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Critical pressure in liquids due to dynamic choking
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The existence of a critical pressure ratio due to gas-dynamic choking is well known for an ideal gas. It is
reasonable to assume that liquids whose compressibility is defined by the bulk modulus also have a critical
pressure ratio. The problem discussed here is a fundamental one because it deals with the basic principles of
the compressible flow of liquids. It has been shown that even though an ideal gas with a constant heat capacity
ratio value has a critical pressure ratio, liquid with a constant bulk modulus value experiences a critical pressure
difference. As the outlet pressure gradually decreases, the liquid reaches the local speed of sound, and further
reduction of this pressure does not lead to an increase in mass flow. This phenomenon occurs in liquids without
considering the change from a liquid to a gaseous phase. Behavior is confirmed analytically for different bulk
modulus models, and for a constant bulk modulus value, the phenomenon is verified by numerical simulation
using computational fluid dynamics. The conclusions published in this work point to striking analogies between
the behavior of liquids and ideal gas. The equations governing the motion of liquids derived in this work, thus
complete the fundamental description of the critical flow of fluids.
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I. INTRODUCTION

It is well known that the velocity of gas leaving the
reservoir of pressure p0 and velocity v0 ≈ 0 through a duct
increases due to a gradual reduction of the outlet pressure until
the local speed of sound is reached. Mass flow increases until
the ratio p/p0 acquires the so-called critical pressure ratio,
where p is local pressure in the duct and further reduction of
the outlet pressure no longer leads to an increase in mass flow.

This phenomenon is called gas-dynamic choking and can
occur even in the case of flow with no energy losses. The crit-
ical pressure ratio represents a limitation of the mass flow, not
in terms of energy losses in the gas but as a physical limitation
resulting from the nature of the change in density and velocity
of the expanding gas. Therefore, critical flow is a limiting
factor that causes the flow to choke, even in the case of zero
gas viscosity. To prevent flow choking when the pressure ratio
is smaller than critical, a convergent-divergent pipe must be
used. Detailed analyses of one-dimensional flow can be found
in almost any literature dealing with compressible flows [1–4].

The fundamental steps of the derivation of critical pressure
are shown here to develop the problem for liquids. To deter-
mine the critical pressure ratio of an ideal gas, it is necessary
to take into account the equation of the adiabatic process of
the ideal gas

pρ−κ = p0ρ
−κ
0 = constant, (1)

where ρ is density, κ is heat capacity ratio, and subscript
0 indicates the location inside the reservoir. Conservation of
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momentum is regarded in the form

v dv = −d p

ρ
. (2)

Note that Eq. (2) assumes a one-dimensional stationary
flow, neglecting the influence of body and friction forces.
Substituting density ρ from Eq. (1) into the conservation of
momentum Eq. (2) and its subsequent integration, the velocity
of the gas leaving a convergent nozzle, taking the adiabatic
process into account, can be determined as

v =
√

2κ

κ − 1

p0

ρ0

[
1 −

(
p

p0

)(κ−1)/κ]
(3)

and assumes negligible velocity of the gas in the reservoir,
v0 = 0. The integral form of the continuity equation for one-
dimensional stationary flow has the form

ṁ = ρvA = constant, (4)

where ρ is determined by Eq. (1), v is determined by Eq. (3),
and A denotes the size of the cross-sectional area through
which the fluid flows. At this point, it would be appropriate to
investigate the product, ρv; however, function ψ is sometimes
introduced in the literature [5]. The critical pressure ratio can
be derived both from the product ρv and the form of the
continuity equation considering function ψ . For the purposes
of this work, function ψ is introduced and shown here. The
continuity equation with the introduction of function ψ takes
the form

ṁ = Aψ
√

2p0ρ0, (5)
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FIG. 1. Function ψ of an ideal gas for heat capacity ratio κ = 1.2
and κ = 1.4.

where the introduced function ψ is given as

ψ =
√

κ

κ − 1

√(
p

p0

)2/κ

−
(

p

p0

)(κ+1)/κ

. (6)

It should be emphasized that when the inlet pressure p0

increases, the mass flow increases even if the ratio p/p0 ac-
quires the maximum critical value because the mass flow ṁ is
linearly proportional to the term

√
2p0ρ0, according to Eq. (5).

For this reason, it is more appropriate to state that critical
pressure p exists in lieu of a critical pressure ratio p/p0. The
critical pressure ratio must be understood as the ratio p/p0 for
a fixed pressure in the reservoir p0.

