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Ferrofluid annulus in crossed magnetic fields
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We study the dynamics and pattern formation of a ferrofluid annulus enveloped by two nonmagnetic fluids
in a Hele-Shaw cell, subjected to an in-plane crossed magnetic field configuration involving the combination
of radial and azimuthal magnetic fields. A perturbative, second-order mode-coupling analysis is employed to
investigate how the ferrofluid annulus responds to variations in the relative strength of the radial and azimuthal
magnetic field components, as well as in the thickness of magnetic fluid ring. By tuning the magnetic field
components and the annulus’ thickness, we have found the development of several stationary annular shapes,
presenting polygon-shaped structures typically having skewed, peaked fingers. Such fingered structures may vary
their skewness, sharpness, and number and arise on the inner, outer, or even both boundaries of the annulus. In
addition to controlling the morphologies of the ferrofluid annuli, the external field can be used to put the annulus
into a rotational motion, with an angular velocity having prescribed magnitude, and direction. Our second-order
theory is utilized to obtain a correction to the linear stability analysis prediction of such angular velocity, usually
resulting in a decreased weakly nonlinear value as compared with the magnitude predicted by purely linear
theory. These theoretical results suggest the use of magnetic-field-controlled ferrofluid annuli in Hele-Shaw
cells as a potential laboratory for microscale applications related to the manipulation of shape-programmable
magnetic fluid objects and tunable fluidic-mixing devices in confined environments.
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I. INTRODUCTION

Ferrofluids are functional and smart fluid materials capable
of changing their shape in the presence of an external mag-
netic field. These smart fluids are stable colloidal suspensions
where nanometer-sized magnetic monodomain particles are
dispersed in a nonmagnetic carrier fluid [1–3]. While ferroflu-
ids behave like regular Newtonian fluids in the absence of
an external magnetic field, once a magnetic field is applied,
the tiny magnetic particles within the fluid respond superpara-
magnetically, aligning with the applied field. This allows an
easy and versatile manipulation of the ferrofluid’s flow and
shape via magnetic means. Because of their unique material
features, ferrofluids have been widely studied from the most
fundamental aspects to a wide range of applications. In fact,
ferrofluids have attracted increasing interest in various scien-
tific research areas including physics, chemistry, engineering,
material science, biology, and medicine [4–9].

During the past few years, ferrofluids have gained sig-
nificant attention because of their relevance to cutting edge
technologies in biomedicine such as in localized heating
(hyperthermia), cancer treatment, and target drug delivery
[10,11], mechanics of tissues [12–14], microfluidics and
micromixing [15,16], and in the dynamics and control of
soft robots [17,18]. All these important applications take
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advantage of the distinctive ferrofluid material properties
to achieve multiple functionalities. For instance, one can
use various magnetic field. configurations to actuate and
control ferrofluid droplets as shape-programmable magnetic
fluid objects, which can move through narrow channels,
transporting liquid samples and mixing chemicals in con-
fined environments. This enables on demand liquid-cargo
delivery, morphing for effective and adjustable handling of
fragile objects and manipulable fluidic-mixing function. One
very interesting capability of such ferrofluid controllable
tools has been described in Refs. [19,20] where ferrofluid
droplets could be programed into a ring shape which
could trap, transport, and release multiple delicate objects
efficiently.

Due to their singular liquid and magnetic properties,
ferrofluids can navigate through constrained, effectively
two-dimensional passages, exhibiting several magnetically
controlled, complex shape-morphing behaviors. These ap-
pealing pattern-forming phenomena arise due to the interplay
among pressure, surface tension, and magnetic forces [1–3].
These features make ferrofluids a remarkable material to
study a variety of interfacial instabilities and pattern forma-
tion processes in spatially confined environments. Therefore,
ferrofluids are a natural choice for investigating the dynam-
ics of pattern-forming structures in the confined geometry of
Hele-Shaw cells [21–23]. The Hele-Shaw cell apparatus
[24,25] consists of two parallel glass plates separated by a
narrow gap, where the ferrofluid can flow under the action
of an applied magnetic field. Over the years, investigators
have analyzed a vast number of ferrofluid interfacial instabil-
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ity problems in Hele-Shaw cells, under the action of several
different magnetic field configurations.

One iconic example of such pattern-forming phenomena
in confined ferrofluids is the development of the so-called
labyrinthine instability [26–29], where highly branched pat-
terns are formed when a ferrofluid droplet, surrounded by a
nonmagnetic fluid, is trapped in the Hele-Shaw cell under a
uniform magnetic field applied perpendicularly to the cell’s
plates. This perpendicular magnetic field configuration is gen-
erated by a pair of identical Helmholtz coils whose currents
are equal and flow in the same directions. The perpendicular
field aligns the tiny magnetic moments of the ferrofluid in
a direction normal to the plates. These magnetic moments
repel each other, and the interface deforms. On the other
hand, surface tension forces tend to stabilize the two-fluid
interface. The complex interrelation of these magnetic and
surface tension effects ultimately leads to the emergence of
intricate mazelike, labyrinthine patterns.

Two other particularly interesting magnetic field arrange-
ments in Hele-Shaw cells with ferrofluids are the ones related
to the influence of azimuthal and radial applied magnetic
fields. The azimuthal magnetic field configuration is produced
by a current-carrying wire which is normal to the cell plates
and passes through its center [30]. This generates a magnetic
field in the plane of the cell that turns around the wire,
producing a magnetic body force directed radially inward
[1,31]. This force tends to attract a ferrofluid sample toward
the current-carrying wire. For a Hele-Shaw cell containing a
ferrofluid and a nonmagnetic fluid, the azimuthal magnetic
field can act to either stabilize or destabilize the fluid-fluid
interface. If the ferrofluid is the inner fluid, then the azimuthal
field tends to stabilize the two-fluid interface. This azimuthal
field stabilizing strategy has been proven effective to hin-
der interfacial instabilities in ferrofluids under centrifugally
driven fingering in rotating Hele-Shaw cells [30]. On the other
hand, if the the ferrofluid is the outer fluid, then the interface
will tend to distort, resulting in different types of patterns
ranging from regular, steady-state fingering shapes presenting
flat tips [32] through considerably convoluted time-varying
fingered structures [33].

The action of an in-plane, externally applied radial mag-
netic field on confined ferrofluid droplets has also been
studied. Similarly to the case of the labyrinthine instability
[26–29], the radial magnetic field is also produced by two
Helmholtz coils but now carrying electric currents that flow in
opposite directions [34]. Under these conditions, the magnetic
body force tends to destabilize the interface separating the
magnetic and nonmagnetic fluids, while surface tension acts
to stabilize it. The competition of these physical effects result
in the appearance of various types of polygon-shaped as well
as starfishlike patterns [35,36]. Furthermore, researchers have
also analyzed the simultaneous influence of both azimuthal
and radial applied fields on the behavior of ferrofluid droplets.
Recently, fully nonlinear simulations have been utilized to
investigate the behavior of ferrofluid droplets in a Hele-Shaw
cell subjected to such a crossed magnetic field arrangement
[37,38]. These studies revealed that, by tuning the strength
of the azimuthal and radial fields, one observes the develop-
ment of appealing skewed shaped, rotating ferrofluid patterns
having both stable (immutable) and unstable (ever changing)
profiles.

