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Dynamical landscape of transitional pipe flow
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The transition to turbulence in pipes is characterized by a coexistence of laminar and turbulent states. At
the lower end of the transition, localized turbulent pulses, called puffs, can be excited. Puffs can decay when
rare fluctuations drive them close to an edge state lying at the phase-space boundary with laminar flow. At
higher Reynolds numbers, homogeneous turbulence can be sustained, and dominates over laminar flow. Here
we complete this landscape of localized states, placing it within a unified bifurcation picture. We demonstrate
our claims within the Barkley model, and motivate them generally. Specifically, we suggest the existence of
an antipuff and a gap-edge—states which mirror the puff and related edge state. Previously observed laminar
gaps forming within homogeneous turbulence are then naturally identified as antipuffs nucleating and decaying
through the gap edge. We also discuss alternatives to the suggested bifurcation diagram, which could be relevant
for wall-bounded flows other than straight pipes.
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In pipe flow, turbulence first appears intermittently in
space, interspersed with laminar flow, rather than homoge-
neously in the entire pipe [1–3]. This is characteristic of
the subcritical transition to turbulence in wall bounded flows
where turbulence coexists with the linearly stable laminar flow
(Hagen–Poiseuille profile for pipes) [4]. Thus, turbulence can
be excited only through a large enough perturbation of the
base flow. At the low end of the transitional regime, controlled
by the Reynolds number Re, such excitations generically de-
velop into a localized turbulent patch, called a puff for pipe
flow. Initially, puffs have short lifetimes and tend to rapidly
decay. As Re increases, puffs become increasingly stable to
decays, but puff splitting, a single puff turning into two, be-
comes increasingly more likely, allowing the proliferation of
turbulence [5]. Then, at high enough Re (termed Reslug here),
puffs are replaced by expanding turbulent structures, called
slugs, with laminar flashes randomly opening and closing
within their turbulent cores. This is the regime of intermit-
tent turbulence [6]: a homogeneous state (where turbulence
production matches turbulence dissipation) can occupy the
entire pipe, but coexists with random laminar pockets. Further
increasing the Reynolds number, such flashes make way to
a homogeneous turbulent core within the slug, ending the
transitional regime.

There are three key states around which the coarse-grained
dynamics are known to be organized below Reslug: the lam-
inar base flow, the (chaotic) puff state and a state called the
edge state, here termed the decay edge, which controls puff
excitations and decays. Even above Reslug, it is known that
the decay edge remains surprisingly unchanged [7,8]. In this
paper, we expand this phase space of states, proposing previ-
ously unknown states together with their bifurcations with Re.
These novel states, the gap edge and antipuff, mirror the decay
edge and puff, playing an analogous role for the intermittent

turbulence regime above Reslug. In addition, the suggested
bifurcation diagram clarifies how the puff state can disappear
while the decay edge remains. Thus, a unified picture of the
transitional regime emerges, demonstrating how this regime
can be fruitfully interpreted in a dynamical systems frame-
work. We argue for the proposed picture on general grounds
and verify its validity using the Barkley model [9].

I. BACKGROUND

Here we provide further details about the puff and decay
edge and the corresponding phase space structure. We also
introduce the coarse-grained dynamical point of view taken in
the following [9], and motivate our use of the Barkley model.

A puff is a localized chaotic traveling wave, which, while
having a long lifetime, is only of transient nature, forming
a chaotic saddle in phase space [10]. Considering localized
structures, phase space can be roughly separated into initial
conditions which directly laminarize, and those which decay
after a long transient, visiting the puff state first [11,12].
Separating these two sets is the so-called edge of chaos, small
perturbations around which end up either in the laminar or the
puff state. Furthermore, the edge of chaos corresponds to the
stable manifold of the decay edge state [7,11], an attracting
state for trajectories on the edge which has a single transverse
unstable direction. It leads to a puff state on the one side of the
edge and to the laminar state on the other. The decay edge and
the puff share a similar spatial structure and there is evidence
that they originate in a saddle node bifurcation at a lower
Re [7,13].

The point of view taken here is to treat the puff, decay
edge, and homogeneous turbulence as well-defined dynamical
states, characterized by an average structure. This is a coarse-
grained view [14], wherein the detailed chaotic dynamics are
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FIG. 1. Sketch of the bifurcation diagram for transitional pipe
flow. Attracting states are solid lines, unstable edge states are dotted.
In the deterministic Barkley model used here, rturb = 0.667, rslug =
0.726, rgap = 0.736

treated as noise around the average state. Thus, while the
chaotic dynamics themselves have a rich dynamical structure,
organized around unstable solutions of the governing equa-
tions [15–18], as evidenced both for the puff and the decay
edge [13,19–22], we focus on a coarser dynamical description.