Figure 1 shows that function ψ acquires a local maximum
on the interval (0; 1). By setting the derivative of function ψ

equal to zero, that is, dψ/d (p/p0) = 0, it holds that function
ψ reaches its maximum for the pressure ratio(

p

p0

)
ψ max

=
(

2

κ + 1

)κ/(κ−1)

. (7)

Equation (7) is a well-known result, which shows that the
flow of an ideal gas reaches its maximum at a certain value
of the pressure ratio p/p0 for convergent pipes. Nonetheless,
it must be noted that Eq. (7) is valid only for an ideal gas,
not for liquids because Eq. (1) is valid for an ideal gas. The
maximum gas velocity is equal to the local speed of sound for
the critical pressure ratio

vψ max =
√

κ
p

ρ
= √

κrT , (8)

where r denotes the specific gas constant and T denotes ther-
modynamic temperature. The modifications shown below, as
stated by Shapiro [1], make it possible to deduce the pressure
gradient of the flow in an upstream and downstream direction
depending on the pipe shape for subsonic and supersonic flow
regimes. By deriving continuity Eq. (4), the equation

dA

A
+ dρ

ρ
+ dv

v
= 0 (9)

can be obtained. Substituting expression dv/v into the con-
servation of momentum Eq. (2), it is possible to derive the
expression

dA

A
= d p

ρ

(
1

v2
− dρ

d p

)
= 0. (10)

In isentropic processes, denoted by subscript s, the local
speed of sound is defined by the relationship

vsound =
√(

∂ p

∂ρ

)
s

. (11)

Supposing that (∂ p/∂ρ)s = d p/dρ and introducing Mach
number

Ma = v√
d p
dρ

, (12)

Eq. (13) can be obtained as

dA

A
= d p

ρv2
(1 − Ma2). (13)

As Shapiro [1] notes, Eq. (13) is generally valid for fluids,
i.e., for both gases and liquids. Equation (13) is derived based
on continuity Eq. (4) and conservation of momentum Eq. (2)
as they are valid laws for both gases and liquids. Equation (13)
makes it possible to determine whether the pressure increases
or decreases in the flow direction depending on the ratio of
the cross sections of the pipe, A/A0, in the case of subsonic
and supersonic flow. The conservation of momentum Eq. (2)
indicates that the streamwise velocity gradient is equal to
the negative streamwise pressure gradient, i.e., if the pressure
increases in the flow direction, the velocity decreases and vice
versa. Four familiar cases can occur, as listed in Table I.

However, the aforementioned equations do not provide
any information about the value of prospective critical pres-
sure ratio for liquid. Although the conclusions made about
Table I, which is valid for both gases and liquids, suggest
that a critical pressure ratio must also exist for liquids, Eq. (7)
cannot be used for liquids as it is only valid for an ideal gas.
This equation was derived based on Eq. (1). The conclusions
summarized in Table I are drawn from Eq. (13) and provide
a qualitative idea of the behavior of liquids in terms of the
existence of liquid-dynamic choking, but it is not possible to
quantify the value of critical pressure for liquids.

Researchers from various branches of fluid mechanics are
generally aware that even liquids behave analogously to gases
with respect to the existence of a critical pressure ratio, which
certainly exists in liquids. Therefore, it is interesting that de-
termining the value of critical pressure in liquids, as is the case
for ideal gases, has so far escaped the attention of theoretical
considerations.

Unlike gases, liquids do not have an equation of state
expressed in an elegant form that combines pressure, density,
and thermodynamic temperature that allows a description of
the selected processes. For liquids, processes are expressed
by the type of bulk modulus, the value of which is experimen-
tally determined for the selected process. This work aims to
demonstrate that the value of critical pressure exists in liquids,
and it can be clearly defined for selected models describing
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TABLE I. Overview of change in pressure and fluid velocity depending on the cross section for subsonic and supersonic regimes.

Ratio A
A0

Pressure gradient Velocity gradient

Subsonic divergent nozzle A
A0

> 1 p > p0 v < v0

Subsonic convergent nozzle A
A0

< 1 p < p0 v > v0

Supersonic divergent nozzle A
A0

> 1 p < p0 v > v0

Supersonic convergent nozzle A
A0

< 1 p > p0 v < v0

the bulk modulus of a liquid. The theory is initiated analyti-
cally using fundamental equations that govern the motion of
liquids.

II. REVIEW

In the literature, the terms critical flow and choked flow
have different meanings and applications. Therefore, it should
be emphasized that this work will present an unfinished
analogy between gas-dynamic choking and liquid-dynamic
choking. Knowledge of the critical pressure ratio for an
ideal gas has been widely used in engineering and science,
especially in the aerospace industry, for example, in the con-
struction of engines and nozzles, and this phenomenon has
been studied for a long time [6–8]. Kluwick and Scheichl
[9] investigated a supersonic nozzle for the nonstationary
flow of dense gases. Drikakis and Tsangris [10] examined
the supersonic flow of real gas in a convergent-divergent
nozzle. Sirignano [11] more recently studied the differences
in conditions leading to choking between an ideal gas and
real gas using fundamental equations to describe the flow of
an ideal gas while introducing compressibility factors. The
results showed the variations in speed, density, enthalpy, or
speed of sound between an ideal gas and a real gas.

Research has also been conducted on choking in liquids;
however, it is not caused by so-called dynamic choking but
other physical phenomena. Birkhoff et al. [12] and Brennen
[13] investigated choked flow and cavity flow when the max-
imum liquid velocity is limited for a given stream and cavity
pressure. In their work, liquid choking was a consequence of
cavitation. Richardson [14] referred to critical flow in liquids
as a state of choking due to an increase in viscosity as a
result of a rise in liquid pressure. He investigated choking as
a result of pressure losses, although he noted that an increase
in pressure led to the liquid being heated, therefore decreasing
its viscosity.

