. (13)] and its values coincide at
the boundaries of plasma slab. It follows from Eqs. (23)–(26)
that the significant amplification of the low-frequency field
in vacuum and in the plasma slab occurs under resonance
conditions, when the frequency difference of the laser fields
coincides with the eigenfrequency of the symmetric surface
mode,

�ω0 = �s, (27)

when the real part of the dispersion function Ts(�ω0)
vanishes. In the plasma with the near-critical electron concen-
tration ω0 ≈ ωp at small angles of incidence of laser radiation
sin2α � 1, the surface mode frequency �s is determined by
the formula

�s = 2ω0 sin α(1 − 2sin2αcoth2k0d ), (28)

which is obtained under the condition sin2α � tanh2k0d . This
condition imposes the condition on the minimum thickness of
the plasma slab. Under resonance conditions (27), (28), there
is the significant increase in the electromagnetic fields of the
symmetric eigenmode of the plasma slab, since the denomina-
tor of the Eqs. (23)–(25) contains only a small imaginary part
of the dispersion function, which is proportional to the fre-
quency of electron collisions. In this case, the low-frequency
magnetic field (23)–(25) has the form

Bs(r, t ) = ey
4ω2

0

cνei
sin α

2sinh2(k0d )

2k0d + sinh (2k0d )

× �1Hs(z) sin (�st − 2k0x sin α), (29)

where its spatial distribution is determined by the function

Hs(z) =

⎧⎪⎨
⎪⎩

− exp[4k0(z + d )sin2α coth k0d], z � −d,

sinh (k0z)/sinh (k0d ), −d � z � d,

exp[−4k0(z − d )sin2α coth k0d], z � d,

(30)

and the amplitude of the ponderomotive potential �1 at the in-
cidence of laser radiation at the angle of total reflection (11) is
determined by formula (13). The expressions for the magnetic
field (29), (30) together with the formulas for the components
of the electric field (21) make it possible to analyze the energy
characteristics of the THz mode of the plasma slab.

To describe the excitation of THz fields in the plasma
slab under the ponderomotive action of two-frequency laser
radiation, we used the equation for the electron velocity from
(18) in the linear approximation without taking relativistic
effects into account. This approximation is applicable if the
following condition is satisfied:

V 2
E

4c2
�

(νei

ω0

)3/2 k0d +
√

1 + k2
0d2

(
1 + k2

0d2
)1/4

2k0d + sinh (2k0d )

sinh (2k0d )
,

(31)
which is obtained taking into account formulas (21), (27)–
(30). This condition imposes the limitation on the intensity
of laser radiation, which cannot exceed the value indicated on
the right-hand side of the inequality.

IV. PHYSICAL CHARACTERISTICS
OF LOW-FREQUENCY MODES OF

THE PLASMA LAYER

Equations (27), (28), (13), (21) allow us to find the energy
flux density of THz radiation by the formula

S(r, t ) = c

4π
[E(r, t ) × B(r, t )]. (32)

After simple calculations for the Poynting vector (32) of
the symmetric mode of the plasma layer under resonance
conditions (27), we have the following expression:

Ss(z) = ex
4ω2

0

ν2
ei

V 2
E

c2
IL

[
2sinh2(k0d )

2k0d + sinh (2k0d )

]2

× G2(α)H2
s (z)

Reε(�s, z)

|ε(�s, z)|2 , (33)

where IL = cE0L/(8π ) is the intensity of laser radiation, and
the dependence of the energy flux density on the incidence
angle of the laser radiation is determined by the function

G(α) = sin3αcos2α

[sin2α cos α + k0dε′′(ω0)]
2 + ε′′2(ω0)cos2α

. (34)

Since the real part of dielectric constant in the plasma is
negative, it follows from formulas (29), (33) that the energy of
the low-frequency mode in vacuum is carried in the direction
of the wave vector, and in a plasma slab, the energy is carried
in the opposite direction. In this case, the energy flux density
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FIG. 2. Angular dependence of the energy flux density of the
surface mode (34) for ε′′(ω0) = 10−3. Curves 1–3 correspond to the
values of the plasma slab thickness k0d = 0.5; 1; 2.

in vacuum significantly exceeds the analogous value in the
plasma slab due to the inequality |ε(�s)| 
 1 which occurs
at small angles of incidence of two-frequency laser radiation
sin2α � 1. Therefore, we will consider the Poynting vector of
the symmetric eigenmode in vacuum near the boundary of the
plasma slab at z → ±d ,

Ss(z → ±d )

= exS0 = ex
4ω2

0

ν2
ei

V 2
E

c2
IL

[
2sinh2(k0d )

2k0d + sinh (2k0d )

]2

G2(α).