Following Refs. [9,23,24], we focus on two variables
meant to capture the state of the flow at a cross section of the
pipe, and which can vary along the pipe direction x, namely,
the mean shear u(x, t ) and turbulent velocity fluctuations
q(x, t ). Turbulent fluctuations could be captured through the
transverse velocity root-mean square, averaged over the pipe
cross section [24], being zero in the laminar state. A proxy for
the mean shear is the local centerline velocity: It is smallest
in a turbulent flow where the mean profile is almost flat—
equal to the mean flow rate u ≈ Ū (Ū is also called the bulk
velocity), and largest for the base laminar Hagen-Poiseuille
flow, with u = U0 = 2Ū . The mean flow shear and the turbu-
lence level are the minimum ingredients required to capture
the dynamical processes behind turbulence generation and its
sustainment [25]. Moreover, based on these two variables, the
Barkley model successfully reproduces both qualitative and
quantitative features of pipe, as well as duct flow [23]. The
stochastic version of the Barkley model further displays the
phenomenology of puff splitting and decay in pipe flows, as
well as the intermittent turbulence regime [9].

The key insight at the heart of the Barkley model is that
the transition from puffs to slugs is a transition from an
excitable system to a bistable system: turbulence can be ex-
cited but not sustained below Reslug, whereas homogeneous
turbulence, with spatially uniform turbulence level and mean
shear (qt , ut ), coexists with laminar flow (0,U0) as a stable
state above Reslug. An important feature, which the model
reproduces, is a continuous transition from slugs to puffs [8],
interpreted as a masked transition: the homogeneous turbulent
state actually first appears at a Re below Reslug, denoted here
by Returb, but is masked by the presence of puffs [23]. This
completes the known part of the bifurcation diagram for the
transitional regime which we expand in the following, see
Fig. 1.

II. A UNIFIED BIFURCATION DIAGRAM

We propose two states which complete the set of basic
states in the transitional region, Fig. 1: the gap edge and

antipuff. These are traveling wave states, consisting of local-
ized laminar flow embedded within homogeneous turbulence.
In the region Returb < Re < Reslug, the gap edge is an unsta-
ble state lying at the edge between sustained homogeneous
turbulence and localized turbulence in the form of a puff,
analogously to the decay edge separating the base laminar
flow and the puff. Above Reslug, puffs disappear but the
gap edge remains, separating homogeneous turbulence from
a stable laminar pocket state we call an antipuff, which is
the mirror image of a puff. Note that at Reslug, slugs neither
expand nor contract, corresponding to multiple solutions with
sections of arbitrary length at the turbulent and laminar fixed
points, which can be interpreted either as puffs or antipuffs,
represented by a vertical line in Fig. 1. Finally, the gap edge
and the antipuff disappear together at Regap. We propose that
the intermittent turbulence regime observed in pipe flow cor-
responds to the random excitations and decays of antipuffs
through the gap edge, and thus Regap marks the end of this
regime. A connection of the observed laminar pockets, here
interpreted as antipuffs, to the laminar tails of slugs has been
previously recognized [6,9], though their existence as distinct
stable structures was not. We now substantiate this picture and
flesh out the conditions for its validity.

A. General considerations

A key characteristic of puffs are fronts: spatial locations
where, while u remains roughly constant, the turbulence level,
q, either sharply rises from zero to a finite value (the upstream
front with u = U0) or sharply decreases to zero from a finite
value (downstream, with u < U0). The front speeds deter-
mine the speed of puffs and the Re range for their existence.
Analogously, front speeds play a key role in establishing the
existence of antipuffs. We denote by c+(u, Re) [c−(u, Re)]
the front speed at mean velocity u where the turbulence level
increases (decreases) in the downstream direction. Turbulence
has been shown to be advected with speed u − ζ in pipe
flow [24], where ζ is a constant offset velocity from the
centerline value. Writing c−(u, Re) = u − ζ + S(u, Re), the
relative speed S(u, Re) thus determines the relative stability of
laminar flow (q = 0) compared with a turbulent flow (q �= 0)
at a common velocity u. Indeed, if S(u, Re) < 0 the down-
stream laminar flow overtakes the upstream turbulent flow,
which is thus less stable at this u [26]. As c+(u, Re) represents
the same physics but with turbulence downstream of laminar
flow, c+(u, Re) = u − ζ − S(u, Re) [27]. Puffs exist as long
as front speeds match: there exists up such that c−(up, Re) =
c+(U0, Re). At Re > Reslug, up < ut , where ut is the homoge-
neous turbulence mean flow. Puffs are thus replaced by weak
slugs, which have a downstream front at the turbulent velocity
ut . Since c−(ut , Re) > c+(U0, Re) slugs expand. Generally,
S(u, Re) is an increasing function of u and Re: the higher
the shear, the higher the production of turbulence; the higher
the Re the lower the dissipation of turbulence—both making
turbulence more sustainable.