Although LeMartelot et al. [15] studied critical flow in
a mixture of gas and liquid, the equations for the critical
pressure ratio published in this work are based on equations
for an ideal gas. Similarly, Ros [16] examined a mixture of
gas and liquid to analyze the flowmeter formula. However, the
equations for the liquid-gas mixture are also based on those
valid for an ideal gas using polytropic process equations.

Moncalvo and Friedel [17] examined flow choking at a
critical pressure ratio considering a homogeneous mixture of
water. The determination of critical pressure was based on the
equations valid for an ideal gas. Hardekopf and Mewes [5]
also studied the critical pressure ratio for two-phase flow and
demonstrated that the critical pressure ratio of water in the
state of saturated liquid is (p/p0 )ψ max = 0.85 as determined

by the Henry-Fauske model. However, even in the case of
saturated liquid flow, this model is based on the assumption
of a two-phase mixture flow because it is assumed that the
vaporization of the liquid may occur locally at the nozzle inlet.

The Henry-Fauske model was also used by Kim [18–20]
and Geng et al. [21], where critical flow in the case of liquids
was considered to be a flow that, under certain conditions,
could choke because of gaseous or vapor components present
in the liquid. Moody [22] determined the maximum flow rate
in the flow of a one-component water vapor mixture using the
term critical flow. Schrock et al. [23] studied nonstationary
steam flow considering condensation and used equations for
an ideal gas. Arina [24] also dealt with the numerical simula-
tion of supercritical flow, which is understood to be a liquid
flow that is close to the liquid-vapor critical point.

Indeed, an abundance of literature highlighted the ex-
istence of maximum flow in the nozzle due to rapid
decompression, in which flashing inception occurs [25–28].
However, these works used saturated or subcooled water, and
maximum mass flow was determined for the nucleation of the
vapor component in the liquid flowing through the nozzle.
Therefore, flow choking was understood as a consequence of
the local phase change from liquid to gas.

The aforementioned works assume the existence of a
gaseous or vapor component present in the liquid to determine
the critical pressure ratio. However, the value of the liquid’s
critical pressure ratio, without considering a phase change
similar to an ideal gas, is still unknown. This work demon-
strates that liquids, without considering the phase change,
experience a certain pressure drop value at which choking in
the convergent pipe occurs, and a further increase in mass flow
is possible only by using a convergent-divergent pipe. The
equations presented in this work have not yet been investi-
gated, perhaps due to no need to deal with the supersonic flow
of liquids without considering the liquid phase change or the
presence of the gaseous component.

Generally, due to the high value of the ratio between the
bulk modulus and the density of liquids, the achievement of
the sonic velocity of liquids is associated with the creation
of extremely high pressure drop values. In any case, the fol-
lowing equations represent the theoretical limit of the critical
pressure drop leading to choking in the flow of liquids. This is
not because of the change of particles from liquid to vaporous
form or another gas but for equivalent reasons, as in the case
of gas-dynamic choking.

III. CRITICAL PRESSURE IN LIQUIDS

As stated by Lighthill [29], the most accurate form
that expresses the law of conservation of momentum for a
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compressible fluid without considering external forces, writ-
ten using Einstein’s summation notation, is governed by the
equation

∂

∂t
(ρvi ) + ∂

∂x j
(ρviv j ) − ∂σi j

∂x j
= 0, (14)

where ∂/∂t is the time derivative, vi is the velocity vector
with index i and v j is the velocity vector with index j, σi j is
the Cauchy stress tensor, and x j is a spatial coordinate with
index j; indices i, j = 1, 2, 3. The Cauchy stress tensor
takes the form σi j = −δi j p + �i j , where −δi j is Kronecker
delta and �i j represents the tensor of irreversible changes,
that is, the deviatoric stress tensor. The continuity equation
for compressible fluid may be written as

∂ρ

∂t
+ ∂ (ρvi )

∂xi
= 0. (15)

The following assumptions are used for
(1) stationary flow ∂/∂t = 0,
(2) inviscid flow �i j = 0,
(3) one-dimensional flow v2 = v3 = 0, ∂/∂x2 =

∂/∂x3 = 0,
(4) the insignificant effect of density change, and
(5) no phase change.
Note that the conservation of momentum Eq. (2) in the

form v dv = −d p/ρ, can be obtained from Eq. (14), and
continuity Eq. (15) assumes that density ρ is constant, i.e.,
ρ �= ρ(t, xi ). Despite these assumptions, the conservation of
momentum Eq. (2) is used for a perfectly compressible ideal
gas. Concerning one-dimensional flow conditions, velocity v1

is further written without an index, v1 = v.
To derive function ψ for liquids, the compressibility of

the fluid must be considered. Equation (1) cannot simulate
the behavior of a liquid under adiabatic flow. For the sake of
clarity, it is worth noting that considering κ = 1 represents
Boyle’s law, from which it follows that a double increase in
absolute static pressure at a constant temperature will lead
to a double increase in the density of a liquid. Alternatively,
considering a high value of heat capacity ratio, e.g., κ = 1000,
results in doubling the pressure ratio p/p0, leading to a very
slight increase in density ratio ρ/ρ0, according to Eq. (1), as
is normally expected for most liquids. Nevertheless, based
on the heat capacity ratio definition, κ = 1000 means that
cp = 1000cv, which is obviously not correct. Hence, it is
apparent that in the case of liquids, it is not physically correct
to assign artificial values of heat capacity ratio κ to liquids in
Eq. (1) and apply such an artificial κ in Eq. (7) as κ is defined
as κ = cp/cv, where cp and cv denote isobaric and isochoric
specific heat, respectively.