(35)

Let us investigate the dependence of the energy flux density
of the low-frequency mode on the incidence angle of laser
radiation (35), which is determined by function (34). From
formula (34) it follows that the maximum value of function
G(α) is equal to

Gmax = 1

4
√

ε′′(ω0)

[
k0d +

√
4k2

0d2 + 3
]3/2

1 + 2k2
0d2 + k0d

√
4k2

0d2 + 3
, (36)

when laser radiation is incident on the boundary of the
plasma slab with the near-critical electron density at small
angles,

sin2α = ε′(ω0) = [
k0d +

√
4k2

0d2 + 3
]
ε′′(ω0), (37)

as follows from inequality (14). The dependence of function
(34) on the angle of incidence of laser radiation for various
values the plasma slab thickness is shown in Fig. 2. From
Fig. 2 and formulas (36), (37) it follows that the optimal
angle of incidence increases, and the maximum of function
(34) decreases with increasing slab thickness. Taking into
account the results (36), (37), we find the maximum value
of the energy flux density as the function of the plasma slab

FIG. 3. The dependence of the energy flux density of the THz
mode (39) on the thickness of the plasma slab.

thickness,

S0,max = ω3
0

ν3
ei

V 2
E

4c2
ILQ(k0d ), (38)

where

Q(k0d ) =
[

2sinh2(k0d )

2k0d + sinh (2k0d )

]2

×
[
k0d +

√
4k2

0d2 + 3
]3

[
1 + 2k2

0d2 + k0d
√

4k2
0d2 + 3

]2 . (39)

The function Q(k0d ) is shown in Fig. 3, from which it fol-
lows that maximum value of the function (39) is Qmax ≈ 0.581
for the thickness of the plasma slab k0d ≈ 2.12. In accordance
with this result, the maximum value of the energy flux density
of the THz symmetric eigenmode is

S(m)
0,max ≈ 0.145

ω3
0

ν3
ei

V 2
E

c2
IL, (40)

and the optimal angle of incidence of laser radiation (37) is
determined by the formula

sin2α = ε′(ω0) ≈ 6.7 ε′′(ω0). (41)

When the thickness of the plasma slab increases, the en-
ergy flux density of the THz mode, as follows from Fig. 3,
decreases and, at large values of the parameter k0d 
 1, in
accordance with formulas (38), (39), takes the form

S0,max = 27

64

ω3
0

ν3
ei

V 2
E

4c2

IL

k0d
. (42)

It follows from formula (42) that the energy flux density
of the THz mode at k0d 
 1 is inversely proportional to the
thickness of the plasma slab S0,max ∝ 1/(k0d ).

Comparing the obtained result (40) with the energy flux
density of the THz mode of the plasma slab at the incidence
of s-polarized laser radiation [see formula (26) in [28]], we
conclude that for p-polarization the THz energy flux density
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is ω0/νei 
 1 times higher. It follows from formula (40) that,
under the condition

V 2
E

c2
> 7

ν3
ei

ω3
0

, (43)

the energy flux density of the THz mode of the plasma slab
can exceed the intensity of laser radiation. For example, at
the frequency of collisions νei = 10−3ω0 and the wavelength
of laser radiation λ0 = 1 μm, inequality (43) is satisfied at
the sufficiently low intensity IL > 1010 W/cm2. It follows
from formula (40) that even at moderate intensities of laser
radiation IL = (1014–1015) W/cm2, the energy flux density
of the THz mode can exceed the laser radiation intensity by
several orders of magnitude. Such a significant value of the
energy flux density of the THz mode of the plasma slab is
associated with two effects. The first of them is the resonant
excitation of the eigenmode of the plasma slab, when the
difference in the frequencies of the laser fields coincides with
the eigenfrequency of the symmetric mode of the slab. As the
result of this resonance, the low-frequency electromagnetic
field increases by ω0/νei times, and the energy flux density
increases by a factor of (ω0/νei )2, respectively. The second
effect is the significant increase in the field of p-polarized
laser radiation in plasma at its almost normal incidence at
the angle of total reflection on the plasma slab with the near-
critical electron concentration. Due to the amplification of the
p-polarized laser field in the plasma when it is incident at the
angle of total reflection, the flux density of the THz mode of
the plasma slab increases by the factor of ω0/νei, and this,
as a result, leads to the appearance of the factor (ω0/νei )3