The condition for existence of antipuffs is a region where
S(ut , Re) < 0 for Re > Reslug, satisfied in pipe flows for Re ∈
(2250, 3000) [24]. Indeed, starting from a fully turbulent pipe
flow, q = qt , u = ut , imagine a local decrease of the level of
turbulence to zero in a small interval in the pipe, while keeping
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u = ut . This forms two fronts back to back, with relative
speed c+(ut , Re) − c−(ut , Re) = −2S(ut , Re) > 0 producing
an initially expanding laminar region. The flat turbulent pro-
file, however, cannot be sustained at q = 0, and u will relax
toward U0. If u were to reach U0, forming an upstream front
of a slug, then the gap would tend to close since c+(ut , Re) −
c−(U0, Re) < 0. Thus, there exists a velocity ut < uap < U0,
the antipuff speed, giving matching front speeds c−(ut , Re) =
c+(uap, Re) which define the antipuff. At Re = Reslug, puff
fronts satisfy c−(ut , Reslug) = c+(U0, Reslug), so uap = U0 is
a solution for antipuff fronts. Assuming it is unique, then
Re < Reslug gives uap > U0 and antipuffs disappear. At the
other end, antipuffs merge with the gap edge and disappear
once S(ut , Re) = 0, occurring at Re = Regap. To motivate the
existence and structure of the gap edge, consider reducing
q locally in a turbulent pipe keeping u = ut : the level of
turbulence will return to qt if reduced by a minuscule amount,
homogeneous turbulence being stable, while setting q = 0
will open a laminar pocket which will expand into an antipuff
(or puff, depending on Re). Thus, there exists an intermediate
value of turbulence 0 < qg < qt right at the boundary, allow-
ing for a traveling wave solution with upstream qt → qg, and
downstream qg → qt fronts at almost the same speed u ≈ ut

(due to slow adjustment of u to q), traveling at speed close to
ut − ζ .

III. THE BARKLEY MODEL

We now turn to the Barkley model, describing the numer-
ical results we obtained in support of the above described
picture, as well as some asymptotic analytical results. The
dynamics in the Barkley model reads

{
∂t q + (u − ζ )∂xq = fr (q, u) + D∂2

x q + σqη

∂t u + u∂xu = ε[(U0 − u) + κ (Ū − u)q],
(1)

with fr (q, u) = q(r + u − U0 − (r + δ)(q − 1)2). Velocities
are normalized such that Ū = 1 and U0 = 2. The parameter
r plays the role of Re and η is a spatiotemporal white noise
with strength σ , modeling chaotic fluctuations. While the real
turbulent states are chaotic and spatially intricate, the essential
dynamical and physical features in the transitional region are
very well captured within the Barkley model [9,23].

A. Results for the Barkley model

We first present the states obtained numerically for the
model and then provide the details for the numerical method-
ology. The spatial profile of an antipuff as well as that of the
gap edge, the latter obtained by edge tracking, are shown in
Fig. 2 for a representative value of r. Note that while the
turbulence drops to zero inside the antipuff, the centerline
velocity u does not reach the laminar value of 2, consistent
with observations in pipe flow [6].

The full bifurcation diagram is shown in Fig. 3, where
states are ordered by their turbulent mass. The measured bi-
furcations for the Barkley model are exactly those sketched
in Fig. 1. Note the gap in turbulent mass formed between the
turbulent state and the gap edge with increasing r, and the
eventual merging of the gap edge and antipuff as expected.