The quantity that defines the relationship between pressure
and density of liquids is the bulk modulus. Gholizadeh et al.
[30] and Hayward [31] summarized several definitions found
in the literature, such as the secant or tangent bulk modulus.
For the analytical purposes in this work, it is appropriate
to use the definition of tangent bulk modulus Kτ because it
expresses the instantaneous change in the density of the liquid
and is defined by a differential equation. Furthermore, it is
possible to distinguish whether it is a tangent isothermal bulk
modulus Kτ,T or a tangent isoentropic bulk modulus Kτ,S.
The difference between these types of bulk moduli lies in

how the volume of a liquid changes, whether it changes at a
constant temperature or without heat exchange. For this work,
the type of bulk modulus is not that important because the
formal definition of the tangent bulk modulus is the same for
both isothermal and isentropic modules. Therefore, it is not
distinguished and is shown without an index. Equations and
conclusions are applicable for Kτ,T and Kτ,S.

A. Function ψ for constant bulk modulus

Bulk modulus K can be written in the form

K = ρ
∂ p

∂ρ
. (16)

It is assumed that density is a function of pressure, ρ =
ρ(p). In Eq. (16), partial derivatives can be exchanged for total
derivatives and Eq. (16) may then be rearranged to take the
form

dρ

ρ
= d p

K
. (17)

Bulk modulus is considered to be a constant value, K =
Kconst. Subsequent integration satisfying boundary condition
p = p0: ρ = ρ0 yields Eq. (18). This boundary condition ex-
presses the known values of the density and pressure of the
liquid in the reservoir. Density ρ is then equal to

ρ = ρ0e(p−p0 )/Kconst . (18)

Furthermore, the conservation of momentum Eq. (2) con-
sidering Eq. (17) has the form

v dv = −d p

ρ
= −dρ

ρ2
Kconst (19)

and its integration satisfying boundary condition v = 0: ρ =
ρ0 gives Eq. (20). This boundary condition assumes a negligi-
bly low velocity inside the reservoir and a known density ρ0.
It holds that

v =
√

2Kconst

(
1

ρ
− 1

ρ0

)
, (20)

where ρ is defined by Eq. (18). Substituting Eq. (18) for
Eq. (20), the velocity of the liquid obtains the form

v =
√

2Kconst

ρ0
(e(p0−p)/Kconst − 1). (21)

Naturally, Eq. (21) can also be obtained by substituting
ρ = ρ(p) from Eq. (18) into Eq. (19) and subsequent inte-
gration with respect to p and satisfying boundary condition
v = 0: p = p0. The continuity equation is then rewritten

ṁ = Aρ0e(p−p0 )/Kconst

√
2Kconst

ρ0
(e(p0−p)/Kconst − 1)

= AψKconst

√
2Kconstρ0. (22)

Function ψKconst can be defined in a manner analogous to
that of an ideal gas. By introducing substitution 
p = p0 − p,
function ψKconst can be written as

ψKconst = e−
p/Kconst
√

(e
p/Kconst − 1). (23)
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FIG. 2. The course of function ψKconst of a liquid with a constant
bulk modulus Kconst .

The graph of function ψKconst as a dependence of the dimen-
sionless variable 
p/Kconst is shown in Fig. 2.

The graph in Fig. 2 demonstrates that function ψKconst

has a local maximum value that may be found by
dψKconst/d (
p/Kconst ) = 0. At the maximum of function
ψKconst , the ratio 
p/Kconst is equal to


pψ max, Kconst

Kconst
= ln(2)

.= 0.69. (24)

Equation (24) shows that liquids whose compressibility is
defined by the bulk modulus show a certain pressure drop
value, similar to the case of a perfectly compressible ideal
gas. During the gradual decrease in outlet pressure for a
fixed pressure in the reservoir p0, the mass flow reaches its
maximum. Unlike an ideal gas, there is no critical pressure
ratio in liquid with a constant bulk modulus Kconst, but there is
a critical pressure difference. Equation (24) states that, even
for liquids, there is a certain limit at which the mass flow
reaches its maximum, and the value of this limit is a pressure
difference proportional to 0.69 times the bulk modulus of the
liquid. Additionally, analogously to an ideal gas and in terms
of Eq. (22), liquid-dynamic choking must be understood as
a phenomenon that occurs under the condition of constant
pressure p0 in the reservoir. As the pressure in the reservoir
increases, the density ρ0 increases as well. For this reason,
it is also appropriate to understand the maximum of function
ψKconst as a consequence of the reduction of the outlet pressure.