Irrespective of the scientific relevance and significant num-
ber of investigations on the topic of interfacial ferrofluid
patterns in Hele-Shaw cells (Refs. [26–38] and references
therein), the almost absolute majority of existing studies fo-
cuses on the situation in which the region occupied by the
ferrofluid is simply connected. Nevertheless, as discussed in
Refs. [19,20] ring-shaped ferrofluid droplets are useful con-
trolling tools in the sense that they can be used to trap,
transport, and release multiple delicate objects efficiently in
confined spaces. On the practical side [19,20], the magnetic
manipulation of such ferrofluid annular structures poten-
tially enables unprecedented functionalities in laboratory and
organ-on-a-chip, fluidics, bioengineering, and medical device
applications. On the academic side, the ferrofluid annulus
setup is of special interest because it involves the interplay
between two disjoint interfaces (the inner and outer bound-
aries of the ferrofluid ring), something that potentially can
lead to new phenomenology and still unexplored dynamical
behaviors not available in the conventional situation in which
a magnetic and a nonmagnetic fluid are separated by a single
interface. Despite the importance of the study of the dynamics
and pattern formation of doubly connected, annular ferrofluid
domains in Hele-Shaw cells, this topic has been largely unex-
plored in the literature. As a matter of fact, only very recently
investigators started to examine this particular situation [39].
More precisely, Ref. [39] analyzed the flow of a viscous
ferrofluid annulus surrounded by two nonmagnetic fluids in a
Hele-Shaw cell, subjected to an external radial magnetic field.
It has been shown that the nonlinear coupling between inner
and outer disjoint boundaries of the ferrofluid annulus results
in the formation of motionless, stationary-state polygonal-like
annular shapes, presenting sharp fingers.

Building on our previous work on a ferrofluid annulus
under a radial field [39] and motivated by the stimulating
results obtained in Refs. [37,38] for the simply connected case
of a ferrofluid droplet under a crossed magnetic field, in this
work we consider an even more complex situation: a ferrofluid
annulus enveloped by nonmagnetic fluids, confined in a
Hele-Shaw cell, and subjected by the concurrent effect of both
radial and azimuthal magnetic fields. The use of such crossed
magnetic fields configuration adds considerable versatility
into the system, allowing separate bidirectional magnetic tun-
ing of the inner and outer interfaces of the ferrofluid annular
ring. By tuning the azimuthal and radial fields one can trig-
ger distinct instability behaviors at the disjoint interfaces of
the ferrofluid annulus. This enriches the physical problem at
hand. For example, depending on the relative strength of the
azimuthal and radial fields, one can make the inner or the outer
interface more or less unstable. As a consequence, one can
magnetically induce changes in the instability and shape of the
interfaces, without having to alter the fluids positions or ma-
terial properties (e.g., viscosities, densities, etc.). In addition,
the crossed magnetic fields can be used to control the magni-
tude and direction of the ferrofluid annulus rotational speed.
All these magnetic controlling capabilities could be eventually
useful to a number of possible applications [10–20].

We tackle the problem by employing a perturbative, non-
linear (second-order) mode-coupling analysis. In this framing,
and by adjusting the fields’ relative magnitudes, we examine
how the spinning ferrofluid annulus responds to variations
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FIG. 1. Schematic of the ferrofluid annulus confined flow prob-
lem under the action of crossed magnetic fields (radial and
azimuthal). Initially, the ferrofluid annular structure has circular
boundaries of radii R1 and R2 (dashed circles). The ferrofluid annulus
has viscosity η2, while the inner and outer fluids are nonmagnetic,
having viscosities η1, and η3, respectively. The combined magnetic
field H may deform the inner and outer interfaces of the ferrofluid
annulus (solid curves). The interfacial perturbation amplitudes in
the distorted ferrofluid ring structure are denoted by ζ = ζ (θ, t ) and
ε = ε(θ, t ), where θ is the azimuthal angle.

on its thickness. Additionally, for a given thickness, we in-
vestigate how the magnetic fluid annulus morphology, and
its rotational dynamics are affected by the crossed magnetic
fields at the onset of nonlinearities.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

In this section, we develop a perturbative mode-coupling
theory to describe the magnetically induced instabilities
emerging on the boundaries of an initially circular ferrofluid
ring of viscosity η2, delimited by unperturbed radii R1 (inner)
and R2 (outer), and surrounded by two nonmagnetic fluids of
viscosities η1 and η3 (see Fig. 1). All the fluids are immiscible,
incompressible, and Newtonian and bound to flow between
the plates of a Hele-Shaw cell of gap thickness b. In this
ferrohydrodynamic problem, the inner and outer interfaces
of the ferrofluid annulus have surface tensions σ12 and σ23,
respectively, and the dual-interface system is subjected to a
two-component, externally applied magnetic field [37,38],

H = H0r r̂ + I

2πr
θ̂ . (1)

In Eq. (1), the first (second) term on the right-hand side
represents the applied radial (azimuthal) magnetic field and
r̂ (θ̂ ) is a unit vector in the radial (azimuthal) direction. In
addition, H0 is a constant, r is the radial distance from the
origin of the coordinate system (located at the center of the
cell), and the Hele-Shaw cell is located at the mid-distance
between a pair of identical Helmholtz coils, whose electric
currents are equal and flow in opposite directions. These coils

are responsible for generating the radial magnetic field, while
a wire perpendicular to the coils, and carrying an electric
current I , passes through the center of the Hele-Shaw cell,
producing the azimuthal magnetic field.

After neglecting inertial effects and averaging across the
Hele-Shaw cell’s gap, the fluids’ velocities are governed by
the modified Darcy’s law [26–28],

v j = − b2

12η j
∇(p j − � j ), (2)

and the incompressibility condition,

∇ · v j = 0, (3)

where p j = p j (r, θ ) and � j are the gap-averaged pressure and
scalar potential, respectively. This scalar potential accounts
for the magnetic body forces arising in the system as a re-
sponse of the ferrofluid annulus to the applied magnetic field
H, and it is written as

� j = μ0χH2

2
, (4)

with μ0 denoting the magnetic permeability of free space and
H = |H| representing the combined magnetic field intensity.
In addition, χ is the ferrofluid’s constant magnetic suscep-
tibility, which is nonzero only for the intermediate annulus.
Therefore, �1 = �3 = 0 for the nonmagnetic inner and outer
fluids. The subscripts j = 1, 2, and 3 refer to the inner, inter-
mediate (annulus), and outer fluids, respectively.