FIG. 2. Spatial profiles of turbulence level q and mean velocity
u in the Barkley model: Puff and decay edge at r < rturb (left) and
antipuff and gap edge at rslug < r < rgap (right)

B. Methodology for numerical experiments

For the numerical experiments using the Barkley model
(1), we use the same parameters as in Ref. [9]: ζ = 0.8,
δ = 0.1, ε1 = 0.1, ε2 = 0.2, U0 = 2, Ū = 1, D = 0.5, and
x ∈ [0, L] periodic with L = 100. Space is discretized with
Nx = 128 or Nx = 256 grid points, and spatial derivatives are
computed via fast Fourier transforms. Temporal integration
is performed by a first-order exponential time differencing
(ETD) scheme [28], with time steps between 
t = 10−2 and

t = 10−3. In simulations including stochastic noise, we use
a noise strength σ = 0.2 and include the stochastic term
by generalizing ETD to the stochastic integral, similar to
Refs. [29,30].

1. Projection onto nonmoving reference frame

All spatially nontrivial attracting states we will be focusing
on for the deterministic Barkley model are so-called relative

FIG. 3. Explicitly computed bifurcation diagram for the Barkley
model. The stable states for each r (laminar, turbulent, puff, antipuff)
are computed by relaxation of the dynamics. The unstable edge states
(gap edge, decay edge) are computed by the edge-tracking algorithm
described in Sec. III B 2. Note the jump in the y axis from 0.2 to 0.8
at the solid horizontal grid line.
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fixed points—they are traveling wave solutions which move
with a constant speed along the pipe. In the reference frame
moving with this velocity, they turn into fixed points and,
in a periodic domain such as ours, they are limit cycles in
the laboratory reference frame. To find these solutions with
classical algorithms designed to obtain temporally constant
configurations, we project the equations adaptively in time
onto the corresponding moving reference frame—the idea is
similar to that developed in Refs. [31,32].

In particular, to adaptively eliminate the object’s transla-
tion along the pipe, we project the deterministic drift of the
equation onto its part perpendicular to translation. This can
be done by realizing that ∂x is the generator of translations, so
n = ∂x(q, u) is the direction in configuration space at the point
(q, u) that points into the direction of spatial translation. We
can then project the right-hand side of the deterministic part
of Eq. (1),

∂t (q, u) = b(q, u) = (bq(q, u), bu(q, u)), (2)

with {
bq(q, u) = f (q, u) + D∂2

x q + (ζ − u)∂xq
bu(q, u) = g(q, u) + Du∂

2
x u − u∂xu

(3)

onto the subspace orthogonal to n,

b̃ = b − n

|n|2 〈n, b〉 , (4)

where |.| and 〈., .〉 are L2 norm and inner product, so the b̃
dynamics have no translational component. This allows us to
obtain dynamics,

∂t (q, u) = b̃(q, u) , (5)

that only model the deformation of objects but not their
movement speed. Note additionally that the prefactor of this
projection will yield the movement speed of the object,

v(q, u) = 〈n, b〉
|n|2 , (6)

since

∂t (q, u) = b̃(q, u) + v(q, u)∂x (q, u) . (7)

In these projected dynamics, all states we are interested in
(puff, antipuff, decay edge, gap edge) are fixed points of the
b̃ dynamics, with b̃ = 0. For example, the decay edge which
is a limit cycle of b is now a fixed point with b̃ = 0 and has a
single unstable direction corresponding to either decaying into
the laminar state or being the minimal seed to form a puff.

Not only does this procedure allow us to treat the configu-
rations of interest as proper fixed points but it also eliminates
any CFL condition from the advective term. In combination
with the usage of ETD, this means that the reaction terms
[ f (q, u) and g(q, u)] are the only terms restricting the time
step.

Note that we use this projection only for our deterministic
computations, as the interaction of the (spatially very rough)
random noise with the spatial derivative needed to compute
the translational component makes the projection inaccurate.
For stochastic simulations, we instead apply a spatial transla-
tion at each iteration so the center of turbulent mass, 〈x〉q =∫ L

0 x q(x) dx/
∫ L

0 q(x) dx, remains at the domain center.

2. Edge-tracking algorithm

To find the stable deterministic fixed points of the Barkley
model, it is enough to run numerical simulations until con-
vergence, starting from an appropriate initial condition. For
example, to generate the stable puff state, we initialize with
a localized region of turbulence, which turns out to be a
configuration within the basin of attraction of the puff state
for properly chosen r.

To find the unstable fixed points, in particular, the
relevant edge states between puff and laminar flow (the
decay edge) and between turbulent flow and puff or
antipuff (the gap edge), we employ edge tracking. The
algorithm is implemented as follows: Define by B(q, u) the
map from a configuration (q, u) to its basin of attraction
B ∈ {laminar, puff, turbulent, antipuff, two puffs, . . .}.
Numerically, we implement this function by integrating
the deterministic dynamics until they are stationary and
comparing their turbulent mass q̄ = ∫ L

0 q(x) dx with that of
the known fixed points. While, in general, this comparison
would be inconclusive (for example, a slug might have the
same turbulent mass as two puffs), it is sufficient to identify
the fixed points once the configuration is fully converged and
no longer changes.