Nonetheless, the question also arises as to what value the
velocity of the flowing liquid takes at the maximum of func-
tion ψKconst . Substituting expression ln(2) from Eq. (24) into
Eq. (21) and using the relationship ρ0 = ρeln(2) from Eq. (18),
which is valid for the maximum of function ψKconst , it follows
that the velocity in the maximum of function ψKconst is obtained
as

v ψ max, Kconst =
√

Kconst

ρ
= vsound. (25)

Equation (25) proves that the velocity of a liquid is equal
to the local speed of sound at the maximum of function ψKconst .
Therefore, Eq. (24) can be interpreted that when the pressure

difference reaches 0.69 times the bulk modulus of the liquid,
the liquid reaches the local speed of sound.

As with an ideal gas, the Mach number Ma = v/
√

Kconst/ρ

can be introduced for further consideration because when the
pressure difference increases, the velocity in the critical cross
section acquires the local velocity of sound. Using Eq. (17)
and the definition of the Mach number, it follows that v2 =
Ma2Kconst/ρ. The differential form of continuity Eq. (9) can
thus be converted into

dA

A
= 1 − Ma2

KconstMa2
d p, (26)

and after its integration that includes boundary condition A =
A0: p = p0, the pressure p is equal to

p = KconstMa2

1 − Ma2
ln

( A

A0

)
+ p0. (27)

By analyzing Eq. (27) and considering the conservation
of momentum Eq. (2), four known cases can occur that are
analogous to an ideal gas; these are summarized in Table I.

B. Function ψ for linear dependence of the bulk
modulus on pressure

The above derivation of function ψ is based on assuming a
constant value for the bulk modulus. In general, the bulk mod-
ulus is a function of pressure and temperature K = K (p, T ).
The following derivation assumes a linear dependence of the
bulk modulus on pressure in the form

Klin = ap + b, (28)

where a and b are real coefficients. Using Eq. (17), it can be
written

dρ

ρ
= d p

ap + b
. (29)

After integrating Eq. (29), assuming that a �= 0 and consid-
ering boundary condition p = p0: ρ = ρ0, density ρ takes the
form

ρ = ρ0

(
ap + b

ap0 + b

)1/a

. (30)

By substituting density ρ from Eq. (30), the conservation
of momentum Eq. (19) is

v dv = − d p

ρ(p)
= − d p

ρ0
( ap+b

ap0+b

)1/a . (31)

Integrating Eq. (31), assuming that a �= 1 and taking into
account the boundary condition v = 0: p = p0, velocity v

may be written as

v =
√

2(ap0 + b)1/a

ρ0(a − 1)
[(ap0 + b)(a−1)/a − (ap + b)(a−1)/a].

(32)
The continuity equation takes the form

ṁ = Aρv

= A

√
2ρ0

(a−1)
(ap0+b)

[(
ap+b

ap0+b

)2/a

−
(

ap+b

ap0+b

)(a+1)/a]
.

(33)
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FIG. 3. The course of function ψKlin of a liquid having linear
dependence on the bulk modulus Klin of pressure depends on the ratio
of the bulk moduli Klin/K0 for selected coefficients a.

By introducing a substitution based on the assumption
expressed by Eq. (28), Klin = ap + b, and a substitution ex-
pressing the value of the bulk modulus in the reservoir for
pressure p0 as K0 = ap0 + b, the continuity equation can be
written as

ṁ = Aρv = A

√
2ρ0

(a − 1)
K0

[(
Klin

K0

)2/a

−
(

Klin

K0

)(a+1)/a]

= AψKlin

√
2ρ0K0. (34)

Function ψKlin for the linear dependence of the bulk modu-
lus on pressure is introduced in Eq. (34) as

ψKlin =
√

1

a − 1

[(
Klin

K0

)2/a

−
(

Klin

K0

)(a+1)/a]
. (35)

Function ψKlin introduced in this way acquires values
from the field of real numbers only under the assumption

a > 0 ∧ a �= 1. Function ψKlin is shown in Fig. 3.
Based on the course of function ψKlin , it is apparent that

it acquires a maximum found by dψKlin/d (Klin/K0) = 0. The
solution to this condition is ratio Klin/K0, for which function
ψKlin acquires a maximum given by the relationship

(
Klin

K0

)
ψ max, Klin

=
(

2

a + 1

)a/(a−1)

. (36)

Based on Eq. (36), it is possible to determine the pressure
for which function ψKlin reaches a maximum using the expres-
sion

pψ max, Klin = 1

a

(
a + 1

2

)a/(1−a)

(ap0 + b) − b

a
. (37)

One can see from Eq. (37) that the pressure at the max-
imum of function ψKlin increases linearly with increasing
pressure p0. Substituting Eq. (37) for Eq. (32), expressing
pressure p0 from Eq. (37) with formal modifications, the
expression for the velocity in the maximum of function ψKlin

is obtained as

vψ max, Klin =
√

ap + b

ρ
=

√
Klin

ρ
= vsound. (38)

As in the case of constant bulk modulus Kconst and the
linear dependence of Klin on pressure p, the velocity at the
maximum of function ψKlin is equal to the local speed of
sound, vsound. Therefore, Eq. (36) can be interpreted as if
the ratio of the local value of bulk modulus in duct Klin and
bulk modulus K0 in the reservoir reaches the value of the
expression [2/(a + 1)]a/(a−1) during the gradual decrease in
outlet pressure, the liquid reaches the local speed of sound,
and mass flow also reaches its maximum. One cannot fail
to notice the interesting formal analogy between Eq. (36)
and Eq. (7), which is a consequence of the analogy between
Eq. (35) and Eq. (6).