in formula (40) and to the giant increase in the energy flux
density of the THz mode.

V. CONCLUSION

In this article, we considered the excitation of the high-
intensity THz surface mode under the action of two waves of
p-polarized laser radiation with different frequencies on the
plasma slab with the subcritical electron density, when along
its boundary the laser fields propagate towards each other. The
boundary value problem for the two-frequency p-polarized
laser radiation is solved, and the spatial distribution of the
laser field in the plasma layer is found. It is shown that when
laser radiation is incident at the angle of total reflection, the
significant amplification of the p-polarized laser field occurs
in the plasma slab with a near-critical electron concentration.
The ponderomotive potential at the difference frequency is
calculated and it is shown that the strongest ponderomotive
effect on electrons occurs when laser radiation falls on the
near-critical plasma slab at the angle of total reflection, the
value of which is determined by the small imaginary part of
the dielectric constant. The problem of the excitation of THz
fields in plasma under the action of ponderomotive forces of
laser radiation at the difference frequency is considered, and it
is shown that their space-time distribution in the plasma slab
is determined by the values of the ponderomotive potential at
the slab boundaries. It was found that when the laser radiation
is incident at the angle of total reflection, only the symmetric
mode of the plasma slab is excited. It is shown that if the
frequency difference of the laser fields coincides with the

eigenfrequency of the symmetric mode of the plasma slab, its
resonant excitation occurs and, as the result, the significant
increase in the electromagnetic fields of the THz mode take
place. The Poynting vector of the THz mode of the plasma
slab is calculated and the dependence of its absolute value on
the incidence angle of laser radiation and the slab thickness is
investigated. It is shown that the THz energy flux density is
maximum when two-frequency p-polarized laser radiation is
incident on the near-critical plasma slab at the angle of total
reflection and when the resonance condition is satisfied and
the eigenfrequency of the THz mode coincides with the laser
frequency difference. It is shown that the energy flux density
of the THz mode of the plasma slab under the conditions of
its resonant excitation can significantly exceed the intensity of
laser radiation.

In this article, to describe the generation of high-intensity
THz modes in a plasma slab under laser action, we used the
plane wave approximation for the two-frequency p-polarized
laser field. This approximation makes it possible to clearly
and simply describe the effect of amplification of THz fields
under resonance conditions, when the frequency difference of
the laser fields coincides with the frequency of the symmetric
eigenmode of the plasma slab. However, under the conditions
of real experiments, laser pulses with limited values of time
duration τ , longitudinal L = cτ and transverse size R are used.
Therefore, if the following inequalities for the longitudinal
and transverse dimensions of the laser pulse and also for its
duration,

L, R 
 2d, 1/(k0sin2α); τ 
 1/�ω0, 1/νei , (44)

are satisfied, then the plane wave approximation can be used.
With regard to the consideration of the excitation of THz fields
in the linear approximation, it is satisfied if inequality (31) is
fulfilled, which is a stronger condition than (17).

In conclusion, we present estimates for the characteristics
of the THz mode of the plasma slab under the conditions
of modern laser-plasma experiments. Let two-frequency p-
polarized laser radiation with intensity IL = 3 × 1014 W/cm2

and wavelengths 1300 and 1450 nm (see [31]) fall at the an-
gle α ≈ 3◦ onto the plasma slab with thickness 2d = 30 μm
(2k0d ≈ 140), the temperature Te = 500 eV, and near-critical
concentration N0e ≈ 6.1 × 1020 cm−3 of electrons. In accor-
dance with formulas (27), (34), the THz mode is excited at
the frequency �s/2π ≈ 24 THz (wavelength λs ≈ 12.5 μm)
with the energy flux density S0 ≈ 8IL = 2.4 × 1015 W/cm2