Now, to obtain the deterministic edge state, we then inte-
grate two separate configurations of the system, z0 = (q0, u0)
and z1 = (q1, u1), initialized to the two fixed points between
which we want to find the edge state, for example, B(z0) =
laminar and B(z1) = puff. Via bisection, we iteratively ap-
proach the basin boundary until the distance d between z0

and z1 is below some threshold, d (z0, z1) < 
min, making sure
that we also retain that B(z0) = laminar and B(z1) = puff.
Since the basin boundary is generally repulsive, z0 and z1 will
over time separate. Whenever they have separated too much,
d (z0, z1) > 
max, we perform another bisection procedure un-
til they are again close together. This procedure is performed
until the states z0 and z1 converge. Effectively, the algorithm
integrates the dynamics restricted to the separating submani-
fold by restricting the dynamics in the unstable direction (the
separation between z0 and z1), while not interfering with all
other directions. The end result is a state which is stable when
restricted to the separating manifold, which corresponds to a
fixed point of the dynamics with a single unstable direction,
precisely the edge states we are interested in.

3. Bifurcation diagram for the Barkley model

With the edge-tracking algorithm outlined above, the
schematic bifurcation diagram shown in Fig. 1 can be com-
puted explicitly for the Barkley model by computing the
relevant fixed points and edge states for each value of r.

To efficiently compute edge states, in particular, the gap
edge in the puff regime, we employed two additional tech-
niques: First, we used continuation to get a good first guess
for the gap edge at a given r by using the previous result
for the edge computation at a close-by r. Second, close to
the edge we can use a local-in-time heuristic to decide on
which side of the basin boundary a configuration is located:
If its turbulent mass q̄ is increasing in time, the configuration
lies toward the turbulent fixed point, while if q̄ is decreasing
in time, the configuration lies toward the puff (or antipuff).
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While this criterion is only true close to the edge, it allows us
to compute the unstable branch much more efficiently.

C. Asymptotic results for the Barkley model

Here we demonstrate how the general arguments made
above manifest themselves in the deterministic Barkley model
using analytical arguments. We will focus on leading order
results in ε � 1, which is the parameter controlling the slow
relaxation of the mean shear u in the model.

Above we have denoted front speeds by c±(u, r) = u −
ζ ∓ S(u, r), while in the notations of Ref. [9], S(u, r) =√

Ds(u, r). Using standard techniques [33,34], it can be
shown that at leading order in ε:

s(u, r) = 3

√
r + u − U0

2
−

√
r + δ

2
. (8)

One can then solve explicitly for the velocity up at the down-
stream front of a puff, though that gives a lengthy expression
which we omit here. The turbulent fixed point (qt , ut ) corre-
sponds to the intersection of the u nullcline with the q (upper

branch) nullcline defined by q+ = 1 +
√

r+u−U0
r+δ

, ut being the

solution to the equation U0 − u + κ (Ū − u)q+(u, r) = 0. The
turbulent fixed point first appears at rturb, at the intersection
of the u nullcline with the nose of the q nullcline which is at
qt = 1. This gives

ut (rturb) = (U0 + κŪ )

1 + κ
(9)

and

rturb = κ (U0 − Ū )

1 + κ
, (10)

with rturb = 2/3 for our parameters.

1. The gap edge

We now discuss the gap edge in the limit ε → 0. We note
that many characteristics we describe below are identical to
those of the decay edge in this limit. We build on the analysis
presented in Ref. [9] to make our arguments for the properties
of the gap edge.

To solve for the structure of the gap edge in the limit ε →
0, we may consider u = ut fixed and solve for q at this fixed
u (this is also true for fronts of puffs and antipuffs). Then,
assuming a traveling wave solution at speed cg, and moving
into its reference frame, the dynamical equation for q becomes
a spatial ODE:

D∂xxq = −(cg − ut + ζ )∂xq − f (q, ut ). (11)

This is equivalent to a particle with position q, moving in
a force field − f (q, u) with linear friction with coefficient
cg − ut + ζ acting on it. The system being one-dimensional,
the force can be written as a derivative of an (inverted) poten-
tial Vr (q), with f (q, u) = ∂qVr (q), which has maxima at q = 0
and q = q+(r, ut ). This is an inverted potential compared to
the local dynamics for q, i.e., ∂t q keeping u fixed and consid-
ering a spatially homogeneous solution.