Quite analogously, Eq. (26) can be considered; however,
instead of Kconst, the relationship Klin = ap + b is valid, giving
rise to the equation

dA

A
= 1 − Ma2

(ap + b)Ma2
d p. (39)

By integrating Eq. (39) satisfying boundary condition A =
A0: p = p0, the following equation is obtained:

ap + b

ap0 + b
=

(
A

A0

)aMa2/(1−Ma2 )

. (40)

Analogously, four cases occur, which are summarized in
Table I. The limit transition a → 0 in Eq. (37) yields Eq. (24):

pψ max, Klin
a→0

= lim
a→0

{
1

a

(
a + 1

2

)a/(1−a)

(ap0 + b) − b

a

}

= p0 − b ln(2) = pψ max, Kconst . (41)

C. A generalization of the existence of critical pressure

In general, K = K (p). Based on Eq. (17), density ρ can be
determined as

ρ(p) = ρ0e∫p
p0

[1/K (p)]d p
. (42)

The conservation of momentum Eq. (2) then has the form

v dv = − d p

ρ(p)
= − d p

ρ0e∫p
p0

[1/K (p)]d p
. (43)

By integrating Eq. (43), assuming a negligibly small mean
velocity inside the reservoir, a general form for the velocity of
the flowing liquid is obtained as

v(p) =
√

− 2

ρ0

∫ p

p0

e− ∫p
p0

[1/K (p)]d pd p. (44)

Function ψ can then be introduced as the product of den-
sity ρ(p) and velocity v(p); that is, the product of Eqs. (42)
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FIG. 4. Computational domain representing the flow of liquid
from the reservoir to the nozzle.

and (44) can be written as

ψ (p) = ρ(p) v(p)

= ρ0e∫p
p0

[1/K (p)]dp

√
− 2

ρ0

∫ p

p0

e− ∫ p
p0

[1/K (p)]d pd p. (45)

From the condition of the local extreme of function ψ (p),
i.e., dψ (p)/d p = 0, it is possible to obtain the expression

1

K (p)
e∫p

p0
[1/K (p)]d p

∫ p

p0

e− ∫ p
p0

[1/K (p)]d pd p + 1

2
= 0. (46)

It should be noted that functions v(p) > 0 and ρ(p) > 0
are under the assumption that ρ0 > 0. Function ψ (p) is pos-
itive and function ψ (p = p0) = 0 because of v(p = p0) = 0,
so it is unnecessary to introduce the condition d2ψ (p)/d p2 <

0 for the maximum. Thus, Eq. (46) determines the class
of functions K (p) satisfying this equation, for which there
is a maximum of function ψ (p); therefore, critical pressure
exists. Equation (24) can easily be obtained by substituting
the expression K (p) = Kconst, which assumes a constant bulk
modulus value, into Eq. (46).

IV. NUMERICAL SIMULATION

It is reasonable to verify if the derived equations above
really predict flow choking. Therefore, a three-dimensional
geometric model representing a liquid reservoir is created,
including a nozzle with a constant cross section opening into
the free space (Fig. 4). This geometric model is spatially
discretized and using computational fluid dynamics (CFD),
finite volume method numerical analysis is performed. To
partly confirm the equations derived above, the CFD analysis
is performed so that the parameters are as close as possible
to the simplifying assumptions under which the equations are
derived. The analysis is an inviscid steady-state type (∂/∂t =
0, �i j = 0) considering a single-phase liquid neglecting heat
transfer. The external body forces are not considered either.
The liquid is considered to be barotropic and the bulk modulus
is considered to be constant Kconst. Therefore, the density of
a liquid is a function of the pressure according to Eq. (18).
The theory presented in this paper is new; for this reason, the
dimensions of the geometric model have no connection with
any test device. The length of the nozzle is long enough to
ensure numerical stability.

The boundary conditions consist of total inlet pressure and
static outlet pressure. The total pressure is set at the inlet
because the combination of static pressure at the inlet and
outlet is numerically unstable due to the fact that mass flow is
an implicit result. As the velocity at the inlet to the reservoir
is very low due to a significantly larger inlet area compared

FIG. 5. Distribution of Mach number in the computational do-
main for selected values of ratio 
p/Kconst obtained by CFD
analysis performed for a constant bulk modulus.

to the outlet area, the inlet total pressure is close to the inlet
static pressure. Several cases are analyzed in which the outlet
pressure is gradually reduced and the inlet pressure is fixed.
Therefore, constant value 
p is set for each analyzed case by
these boundary conditions.