The pressure field is discontinuous across the two inter-
faces of the system due to the presence of the surface tensions
and the unequal normal component of the ferrofluid’s magne-
tization M on either side of the annulus. These two pressure
jumps, one for each interface, are given by modified Young-
Laplace equations [1,2],

(p1 − p2)|r=R1 = [
σ12κ12 + 1

2μ0(M · n̂)2
]∣∣

r=R1
, (5)

and

(p2 − p3)|r=R2 = [
σ23κ23 − 1

2μ0(M · n̂)2
]∣∣

r=R2
, (6)

where κ12 and κ23 denote the interfacial curvatures [39] of the
inner and outer interfaces in the plane of the Hele-Shaw cell,
respectively. In addition, n̂|r=R1,2 represents the unit normal
vectors at the interfaces, with R1 = R1(θ, t ) [R2 = R2(θ, t )]
being the position of the perturbed inner (outer) interface.
We demonstrate how to obtain the functions R1 and R2 in
a perturbative fashion later in this section. The term propor-
tional to (M · n̂)2 on the right-hand side of Eqs. (5) and (6) is
commonly known as the magnetic normal traction term [1,2]
and incorporates the influence of the discontinuous normal
component of the magnetization at the interfaces. Consistently
with previous studies, here we assume that the ferrofluid is
uniformly magnetized and that the magnetization is collinear
with the external magnetic field, i.e., M = χH [1,2,26–28].

Unlike the pressure field discontinuities expressed by
Eqs. (5) and (6), kinematic boundary conditions [25] state
the continuity of the normal flow velocity as one crosses each
one of the interfaces. These relations supplement the boundary
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conditions (5) and (6) and are expressed as

∂R1

∂t
=

(
1

r2

∂R1

∂θ

∂φ j

∂θ

)∣∣∣∣
r=R1

−
(

∂φ j

∂r

)∣∣∣∣
r=R1

(7)

for the inner interface (with j = 1, 2) and

∂R2

∂t
=

(
1

r2

∂R2

∂θ

∂φ j

∂θ

)∣∣∣∣
r=R2

−
(

∂φ j

∂r

)∣∣∣∣
r=R2

(8)

for the outer interface (with j = 2, 3). Note that governing
Eq. (2) implies that the flow is irrotational (∇ × v j = 0),
allowing one to state the problem in terms of velocity po-
tentials φ j (r, θ ) (v j = −∇φ j), which appear in the kinematic
boundary conditions (7) and (8). Moreover, the extra gov-
erning Eq. (3) implies that these potentials obey Laplace’s
equations ∇2φ j = 0 [39].

After presenting the governing equations of the problem
[Eqs. (2) and (3)] and the boundary conditions at the interfaces
[Eqs. (5)–(8)], we have all the necessary elements to perform
our nonlinear mode-coupling analysis of the problem. There-
fore, we first represent the perturbed, time-dependent position
of the inner interface as R1 = R1 + ζ (θ, t ), where θ denotes
the azimuthal angle in the r-θ plane (Fig. 1). The net interface
disturbance is expressed by a Fourier series

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) einθ , (9)

where ζn(t ) denotes the complex Fourier amplitudes, with in-
teger wave numbers n. Likewise, the perturbed outer interface
shape is given by R2 = R2 + ε(θ, t ), where

ε(θ, t ) =
+∞∑

n=−∞
εn(t ) einθ . (10)

Since we are mainly interested in exploring the early nonlin-
ear behavior of the annular system beyond the linear stage
of the dynamics, our perturbative approach keeps terms up
to second order in ζ and ε. In both the Fourier expan-
sions of ζ and ε, we include the n = 0 mode to maintain
the area of the intermediate ferrofluid layer independent of
the perturbations. Mass conservation imposes that the ze-
roth mode is written in terms of the other modes as ζ0 =
−(1/2R1)

∑∞
n=1[|ζn(t )|2 + |ζ−n(t )|2] [39]. Similarly, we have

ε0 = −(1/2R2)
∑∞

n=1[|εn(t )|2 + |ε−n(t )|2].
Due to the presence of the crossed magnetic field config-

uration, the interfaces may deform, and their time-dependent
shapes, as well as the ferrofluid annulus behavior, are deter-
mined by the interplay of stabilizing and destabilizing forces
acting on the system. Therefore, to gain access to these non-
linear aspects of the flow, it is evident that one needs to find
how the Fourier amplitudes ζn(t ) and εn(t ) evolve in time.
The differential equations governing the time evolution of
these perturbation amplitudes are found as follows: We first
consider |ζ | � R1 and |ε| � R2, and then we perform Fourier
expansions for the velocity potentials, using the kinematic
boundary conditions [Eqs. (7) and (8)] to express the Fourier
coefficients of φ j in terms of ζn, εn, and their time derivatives.
Substituting these relations, and the pressure jump conditions
[Eqs. (5) and (6)] into Darcy’s law [Eq. (2)], and keeping
terms up to second order in ζ and ε, we obtain the set of

dimensionless coupled equations of motion for both the per-
turbation amplitudes ζn and εn (for n �= 0),

ζ̇n = f1 (n)ζn + f2 �(n)εn

+ f1

∑
n′ �=0

[F (n, n′)ζn′ζn−n′ + G(n, n′)ζ̇n′ζn−n′ ]

+ f2

∑
n′ �=0

[H (n, n′)εn′εn−n′ + I (n, n′)ε̇n′εn−n′ ]

+ f2

∑
n′ �=0

[J (n, n′)ζ̇n′εn−n′ + K (n, n′)ε̇n′ζn−n′ ], (11)

and

ε̇n = f3 (n)ζn + f4 �(n)εn

+ f4

∑
n′ �=0

[F (n, n′)εn′εn−n′ + G(n, n′)ε̇n′εn−n′ ]

+ f3

∑
n′ �=0

[H(n, n′)ζn′ζn−n′ + I (n, n′)ζ̇n′ζn−n′ ]

+ f3

∑
n′ �=0

[J (n, n′)ε̇n′ζn−n′ + K(n, n′)ζ̇n′εn−n′ ], (12)

where the overdot represents a total time derivative. In
Eqs. (11) and (12) lengths and time are rescaled by L = r0 and
T = 12(η3 + η2)r3

0/σ23b2, respectively, where r0 is a charac-
teristic length being on the order of the unperturbed radii R1

and R2. From this point on, unless otherwise stated, we use a
dimensionless version of the equations.