The gap edge solution corresponds to a homoclinic trajec-
tory of the one-particle system (11): going from qt and back,

qg = 0 qt q

r = rgap

Vr(q)(b)

qg qt q

r < rgap

Vr(q)(a)

FIG. 4. (a) The spatial structure of the gap edge q(x) corresponds
to a homoclinic trajectory of a particle moving in the potential Vr (q),
with ∂qVr (q) = f (q, u) and x playing the role of time. The particle
starts at qt , reaches qg, and returns. (b) When r = rgap, this homo-
clinic trajectory goes all the way to qg = 0.

i.e., q(x → ±∞) = qt with zero velocity q̇(x → ±∞) = 0.
Such a trajectory is possible as long as q = qt is the lower
maximum of the potential compared to q = 0, which in terms
of the local dynamics of q corresponds to turbulent flow being
a local minimum of the potential while laminar flow is a global
minimum. From conservation of energy in the one-particle
system (or time reversal symmetry where x plays the role
of time), such a trajectory requires zero friction (meaning
conservative one particle dynamics), giving cg = ut − ζ . For
r < rgap, this situation is depicted in Fig. 4(a). As r increases,
the turbulent fixed point becomes more stable: It rises in rel-
ative height in the inverted potential, making the homoclinic
trajectory approach closer to q = 0 as the (potential) energy of
the initial condition increases, until the laminar and turbulent
maxima have identical height. At this r = rgap, the trajectory
goes all the way to q = 0 and the homoclinic orbit is made of
two heteroclinic orbits connecting the two fixed points. This
is the point where the gap edge and antipuff merge, the fronts
of the gap edge becoming fronts of antipuffs which go all the
way to/from q = 0, as depicted in Fig. 4(b). The correspond-
ing mathematical details are more thoroughly discussed in a
general context in Ref. [9], Appendix A.

2. The antipuff regime

The transition from puffs to slugs happens when ut (r) =
up(r), which for our parameters gives rslug ≈ 0.76, though
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1.14

1.16

1.18

r = 0.75

(a) c+ (u, r) + ζ

c− (ut, r) + ζ

r = 0.7555

(b) c+ (u, r) + ζ

c− (ut, r) + ζ

1.6 1.8 2.0
u

1.14

1.16

1.18

r = 0.758

(c) c+ (u, r) + ζ

c− (ut, r) + ζ

1.6 1.8 2.0
u

r = 0.7613

(d) c+ (u, r) + ζ

c− (ut, r) + ζ

FIG. 5. Matching between upstream and downstream speeds for
antipuffs in the asymptotic Barkley model. (a) Below r = 0.75, there
is no solution for uap. (b) At r ≈ 0.7555, there is a single solu-
tion, uap ≈ 1.8 (c) For 0.7555 � r � 0.7613, there are two solutions.
(d) At r ≈ 0.7613, the higher velocity solution occurs at uap = U0 =
2, corresponding to the identification between the downstream front
of a puff and that of the unstable antipuff.

O(ε) corrections are significant here since the range rslug −
rturb is itself of this order. At this r = rslug, S(ut , r) =
−0.13, i.e., negative as required for the existence of an an-
tipuff. Furthermore, solving numerically for ut we obtain that
S(ut (r), r ≈ 0.83) = 0 so rgap ≈ 0.83 (again ε corrections are
significant here). Note that r = rgap is not necessarily the point
where weak fronts of the slug [35] stop existing, which instead
requires −ζ + S(ut , r) > 0 [9,24].

Although above we have focused on the case of a unique
solution for uap, here in the limit of ε → 0 there are in
fact two possible solutions. A match between front speeds
of the antipuff is first possible at rap ≈ 0.756 < rslug ≈ 0.76
giving uap ≈ 1.8 (for this r, ut ≈ 1.29). In particular, at rap ≈
0.756 the minimum of the curve c+(u, r) = u − ζ − S(u, r),
given by u = U0 − r − 9D

8 ≈ 1.8 touches the line c−(ut , r),
see Figs. 5(a) and 5(b). This corresponds to the appearance
of one stable and one unstable antipuff in a saddle node
bifurcation, as discussed below. Indeed, at higher 0.756 <

r < rslug, there are two intersection points between c+(u, r) =
u − ζ − S(u, r) and the line c−(ut (r), r) inside the segment
ut (r) < u < U0, giving two solutions for uap as in Fig. 5(c).
At r = rslug ≈ 0.76, the larger of the two velocities satisfies
uap = U0 = 2 so its downstream front is identical to that of
a puff, see Fig. 5(d). We will discuss how this two-antipuff
scenario will manifest itself in the bifurcation diagram in
the next section. However, while it is probably realized in
the Barkley model for very small but finite ε, its region of
existence in r is minuscule, 0.756 < r < 0.76, making it in-
distinguishable in practice from a single antipuff appearing at

rslug. Thus, we could not satisfactorily verify it in numerical
simulations.