Figure 5 shows that values 
p/Kconst = 0.67 and 0.95 have
almost the same Mach number distribution in the outlet pipe.
Case 
p/Kconst = 1.32 shows an increase in Mach number
near the outlet boundary condition. In Fig. 5 the maximum of
the Mach number in the legend corresponds to the maximum
of the Mach number obtained by the CFD simulation for the
given case. Figure 6 shows mass flow through the pipe as per
CFD analyses, and it is obvious that at 
p/Kconst = ln(2),
maximum flow through the nozzle occurs and a further de-
crease of outlet pressure no longer leads to an increase in
mass flow. The results obtained by CFD simulation confirm
the validity of Eq. (24).

V. DISCUSSION

The question arises whether it is possible to achieve dy-
namic choking in liquids under the conditions described in
Sec. III. Knowledge of the equations that allow the value of
the critical pressure difference to be quantified is important.
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FIG. 6. The flow through the nozzle during an increase in the
pressure difference between the inlet and outlet based on CFD anal-
ysis for the constant value of bulk modulus Kconst .

On the basis of Eqs. (24) and (37) it is possible to estimate
the pressure at which choking of liquids occurs, not only
due to phase changes but clearly due to the pipe geometry,
quite analogous to an ideal gas. Most liquids, such as water,
oil, or gasoline, have a bulk modulus greater than 1000 MPa
and therefore, according to Eq. (24), pressure greater than
690 MPa is required to achieve the critical pressure difference.
The nonzero viscosity of the liquids increases the required
experimental pressure even further to cover pressure losses.

For real liquids subjected to enormous pressure, the trans-
formation of their state of matter will become more important,
which thus represents a significant complication for the ex-
perimental determination of the critical pressure difference in
accordance with the assumptions described in Sec. III. This
involves both high reservoir pressure leading to icing of the
liquid as well as the risk of cavitation in the outlet pipe. There-
fore, for a real liquid, the occurrence of dynamic choking is
mainly conditional on the critical pressure difference existing
exclusively in the region of liquid phase of the fluid. The lim-
iting effect of cavitation could be experimentally suppressed
by a sufficiently high outlet pressure, since Eq. (24) expresses
the existence of a critical pressure difference regardless of the
magnitude of the absolute pressure.

It is clear that the restrictive conditions for achieving the
liquid-dynamic choking are an obstacle for realistic applica-
tion and probably for this reason this phenomenon has not
been thoroughly investigated yet. The derivation might be
thereby rather considered as theoretical in nature, as it pertains
to an idealized situation, in which the liquid does not undergo
a phase change in the choked regime; however, the above
equations cannot be considered as unusable. It is only a matter
of time before an application using liquid transfer without
occurrence of a phase change at a pressure difference higher
than the critical pressure difference will be required.

A. Estimation of water critical pressure

In spite of the assumptions made in Sec. III, it is interesting
to perform an analysis to approximate the critical pressure
difference for water. With increasing pressure, the water bulk

FIG. 7. Dependence of water bulk modulus on pressure at con-
stant temperatures 25 °C, 40 °C, and 60 °C.

modulus increases approximately linearly, as shown in Fig. 7,
which is compiled from data reported by Brostow et al. [32].

The coefficients a and b of the linear dependence of water
bulk modulus on pressure according to Eq. (28) are deter-
mined from the interpolation of data shown in Fig. 7 by the
least-squares method. They are shown in Table II.

The equations for the dependence of bulk modulus for
temperatures 25 °C, 40 °C, and 60 °C show an insignificant
influence of temperature on the course of bulk modulus in
the pressure range 0.1–800 MPa. The estimations of critical
pressure value for temperatures in the range of 25 ◦C–60 ◦C
may therefore be considered almost identical. Figure 8 shows
the dependence of function ψKlin on pressure p determined by
Eq. (35), considering coefficients a and b at 25 °C.

The graph in Fig. 8 highlights the shift to the right of
the maxima of the curves of function ψKlin as the pressure in
reservoir p0 increases. The course of the critical value of pres-
sure pψ max, which is the maxima of function ψKlin in Fig. 8
computed according to Eq. (37), is shown in Fig. 9 (solid
black line). The value of pressure pψ max determines how
much pressure remains unused to reach maximum mass flow
when pressurizing the water tank to p0, unless a convergent-
divergent pipe is used.

B. Notes to linear and constant bulk modulus

It should be noted that the coefficients a and b of the
equation for the linear course of the bulk modulus of water
are based on pressure values less than 800 MPa. Thus, the
resulting graphs use a significantly extrapolated course of bulk

TABLE II. Coefficients a and b of the linear dependence of water
bulk modulus on pressure for selected constant temperatures.