Although the time-independent, complex functions

(n) = A|n|
[

− σ

R3
1

(
n2 − 1

) − χ (1 + χ )NBr

+χ
NBa

R4
1

+ inχ2sgn(I )

√
NBrNBa

R2
1

]
, (13)

and

�(n) = |n|
[

− 1

R3
2

(
n2 − 1

) + χ (1 + χ )NBr

−χ
NBa

R4
2

− inχ2sgn(I )

√
NBrNBa

R2
2

]
(14)

emerge at the linear level (i.e., first order in ζn and εn), we
stress that these functions are not the linear growth rates of
the system, which will be derived later in this section. The
relative strengths of radial and azimuthal magnetic forces
to the capillary force are represented by the magnetic Bond
numbers

NBr = μ0H2
0 r3

0

σ23
, and NBa = μ0

σ23r0

( I

2π

)2

,

respectively. In addition,

f1 = 1 − A23R2|n|

1 + A12A23R2|n| , f2 = 1 + A12

1 + A12A23R2|n| R
|n|−1,

f3 = 1 − A23

1 + A12A23R2|n| R
|n|+1, f4 = 1 + A12R2|n|

1 + A12A23R2|n| ,

where A12 = (η2 − η1)/(η2 + η1) [A23 = (η3 − η2)/(η3 +
η2)] is the viscosity contrast of fluids 1 and 2 [2 and 3],
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A = (η3 + η2)/(η2 + η1), and σ = σ12/σ23. The parameter R
appearing in f1, f2, f3, and f4 is defined as

R = R1

R2
, (15)

and it quantifies the coupling strength between the interfaces
of the system [39]. Therefore, it is evident that the terms
proportional to f2 and f3 on the right-hand side of the two or-
dinary differential equations (ODEs) (11) and (12) couple the
interfacial motivations, meaning that any disturbance growing
in one of the interfaces may impact the dynamics of the
other, already at the linear level. The nonlinear mode-coupling
functions F , G, H , I , J , K , F , G, H, I, J , and K appearing
on the right-hand side of Eqs. (11) and (12) are given in the
Appendix [see Eqs. (A1)–(A16)].

It should be clear that while dealing with Eqs. (11) and (12)
[and with the associated functions given in Eqs. (A1)–(A16)],
we have reduced the fully nonlinear problem to an abbreviated
perturbative version in which terms beyond quadratic ones
have been dropped. Within our perturbative approach, the
contributions coming from higher perturbative orders (e.g.,
third, fourth, etc.) are less prevalent than the first- and second-
order ones, due to the smallness of ζn and εn with respect
to the unperturbed radii R1 and R2 of the ferrofluid annulus.
Nevertheless, these neglected higher-order contributions can
still provide noticeable improvements in the morphological
and dynamical agreement between weakly nonlinear pertur-
bative solutions and fully nonlinear results. As expected, the
consideration of perturbative terms beyond second order for
this doubly connected system is not trivial to implement,
and would make the mode-coupling equations very lengthy
and considerably cluttered. As will become evident during
the course of this work, despite the intrinsic limitations of
this truncated perturbative approach, our second-order mode-
coupling scheme is still able to capture valuable nonlinear
information about the system. Alternative asymptotic pro-
cesses [40] could have been employed to obtain a system of
weakly nonlinear equations for the problem. For instance, we
could have assumed that the system is near the instability
threshold, and derived equations for the amplitudes through
a central manifold reduction [41,42]. This method would in-
deed be more systematic. However, we believe that it would
not lead to any new behavior, as Eqs. (11) and (12) already
include all second-order terms of the problem, though some
of them might happen to be spurious. Moreover, as we will
see in Sec. III, all the solutions reach steady states, and
the amplitudes remain very small. This further indicates that
higher-order terms can be dropped in the asymptotic regime
of interest. Therefore, we believe that the rationale behind
Eqs. (11) and (12) is sufficiently clear and more technical
analyses of the problem are beyond the scope of this work.

Note that due to the somewhat complicated format of ex-
pressions (11) and (12), especially because of their coupled
nature, it is difficult to extract analytical information about
the physical effects of the different dimensionless parameters
on each interface, and make predictions about the system’s
general behavior. Nevertheless, a considerably simpler but yet
useful scenario is obtained when one considers the limiting
case of decoupled interfaces, also known as the two-fluid
single-interface limit [39,43,44]. In such a limit, the interfacial

motions are independent of each other, allowing one to study,
for instance, the physical impact of the main dimensionless
parameters (NBr and NBa) on the stability of the decoupled
interfaces. Furthermore, the information provided by the de-
coupled limit helps one to understand some of the behaviors
occurring in the annular coupled system, which is our main
goal in the current work. As a matter of fact, analyzing the
Eqs. (11) and (12) in this limit case is also a good exercise to
check the consistency and correctness of our main analytical
results, as it permits the direct comparison with other works
already published in the literature. Therefore, in the limit of a
thick annulus [i.e., R → 0 such that ( f1, f4) → 1, and ( f2, f3)
→ 0] the ODEs (11) and (12) decouple, leaving two separate
single interfaces whose perturbations are described by

ζ̇n = (n) ζn

+
∑
n′ �=0

[F (n, n′)ζn′ζn−n′ + G(n, n′)ζ̇n′ζn−n′ ] (16)

and

ε̇n = �(n) εn

+
∑
n′ �=0

[F (n, n′)εn′εn−n′ + G(n, n′)ε̇n′εn−n′ ]. (17)

Equation (16) describes the interfacial behavior of a non-
magnetic fluid droplet with viscosity η1 surrounded by a
ferrofluid with viscosity η2, where (n) [Eq. (13)] is the
time-independent growth rate of the flow. Likewise, Eq. (17)
represents the interface behavior of a ferrofluid droplet with
viscosity η2 surrounded by a nonmagnetic fluid with viscosity
η3, where �(n) [Eq. (14)] is the time-independent growth
rate. By analyzing (n), we observe that both the surface
tension and the radial magnetic field component act to restrain
interfacial instability, while the azimuthal magnetic field com-
ponent promotes its growth. The presence of an imaginary
part in Eq. (13) is responsible for the propagation of the per-
turbed interfacial shape, with linear phase velocity given by
V1(n) = − Im[(n)]/n = −χ2sgn(I )A|n|√NBrNBa/R2

1. This
wave propagation is manifested as a clockwise rotation of
the confined droplet and only occurs in the presence of the
crossed magnetic field configuration, i.e., for NBr �= 0 and
NBa �= 0. On the other hand, in �(n), surface tension still
acts as a stabilizing effect, but the magnetic field compo-
nents play interchanged roles: While the radial magnetic field
destabilizes the interface, the azimuthal magnetic field tries to
keep a circular interfacial shape. In addition, the wave prop-
agation with linear phase velocity V2(n) = − Im[�(n)]/n =
χ2sgn(I )|n|√NBrNBa/R2

2 promotes a counterclockwise rota-
tion of the droplet. These interfacial behaviors, as well as
the physical impact of the system’s dimensionless parameters
on the stability of interfaces, are in agreement with previous
works related to two-fluid, single-interface, magnetic field-
induced flow problems in Hele-Shaw cells [37,38].