IV. ALTERNATIVE SCENARIOS FOR THE
BIFURCATION DIAGRAM

Here we consider two alternative scenarios to the bifur-
cation diagram presented in Fig. 1. Remarkably, in these
scenarios there is a range of Re for which puffs and antipuffs
coexist. Both scenarios appear to be inconsistent with obser-
vations for pipe flow, though the differences are subtle and
thus could be relevant to other wall bounded flows where
pufflike and sluglike structures occur.

The three main assumptions we have made so far are (i) a
continuous transition from puffs to slugs, implying Returb <

Reslug, (ii) at Reslug homogeneous turbulence is metastable
compared to laminar flow, corresponding to S(ut , Reslug) < 0
as can be measured at the downstream front of a slug, and
(iii) there is a unique solution for the antipuff speed uap

which gives fronts of matching speed. While the first two
assumptions can be directly measured, the third assumption
is more subtle but could still be checked: it implies that a puff
continuously turns into an antipuff when viewed in the q-u
plane. That indeed appears to be the case for pipe flow [6],
though this issue has not been the focus of a dedicated study.
In the following, we will assume (i) is satisfied throughout,
though we are not aware of a general argument precluding a
discontinuous transition from puffs to slugs.

We begin by exploring the consequences of breaking
assumption (iii) while keeping (i) and (ii). Indeed, the equa-
tion determining the speed of the downstream front of an
antipuff does not necessarily have a unique solution: uap −
S(uap, Re) = ut + S(ut , Re) can have more than one solution
but at most two, since S(uap, Re) is an increasing function of
uap. Thus, the right-hand side of the equation is not necessarily
monotonic but at most has one extremum. If there are indeed
two solutions for uap, they correspond to the presence of
a stable and unstable antipuff, and we will denote by Reap

the Reynolds number where they first appear together. Note
that Reap > Returb since an antipuff is a localized state within
homogeneous turbulence. For Reap < Re < Regap, creating a
laminar pocket within homogeneous turbulence will lead to
the formation of an antipuff. Thus, the gap edge lies at the
boundary between turbulence and the stable antipuff state
and the bifurcation diagram is unchanged for Reslug < Re <

Regap. Like before, Regap corresponds to the point where the
gap edge merges with an antipuff.

The stable antipuff appears at Reap and disappears at Regap.
Thus, the unstable antipuff must disappear at Reslug. Indeed,
at Reslug uap = U0 is a solution, since a slug has matching
upstream and downstream front speeds at this Re. Thus, like
previously, a puff turns into an antipuff at Reslug, but here
it is the unstable antipuff. Note that slugs, which connect
the laminar base flow with homogeneous turbulence, are
still contracting (since up > ut ) for all Returb < Re < Reslug.
However, even though slugs are contracting, if one were to
sufficiently decrease the mean flow in the laminar region, then
the laminar region would contract to a finite length, forming
the stable antipuff. The corresponding bifurcation diagram is
presented in Fig. 6(a).
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FIG. 6. Alternative bifurcation diagrams for transitional flow.
(a) Existence of two antipuff solutions, with the unstable (U antipuff)
and stable antipuff (S antipuff) being created out of a saddle-node
bifurcation at Reap. Note the coexistence of puffs and antipuffs in this
regime marked in blue. The intermittent turbulence regime is marked
in red. (b) Disappearance of the gap edge before the transition to
slugs: Regap < Reslug. Like in (a), there are two antipuff solutions and
a coexistence region between antipuffs and puffs. The intermittent
turbulence regime is absent.

As a second alternative, let us briefly discuss the case
where assumption (ii) is broken while keeping assumption
(i). This corresponds to assuming S(ut , Reslug) > 0, but that
puffs still continuously turn into slugs at Reslug. In particular,
the condition S(ut , Reslug) < ζ for the existence of a weak
slug front is assumed to still be satisfied [9]. In this case,
Regap < Reslug so stable antipuffs disappear before Reslug. It
follows that this is also a regime with two antipuffs, breaking
also assumption (iii), the unstable antipuff disappearing at
Reslug as before. No intermittent turbulent regime can exist
in this case. This scenario is sketched in Fig. 6(b).