because the frequency of electron-ion collisions is equal to
νei ≈ 8 × 10−4ω0 ≈ 1.1 × 1012 s−1 (the Debye radius in this
case is rD ≈ 7 nm). The energy flux density of the THz mode
in this example is almost an order of magnitude higher than
the laser radiation intensity, and this is due to the resonant
excitation of the surface eigenmode of the plasma slab and
the significant increase in the laser field in the plasma slab.
Note that for the value of the energy flux density S0 ≈ 2.4 ×
1015 W/cm2 obtained in this example, the velocity of the
oscillatory motion of electrons in the THz field is determined
by the relation V 2/c2 ≈ 0.73 × 10−18S0[W/cm2]{λ[μm]}2 ≈
0.26, which allows using the linear approximation in Eqs. (18)
due to the smallness of the relativistic effects. Experimen-
tally, such the THz mode excitation scheme can be realized
under the action of two-frequency p-polarized laser radia-
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tion on airgel targets, which have the low density of matter
(0.001–0.15) g/cm3 (see [32,33]). Airgel is a porous ma-
terial that consists of the structural elements of solid-state
density randomly distributed in matter (these can be thin
membranes or wires) with the characteristic scale of the or-
der of several tens of nanometers and micron-sized vacuum
regions [33]. Under action of laser radiation with the intensity
about 1014 W/cm2, the ionization and heating of solid-state
elements takes place and this leads to their expansion and
filling of the pores. This process is called “homogenization”
[33], as the result of which the almost homogeneous plasma
with the near-critical electron density is formed within a few
hundred picoseconds after the laser impact. Such a plasma
slab with sharp boundaries and electron density close to the
critical value, previously created using ionizing laser radia-
tion, can later be used to excite THz surface modes under
the action of a two-frequency laser field. Resonant excita-
tion of the eigenmode of the plasma slab can be carried out
using the laser system of the experiment [31], which makes
it possible to generate radiation in the wavelength interval
(1200–1450) nm with the increment of 50 nm. By changing
the angle of incidence of the laser beams, the condition of
resonant excitation of the eigenmode of the plasma slab in the
THz frequency range can be satisfied. The methods of Otto
[34] and Kretschmann [35] can be used to transform surface
mode into bulk THz radiation. As a result, THz radiation
with the intensity exceeding the intensity of the incident laser
radiation can be obtained.

As shown above, the energy flux density of the THz
mode can significantly exceed the intensity of laser radiation;
however, due to condition (44), the total energy of the THz
wave will be less than the total energy of the laser pulse.

If we assume that the transverse size of the laser radia-
tion incident on the target is 2R = 2 mm, as in experiment
[32], then for the above-mentioned plasma slab thickness
2d = 30 μm, the ratio of THz energy to laser energy is
η ≈ (S0/IL )(2d/R) ≈ 0.2.

We note once again that the significant increase in the
energy flux density of the THz mode of the plasma slab occurs
under conditions of its resonant excitation by two-frequency
laser radiation, when the frequency difference of the laser
fields coincides with the eigenfrequency of the symmetric
mode of the slab. It is well known that under resonance condi-
tions, even the impact of a small driving force in a weakly dis-
sipative medium leads to excitation of eigenoscillations with
large amplitude. In this case, the contribution to the energy of
eigenmodes can be made by both the work of the driving force
and the internal energy of the medium. When the symmetric
eigenmode of the plasma slab is excited by two-frequency
laser radiation under resonance conditions, the increase in the
energy of the THz mode can be associated with the energy
transfer from both laser radiation and plasma particles.

The article considers the steady-state solution, which is
established during the time interval, which exceeds the time
between electron collisions �t � 1/νei. The minimum laser
pulse duration follows from inequality (44), τ ≈ 1/νei, and
for the considered example is approximately equal to 0.9 ps.
Note that the authors in Ref. [31] did not indicate the duration
of the incident laser radiation. However, in their previous
experiment [36], they used laser radiation with the duration
of 9 ps to generate THz pulses. For such duration of 9 ps and
the transverse size of 2 mm, the plane wave approximation
for incident laser radiation, considered in this article, is quite
justified.
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