T (◦C) a (−) b (Pa)

25 6.08 2.203 × 109

40 5.98 2.260 × 109

60 5.92 2.272 × 109

045107-8



CRITICAL PRESSURE IN LIQUIDS DUE TO DYNAMIC … PHYSICAL REVIEW E 105, 045107 (2022)

FIG. 8. The course of function ψKlin on pressure p for water at
25 °C for three values of reservoir pressure p0 = 1500, 2000, and
3000 MPa.

modulus determined from a pressure range of 0.1–800 MPa
up to 3000 MPa. Figure 9 also shows the course of pψ max

for a constant bulk modulus value (dotted red line). The de-
pendence of bulk modulus on pressure may fundamentally
influence the value of critical pressure. As the linear depen-
dence of the bulk modulus of water is based on extrapolated
quantities, the course of critical pressure pψ max for Klin (solid
black line) must be understood as a rule of thumb. It is in-
teresting that the intersection with axis p0 is, in the case of
pψ max, Klin , smaller than pψ max, Kconst . The dependence of in-
tersection p0x on the line pψ max, Klin with axis p0 is normalized
by parameter b and can be determined from Eq. (37) as

p0x

b
= 1 − (

a+1
2

)a/(1−a)

a
(

a+1
2

)a/(1−a) . (47)

The value of the intersection of the curve at critical pres-
sure pψ max with axis p0 determines the minimum value of
pressure p0 in the liquid reservoir, for which there is a non-

FIG. 9. Water: the course of critical pressure pψ max for different
values of inlet pressure p0 at 25 °C when considering Klin and Kconst .

FIG. 10. The influence of parameter a in equation Klin = ap + b
on the value of the minimum pressure in the liquid reservoir when
liquid-dynamic choking may occur.

negative absolute static pressure at pipe outlet pψ max, at which
liquid-dynamic choking may occur. In other words, value p0x

indicates the minimum value of the pressure in the liquid
reservoir when it may be appropriate to consider the occur-
rence of liquid-dynamic choking. This dependence, given by
Eq. (47), is shown in Fig. 10, which demonstrates that for
a → 0, i.e., the assumption of a constant bulk modulus Kconst,
the ratio p0x/b = ln(2). If a → ∞, then the ratio p0x/b = 0.5.
If the liquid shows a significant increase in bulk modulus
with increasing pressure, it can be roughly determined that
the minimum value of the pressure in the reservoir—when
it makes sense to consider liquid-dynamic choking—is 0.5
times the value of b, which is a value approximately equal
to the bulk modulus at atmospheric pressure. An important
conclusion from the graph in Fig. 9 is that the assessment of
the possible formation of liquid-dynamic choking can be very
misleading when using a constant bulk modulus Kconst.

It is known from the phase diagram of water that at room
temperature, 20 °C, and pressure close to 900 MPa, water
changes from liquid to solid state. Therefore, the possibility
of the transformation of liquid into ice must be taken into
account. Nevertheless, according to Mohamed [33], the adi-
abatic heating of water during its compression in the reservoir
reduces the risk of ice formation. Water that is isothermally
compressed at 20 °C would freeze when reaching pressure
p0 = 888 MPa. However, during adiabatic compression, it
heats up and freezes at p0 = 1322 MPa [33]. According to the
course shown in Fig. 9, critical pressure pψ max = 8.6 MPa for
the pressure in reservoir p0 = 1322 MPa.

At a temperature of 40 °C, isothermally compressed wa-
ter freezes at a pressure of approximately p0 = 1200 MPa
[34]. During adiabatic compression of water at an initial tem-
perature of 40 °C, freezing can be expected at about p0 =
1730 MPa [33]. At pressure p0 = 1730 MPa, the value of
critical pressure is pψ max = 99 MPa.

As temperature has a significant effect on the pressure at
which water freezes, the effect of critical pressure due to
liquid-dynamic choking will be significantly dependent on
the water temperature in the reservoir. However, based on

045107-9
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an approximate estimate from the critical pressure shown in
Fig. 9, in the case of water, this phenomenon will become
more important when the pressure in the reservoir achieves
several GPa.

VI. SUMMARY AND CONCLUSION

The results presented in this work show that liquids have
a maximum mass flow in a convergent pipe even if there
is no phase change and the flow is inviscid, which is quite
analogous to gases. However, unlike gas-dynamic choking,
liquid-dynamic choking shows a critical value of the pressure
difference 
pψ max in the case of a constant bulk modulus.
This critical pressure difference is equal to approximately
0.69Kconst. With the linear dependence of bulk modulus on
pressure, the critical pressure is given by Eq. (37), and con-
cerning Eq. (36), it can be stated that a critical ratio of bulk
moduli exists.

In real applications, reaching 
pψ max is prevented by
several influences. In viscous flow, the achievement of a
critical pressure difference is limited by pressure losses that

are roughly proportional to the product of the density and
the square of the velocity. Thus, the resulting critical pres-
sure difference is increased by these pressure losses in the
case of viscous flow. Flow restriction due to phase change is
also a significant barrier. However, if the outlet pressure is
significantly higher than the saturated vapor pressure of the
liquid, the probability of a change from the liquid phase to the
gaseous phase can be minimized.

Nonetheless, the equations presented in this work are gen-
eral and apply to any liquid whose change in density is defined
by bulk modulus. These equations provide a description of
the existence of critical pressure in liquids and thus allow
one to quantify the phenomenon causing the limitation of the
maximum flow rate of liquids in a duct when phase change of
the liquid does not occur.
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