As the last result of this section, we derive the linear growth
rates associated with each interface on the boundaries of the
ferrofluid annulus. At the linear level of the dynamics, the
perturbation amplitudes ζn and εn are so small that second-
order terms in Eqs. (11) and (12) can be neglected, yielding

ζ̇n = f1 (n)ζn + f2 �(n)εn, (18)
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and

ε̇n = f3 (n)ζn + f4 �(n)εn. (19)

This system of coupled first-order ODEs with constant (in
time) coefficients can be easily solved by first isolating εn in
Eq. (18), and then substituting the new expression in Eq. (19).
The resulting equation is a second-order ODE for ζn, whose
solution

ζn(t ) = ζn(0)

2δ(n)
{[ f1 (n) + (2 f2 − f4) �(n)] f−(n, t )

+ δ(n) f+(n, t )} (20)

is readily obtained. Finally, by substituting the previous result
back into Eq. (18), we have

εn(t ) = εn(0)

2δ(n)
{[(2 f3 − f1) (n) + f4 �(n)] f−(n, t )

+ δ(n) f+(n, t )}, (21)

where

δ(n) =
√[

f1 (n) − f4 �(n)
]2 + 4 f2 f3 (n)�(n), (22)

and

f±(n, t ) = exp
{ t

2
[ f1 (n) + f4 �(n) + δ(n)]

}
± exp

{ t

2
[ f1 (n) + f4 �(n) − δ(n)]

}
. (23)

We point out that the approach employed above to solve the
system composed of Eqs. (18) and (19) is not unique. Alterna-
tively, one could handle this system by finding the associated
eigenvalues and then utilizing them to obtain Eqs. (20) and
(21). We direct the interested readers to Ref. [40] for a detailed
description of this alternative method to solve systems of
coupled first-order ODEs, as well as the physical interpreta-
tion of the eigenvalues. Furthermore, note that the authors of
Ref. [43] have also utilized such alternative method to study
the injection-driven instabilities arising in three-fluid flows.

Equations (20) and (21) describe the exponential time
evolution of the perturbations growing (or decaying) in the
inner and outer interfaces, respectively. From these relations,
one obtains the time-dependent linear growth rates of the
ferrofluid annular system,

λ1(n, t ) ≡ ζ̇n

ζn
= f1 (n) + f2 �(n)

εn(t )

ζn(t )
, (24)

and

λ2(n, t ) ≡ ε̇n

εn
= f3 (n)

ζn(t )

εn(t )
+ f4 �(n). (25)

The linear equations (20), (21), (24), and (25) are not only
necessary to assist the weakly nonlinear simulations presented
in Sec. III, but also to provide essential linear stability infor-
mation, such as the mode of largest growth rate nmax, and also
the phase velocities utilized to describe the rotational motion
of the annular ferrofluid structures in Sec. IV.

In the next sections, we utilize the mode-coupling expres-
sions (11) and (12) to study a variety of pattern morphologies
acquired by the ferrofluid annulus subjected to the external

crossed magnetic fields arrangement, and to describe the cor-
responding dynamical behaviors at the onset of nonlinearities.
Throughout the analysis of these important aspects of the
problem, we ensure that all the dimensionless parameters
(NBr, NBa, R, and χ ) considered in this work are consistent
with realistic physical quantities related to existing experi-
ments in confined ferrofluids in Hele-Shaw cell arrangements
[28,31,34,45–48].

III. WEAKLY NONLINEAR FERROFLUID
ANNULUS SHAPES

In this section, we take advantage of the flexibility offered
by the crossed magnetic field configuration (independent ma-
nipulation of radial and azimuthal fields), and by the doubly
connected nature of the ferrofluid annulus system (nontrivial
coupling between inner and outer interfaces) to explore how
the relative intensity of the radial and azimuthal magnetic field
components (connected to the parameters NBr, and NBa), and
the thickness of the annular structure (related to the parameter
R) affect the shape and dynamic behavior of the deformed,
ring-shaped ferrofluid patterns.

The second-order, weakly nonlinear patterns exhibited in
this work are all obtained by considering the coupling of
N = 40 Fourier modes, namely the fundamental mode n, and
its harmonics 2n, 3n, . . . , and 40n. This relatively large num-
ber of participating modes (N = 40) is utilized to ensure that
the edges of the resulting fingering patterns are sufficiently
smooth. We emphasize that we have performed repeated
and careful computations utilizing more participating modes
(40 < N � 80), and checked that the resulting findings (data
and patterns) are indistinguishable from the results currently
presented in this study. Throughout this work, we assume that
the fundamental mode is given by the closest integer to the
fastest growing mode at the final time t = t f of the evolution
(i.e., the mode of maximum growth rate nmax). Note that nmax

is obtained by evaluating the maximum of the real part of the
linear growth rate, i.e., either{

d

dn
Re[λ1(n, t = t f )]

}∣∣∣∣
n=nmax

= 0, (26)

or {
d

dn
Re[λ2(n, t = t f )]

}∣∣∣∣
n=nmax

= 0, (27)

since the growth rates λ1(n, t ) and λ2(n, t ) very rapidly coin-
cide for times much smaller than the final times t f considered
[39]. In this framing, we rewrite the complex interfacial
perturbations ζ (θ, t ) [ε(θ, t )] in terms of the real-valued
cosine an(t ) = ζn(t ) + ζ−n(t ) [ān(t ) = εn(t ) + ε−n(t )], and
sine bn(t ) = i(ζn(t ) − ζ−n(t )) [b̄n(t ) = i(εn(t ) − ε−n(t ))]
amplitudes. Moreover, and without loss of generality, we set
the phase of the fundamental mode so that an > 0, ān > 0,
and take the initial conditions an(0) = ān(0) = a2n(0) =
ā2n(0) = · · · = a40n(0) = ā40n(0) = 10−5. Likewise, we
consider that bn(0) = b̄n(0) = b2n(0) = b̄2n(0) = · · · =
b40n(0) = b̄40n(0) = 0. The time evolution of all these mode
amplitudes is then obtained by numerically solving the
corresponding coupled nonlinear differential equations, given
by expressions (11) and (12).
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FIG. 2. Typical weakly nonlinear, annular ferrofluid patterns formed for a fixed radial magnetic Bond number NBr = 56, and three
increasing values of the azimuthal magnetic Bond number: NBa = 0 [(a) and (d)], NBa = 4 [(b) and (e)], and NBa = 20 [(c) and (f)]. In the
top (bottom) panels we take R = 0.70 (R = 0.94). Moreover, we set χ = 1.5, R2 = 1, and final time t f = 0.03. These patterns, and all others
presented in this work, are plotted by considering the coupling of N = 40 (n, 2n, 3n, . . . , 40n) participating sine and cosine modes. The
fundamental mode n is given by the closest integer to the fastest growing mode nmax evaluated at t = t f . Here, we have that n = nmax = 8
[(a)–(d)], n = nmax = 7 (e), and n = nmax = 6 (f). In this figure, and throughout this study, we take A12 = A = 1, A23 = −1, sgn(I ) = 1, and
σ = 1.