V. INTERMITTENT TURBULENCE REGIME

As stated above, we propose that the intermittent turbu-
lence regime corresponds to the range Reslug < Re < Regap,
so laminar pockets within homogeneous turbulence observed
in simulations of pipes [6] are in fact antipuffs which are
excited and subsequently decay. Both excitations and decays
are expected to occur through the gap edge. These laminar
pockets set the fraction of laminar flow within homogeneous
turbulence and thus have a similar role to that of puffs for the
reverse transition from turbulence to laminar flow. Antipuffs,
however, do not completely mirror puffs: they can be sponta-
neously excited from the turbulent state, as it is not absorbing,
while on the other hand they cannot split. The fraction of
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FIG. 7. For r = 0.748, σ = 0.22, the antipuff is long lived, but
noise is strong enough to drive a rare transition from turbulent flow
into the antipuff (left) and from an antipuff back into the fully
turbulent flow (right).

laminar flow in the homogeneous turbulent state is thus con-
trolled by the probabilities of antipuff excitations and decays.
These vary smoothly with Re, excitations becoming rarer and
lifetimes becoming shorter as the gap edge grows deeper, as
indeed observed in pipe flow [6] and the Barkley model [9].
Thus, this is not a phase transition and, in particular, there is
no critical point corresponding to it.

We now wish to demonstrate that the laminar pockets
within homogeneous turbulence observed in the Barkley
model indeed correspond to the excitations and decays of
antipuffs. We therefore consider the stochastic Barkley model.
The stochastic model had been previously explored for the
noise level σ = 0.5 in Ref. [9], but this level of noise is so
high that laminar flashes are frequent. Thus, the observation
of a single creation and decay event is hard, the pockets
lifetimes are short, and multiple laminar pockets regularly
coexist. To isolate creation and decay of a single stochastic
laminar pocket, we perform numerical simulations at a lower
noise level, σ = 0.22 and in Fig. 7 present a stochastic cre-
ation event (left panel) and a stochastic decay event (right
panel) both at r = 0.748 which is lower than rgap for this noise
level.

In addition, we show the profile of the stochastic laminar
pocket in Fig. 8, where we present both the spatial q and
u profile for an average pocket (right) and a q-u plot (left),
which includes both the average as well as the density of indi-
vidual realizations. The averaging is performed by aligning
the structures in space according to the downstream front,
which is therefore sharp. Note that this smears the upstream
front, making the average less representative, as evident in
the q-u plot, since the spatial extent of the pocket tends to
vary significantly, as seen in Fig. 7. The resemblance of the
average structure to the deterministic antipuff is striking. It is
also evident for the mean as well as for individual realizations
that the mean shear u never reaches the laminar value U0 = 2,
a characteristic feature of antipuffs.
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FIG. 8. Spatial structure (left) and q-u plot (right) of the antipuff
at r = 0.748, σ = 0.22. Many realizations of the stochastic antipuff
are aligned at the downstream front to obtain its average form.
In the q-u plane, we superimpose a density plot of all considered
realizations of the antipuff.

VI. CONCLUSION

We have motivated the existence of two states, the gap
edge and the antipuff, and have discussed how they fit within
a bifurcation diagram involving previously known states. Our
paper motivates the study of antipuffs as well-defined separate
states, as well as a search for the gap edge. It further suggests
the existence of invariant solutions which have a localized
laminar region (e.g., where streamwise vorticity is depleted)

embedded in a turbulent (vortical) flow, as those could be
underlying the gap edge and the antipuff state.

Taken together, a unified dynamical picture of the tran-
sitional regime emerges: laminar gaps forming within ho-
mogeneous turbulence are the mirror images of turbulent
patches embedded within laminar flow. Still, the transition
from laminar flow to turbulence with increasing Re is not the
mirror image of the transition from homogeneous turbulence
to laminar flow with decreasing Re. This is a consequence
of the absorbing nature of the laminar base flow, which the
homogeneous turbulent state does not share. Thus, while the
former transition is a proper phase transition, the latter is not.

Finally, while we believe the bifurcation diagram we pre-
sented is relevant for pipe flow, other alternatives are also
possible. We have presented two such alternatives here. In
future work, it will be interesting to explore their possible
relevance to other wall bounded flows and the ensuing con-
sequences for the transition to and from turbulence.
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