We begin our analysis by examining Fig. 2 which presents
a series of representative weakly nonlinear ferrofluid annulus
patterns for the situation in which the radial magnetic Bond
number is kept fixed at NBr = 56, while the azimuthal mag-
netic Bond number assumes three increasingly larger values,
namely NBa = 0 [Figs. 2(a) and 2(d)], NBa = 4 [Figs. 2(b) and
2(e)], and NBa = 20 [Figs. 2(c) and 2(f)]. This is done for two
different values of the coupling strength parameter: R = 0.70
[Figs. 2(a)–2(c)] and R = 0.94 [Figs. 2(d)–2(f)]. With no loss
of generality, in Fig. 2 and all remaining figures in this work,
we consider the characteristic physical parameters A12 = A =
1, A23 = −1, sgn(I ) = 1, and σ = 1. In addition, for Fig. 2 we
take χ = 1.5, R2 = 1, and final time t f = 0.03.

Figures 2(a)–2(c) illustrate the impact of augmenting NBa

(for fixed NBr) on the shape and dynamic behavior of the
annular ferrofluid patterns for the cases of thicker annuli, i.e.,
for a smaller value of R (R = 0.70). When NBa = 0 [Fig. 2(a)],
one observes the formation of characteristic starlike, n-fold
polygonal ferrofluid annular shape, with an outer interface
presenting eight pointy fingers, accompanied by a fairly cir-
cular inner interface. This is exactly the kind of typical fluid

ring structure one detects when an initially slightly perturbed,
thick ferrofluid ring is subjected solely to an applied radial
field in a Hele-Shaw cell [39].

A more interesting scenario is unveiled in Fig. 2(b),
when NBr = 56 and NBa = 4: The combined action of radial
and azimuthal magnetic fields results in the formation of a
skewed annular ferrofluid pattern. Such a skewed structure
still presents eight sharp fingers on its outer interface and
a circular inner interface. Nevertheless, it is evident that the
vertices of the eightfold polygonal annulus in Fig. 2(b) have
positions that are different from those of the corresponding
annulus portrayed in Fig. 2(a). Moreover, while in Fig. 2(a)
the pointy finger profiles are quite symmetric, they are dis-
torted and look a bit asymmetric in Fig. 2(b) due to the action
of the nonzero azimuthal applied field. These findings for the
ferrofluid annulus are consistent with similar results originally
revealed in Ref. [37] and also observed in Ref. [38] for the
corresponding simply connected situation in which a confined
ferrofluid droplet is subjected to crossed, radial, and azimuthal
magnetic fields. As discussed in Ref. [37], the magnetic trac-
tion term in the pressure jump boundary conditions [Eqs. (5)
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and (6)] induces unequal normal stress on either side of the
finger tip profile, breaking its symmetry and consequently
leading to an increased skewness of the fingers. Therefore,
by comparing Fig. 2(a) with Fig. 2(b) one verifies that the
combined action of radial and azimuthal fields has two main
effects on the annular patterns: (i) It changes a bit the position
of the vertices of the pointy fingers [i.e., the pattern in Fig. 2(b)
looks “rotated” with respect to the one shown in Fig. 2(a)] and
(ii) breaks the original symmetry of the finger tips’ profiles
exhibited in Fig. 2(a), creating skewed fingered structures in
Fig. 2(b). Later in this work, we will see that the crossed
magnetic fields can actually make the ferrofluid rings to rotate,
without ever changing their forms (i.e., they reach stationary
shapes).

Furthermore, by scrutinizing Fig. 2(c) for a larger az-
imuthal Bond number [NBa = 20] one finds the emergence
of an even more deformed ferrofluid annular structure that,
regardless of still having eight fingers, present protrusions that
are larger and more skewed than the ones depicted in Fig. 2(b).
Additionally, one can also see that the inner boundary of
the ferrofluid ring in Fig. 2(c) is almost completely circular,
exhibiting just a very modest deformation. Hence, from the
behaviors revealed in Figs. 2(a)–2(c), one concludes that for
thick ferrofluid annuli (i.e., for smaller values of R), the most
appealing effects induced by the crossed magnetic fields are
more clearly manifested at the outer boundary of the magnetic
fluid annular patterns.

To explore the role played by the coupling strength param-
eter R, we continue our analysis by observing Figs. 2(d)–2(f)
for which R = 0.94, resulting in the generation of ferrofluid
annular structures that are thinner than those shown in
Figs. 2(a)–2(c) for R = 0.7. As expected, larger values of R
make the coupling between the inner and outer interfaces con-
siderably stronger, revealing additional noteworthy aspects of
the system. The most apparent effect of considering a larger
R is that, in contrast to what occurred in Figs. 2(a)–2(c), in
Figs. 2(d)–2(f) both the outer and the inner ferrofluid ring in-
terfaces can be significantly impacted by the crossed magnetic
fields. For instance, although the inner boundary is just mildly
deformed when NBa = 0 [Fig. 2(d)], it becomes increasingly
distorted as NBa is increased [Figs. 2(e) and 2(f)]. One can eas-
ily notice that the shape of the thin edges of the polygonal-like
annular rings become progressively asymmetric and skewed
as NBa is increased.

In addition to the degree of deformation of the annular
fingered structures (finger skewness and asymmetry), an-
other noticeable difference among the patterns on display in
Figs. 2(a)–2(c) for R = 0.70 and in Figs. 2(d)–2(f) for R =
0.94 refers to the number of resulting fingers formed. Notice
that for smaller R, one can increase the value of NBa, keeping
the number of emerging fingers unchanged [all patterns in
Figs. 2(a)–2(c) have eight fingers]. On the other hand, for
larger R, by increasing NBa the number of generated fingers
is decreased [in Figs. 2(d)–2(f) the patterns have eight, seven,
and six fingers, respectively].

Similarly to what is discussed in the next paragraph re-
garding the degree of deformation of the annular ferrofluid
shapes, as the magnitude of the azimuthal field is increased
(for a fixed radial field) the number of produced fingers in
the stationary, ring-shaped ferrofluid patterns is a result of

a complex nonlinear interplay between the outer and inner
interfaces of the annulus. As exemplified in Fig. 2 (and also
in Fig. 4), such a nonlinear response for the number of fin-
gers is particularly dependent on the value of the coupling
parameter R but also depends on all other relevant physical
parameters of the problem (NBr, NBa, χ , etc.). Unlike the
simpler, two-fluid single-interface case, where one can obtain
a closed-form expression for the number of fingers in terms
of the physical parameters of the problem, in the current
annular, double-interface system, such an expression cannot
be found analytically. Therefore, precisely determining the
general behavior for the number of resulting fingers arising
in the nonlinear, stationary-state ferrofluid annular patterns
under the influence of crossed magnetic fields is nontrivial.

At first glance, it may seem strange or contradictory that by
increasing NBa in Fig. 2 one obtains more deformed ferrofluid
annular patterns. After all, it is well known that, at the linear
level, the azimuthal field tends to stabilize the outer interface
(see Sec. II, and Ref. [30]). Therefore, from a purely linear
perspective, by increasing NBa one would expect to get less de-
formed ferrofluid annular shapes, possibly having a decreased
number of fingers. Moreover, as in Ref. [39], we have found
that at the linear level the emerging patterns present fingers
with rounded tips (no sharp fingers present), and skewness is
completely absent. Obviously, this is not what is observed in
Fig. 2. The justification for the behaviors disclosed in Fig. 2
is that such responses to the crossed magnetic fields are in
fact due to complicated nonlinear coupling effects. One key
ingredient responsible for the nonlinear behaviors detected in
Fig. 2 is the magnetic traction term in the pressure boundary
conditions [Eqs. (5) and (6)] which involves the coupling of
NBr and NBa. It turns out that such a term is intrinsically
nonlinear [37,49] and has no influence at purely linear stages
of interfacial evolution. As commented earlier, it is precisely
this nonlinear magnetic traction term that induces the rising
of the skewed fingers. Of course, as exemplified in Fig. 2,
another very important contributor for the establishment of the
nonlinear pattern formation phenomena in a ferrofluid annulus
under crossed magnetic fields is the coupling parameter R.
So, nonlinear effects do play an essential role to determine
the pattern-forming behavior portrayed in Fig. 2. In summary,
from the analysis of Fig. 2 we can say that, for a fixed NBr,
and by properly manipulating NBa, and R one can produce
skewed, rotating ferrofluid, nonlinear annular patterns of dif-
ferent thicknesses and number of fingers, presenting variable
degrees of deformation in both interfaces of the ferrofluid
ring. Such a morphological and dynamical manageability of
the ferrofluid annulus under crossed magnetic fields could
be used as potential functionalities for a number of practical
applications, as those discussed in Sec. I.

We close our discussion of the representative ferrofluid
annular patterns presented in Fig. 2 by plotting in Fig. 3 the
time evolution of the perturbation amplitudes for the inner
interfaces |ζn(t )| = √

a2
n(t ) + b2

n(t )/2 (dashed curves), as well
as for the outer interfaces |εn(t )| =

√
ā2

n(t ) + b̄2
n(t )/2 (solid

curves) associated with the situations resulting in the final
time shapes shown in Fig. 2. For simplicity, in Fig. 3 we
illustrate the general behavior of the mode amplitudes with
time by focusing on the growth of a few representative modes
which have sizable amplitudes. In this way, in Fig. 3 for

045106-8



FERROFLUID ANNULUS IN CROSSED MAGNETIC FIELDS PHYSICAL REVIEW E 105, 045106 (2022)

FIG. 3. Time evolution of the perturbation amplitudes of the inner [|ζn(t )| = √
a2

n(t ) + b2
n(t )/2] (dashed curves) and outer [|εn(t )| =√

ā2
n(t ) + b̄2

n(t )/2] (solid curves) interfaces, corresponding to the situations leading to the formation of the nonlinear annular ferrofluid
structures displayed in Fig. 2. Amplitudes for modes n, 2n, 3n, and 4n are shown.

each case considered, we only plot curves for modes n, 2n,
3n, and 4n. The curves for the smaller perturbation ampli-
tudes of the remaining Fourier modes follow a similar trend
of those explicitly displayed in Fig. 3, but all overlap close
to the horizontal axes, being almost indistinguishable from
one another. By observing the various curves in Fig. 3 one
readily realizes that all of them present similar time evolution
behaviors. Initially, at very early stages of the linear regime,
after a latency time period for which the initially circular
annular shape practically does not change, the curves start
to grow exponentially. Then, at the weakly nonlinear regime,
nonlinear effects take over, and the exponential growth of
the linear instability does not proceed unchecked. As a con-
sequence, after reaching a largest value, all the perturbation
amplitudes saturate and remain unchanged as time progresses.
This means that the second-order, nonlinear ferrofluid annulus
shapes illustrated in Fig. 2 have reached a stationary-state
configuration. As a matter of fact, as we will verify later
(Sec. IV), the use of crossed radial and azimuthal magnetic
fields leads to the formation of annular ferrofluid patterns
which rotate with a controllable angular velocity but keeping
stable permanent interfacial profiles. These particular features
of the spinning ferrofluid ring structures under crossed mag-
netic fields in Hele-Shaw cells allow one to use it as an ideal
laboratory system and as testing ground for a number of possi-
ble applications. For example, ring-shaped ferrofluid droplets
could be used as shape-programmable magnetic fluid ob-
jects, which can move through narrow channels, transporting
liquid samples and fragile objects, as well as acting as pro-
grammable fluidic-mixing devices in confined environments
[19,20].

In order to further explore the great malleability of
the ferrofluid annulus system under crossed magnetic field,
we investigate a situation which is complementary to that

studied in Fig. 2, where the radial magnetic Bond number NBr

was kept fixed, while the azimuthal magnetic Bond number
NBa was allowed to vary. Conversely, in Fig. 4 we examine
what happens to the ferrofluid annular structures when NBa

remains unmodified (NBa = 100), whereas three increasing
values of the radial magnetic Bond number are utilized: NBr =
0 [Figs. 4(a) and 4(d)], NBr = 14 [Figs. 4(b) and 4(e)], and
NBr = 50 [Figs. 4(c) and 4(f)]. Moreover, we consider two
different values of the coupling strength parameter: R = 0.70
[Figs. 4(a)–4(c)] and R = 0.86 [Figs. 4(d)–4(f)]. As in Fig. 2,
we consider the typical parameters A12 = A = 1, A23 = −1,
and σ = 1. But in Fig. 4 we take χ = 0.9, R1 = 0.7, and final
time t f = 0.04.

First, we concentrate our attention on Figs. 4(a)–4(c) for
the cases of thicker ferrofluid annuli (R = 0.70). Now, when
NBa is fixed, and NBr is increased, in contrast to what we
have seen in Figs. 2(a)–2(c), the inner interfaces of the annuli
are the ones that deform the most, while the outer bound-
aries retain their circular shape. When NBr = 0 [Fig. 4(a)]
one observes the formation of a sixfold polygonal-like inner
interface, having pointy vertices and edges that are almost
straight. However, as NBr assumes nonzero values [Figs. 4(b)
and 4(c)], we notice that the edges of the still hexagonal inner
interfaces start to curve and distort, becoming increasingly
asymmetric for higher values of NBr. From Figs. 4(a)–4(c) one
observes that by augmenting NBr the positions of the vertices
are modified, apparently indicating a rotation of the skewed
annular structures in the clockwise direction. It is worthwhile
to note that, by contrast, the structures shown in Fig. 2 turned
in the opposite (counterclockwise) direction.

At this point, we examine the cases of thinner ferrofluid
annuli (R = 0.86) [Figs. 4(d)–4(f)]. Recall that higher val-
ues of R imply in a stronger coupling between the inner
and outer interfaces. So, depending on the values of NBr,
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FIG. 4. Representative weakly nonlinear, annular ferrofluid patterns formed for a constant azimuthal magnetic Bond number NBa = 100,
and three increasing values of the radial magnetic Bond number: NBr = 0 [(a) and (d)], NBr = 14 [(b) and (e)], and NBr = 50 [(c) and (f)].
In the top (bottom) panels we take R = 0.70 (R = 0.86). In addition, we set χ = 0.9, R1 = 0.7, and final time t f = 0.04. Here we have that
n = nmax = 6 [(a)–(d)], n = nmax = 5 (e), and n = nmax = 4 (f). The remaining physical parameters, initial conditions, and the number of
participating modes are the same as those used in Fig. 2.

one could get perturbed ferrofluid ring shapes having both
boundaries (inner and outer) significantly deformed. When
NBr = 0 [Fig. 4(d)] we see the emergence of a thin annular
structure having an inner interface in the form of an almost
perfect regular hexagon with straight edges, and symmetric
finger profiles at the vertices, surrounded by an almost circu-
lar outer boundary. Nevertheless, when NBr = 14 [Fig. 4(e)]
something different emerges: Now we have the formation of
a pentagonal inner interface having slightly skewed fingers
and weakly asymmetric edges, involved by a gently deformed,
fivefold symmetric outer interface. On the other hand, if the
radial Bond number is even larger, as in Fig. 4(f) (NBr = 50),
then one finds the formation of an annular structure having
a fourfold symmetric inner boundary, presenting more in-
tensively skewed fingers and a bit more asymmetric edges.
Due to the strong interface coupling, the outer interface fol-
lows the inner one and also assumes a fourfold, squarelike
shape.

It is worthwhile to note that, as in the ferrofluid annulus
cases discussed in Figs. 2 and 3, the magnetic fluid annular
patterns illustrated in Fig. 4 are also stationary states. This
is demonstrated in Fig. 5 which presents the time evolution
of perturbation amplitudes for the inner (dashed curves) and

outer (solid curves) interfaces of the annular ferrofluid struc-
tures pictured in Fig. 4.

From our discussion of Figs. 2–5 we conclude that, by
properly manipulating the magnetic Bond numbers NBa and
NBr, one has a myriad of possibilities of creating and control-
ling a number of nonlinear ferrofluid ring structures having
different thicknesses and distinct levels of finger skewness,
asymmetry, and sharpness.

IV. ROTATIONAL MOTION OF THE
FERROFLUID ANNULUS

In Figs. 2(b), 2(c), 2(e), and 2(f), we have identified the for-
mation of ferrofluid annular structures under crossed magnetic
field setup (NBr �= 0 and NBa �= 0) that seem rotated when
compared with their counterparts [Figs. 2(a) and 2(d)] gen-
erated for a purely radial magnetic field (NBr �= 0 and NBa =
0). For instance, the motionless annular patterns displayed
in Figs. 2(a) and 2(d) clearly exhibit a finger protuberance
at the uppermost portions of these structures. However, no
fingers are found at these locations in the patterns shown in
Figs. 2(c) and 2(f). Instead, we observe undulated edges, and
therefore this fact indicates that not only these patterns, but
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FIG. 5. Time evolution of the perturbation amplitudes of the inner [|ζn(t )| = √
a2

n(t ) + b2
n(t )/2] (dashed curves) and outer [|εn(t )| =√

ā2
n(t ) + b̄2

n(t )/2] (solid curves) boundaries of the ferrofluid ring, corresponding to the situations resulting in the nonlinear annular patterns
depicted in Fig. 4. Amplitudes for modes n, 2n, 3n, and 4n are shown.

all the other annular structures generated considering NBr �= 0
and NBa �= 0 rotate with respect to the structures obtained for
NBr �= 0 and NBa = 0. Additionally, this happens regardless
of the value of the coupling strength parameter R. A similar
phenomenon is observed in the patterns presented in Fig. 4.

In order to investigate the rotational motion of the annular
patterns under crossed magnetic fields observed in Figs. 2
and 4, in Fig. 6(a) [Fig. 6(b)] we depict superposed snap-
shots taken at times t = 3.02 × 10−2, t = 3.04 × 10−2, and
t = 3.05 × 10−2 [t = 4.29 × 10−2, t = 4.31 × 10−2, and t =

4.33 × 10−2] of the pattern originally displayed in Fig. 2(c)
[Fig. 4(c)]. By analyzing the snapshots displayed in Fig. 6(a),
it is evident that, as time increases, the annular structure ro-
tates in the counterclockwise direction (as indicated by the
curly black arrow). Something analogous is also detected
in Fig. 6(b). However, in Fig. 6(b) the rotational motion
exhibited by the ring-shaped pattern occurs in the opposite
direction, i.e., in the clockwise sense. Note that both annular
structures depicted in Figs. 6(a) and 6(b) rotate while pre-
serving their shape profiles, which is in agreement with their

FIG. 6. (a) Overlaid snapshots of the pattern investigated in Fig. 2(c), taken at times t = 3.02 × 10−2, t = 3.04 × 10−2, and t = 3.05 ×
10−2, illustrating a counterclockwise rotational motion of the ferrofluid annulus. Likewise, (b) displays superposed snapshots of the pattern
examined in Fig. 4(c), shown at times t = 2.29 × 10−2, t = 2.31 × 10−2, and t = 2.33 × 10−2, exhibiting a clockwise spin of the ferrofluid
ring. The curly black arrows indicate the directions of rotation.
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FIG. 7. Linear (dashed) and weakly nonlinear (solid) phase velocities vi(n, t ) with i = 1, 2, and n = nmax, as a function of time t for the
time evolution of the annular ferrofluid patterns portrayed in (a) Fig. 6(a) and (b) Fig. 6(b).

corresponding saturated perturbation amplitudes observed in
Fig. 3(c) and Fig. 5(c), respectively.

This sort of magnetically induced rotational motion was
already observed previously in works addressing the problem
of confined ferrofluid droplets under crossed magnetic fields
[37,38], and as proposed in Ref. [37], the motion is caused by
a force imbalance coming from the magnetic normal traction,
which breaks the symmetry of the droplet when subjected
to the two-component magnetic field. Nonetheless, in the
two-fluid, single-interface, simply connected system studied
in Refs. [37,38], the rotational motion can only occur in the
counterclockwise direction, unless one modifies the electric
current’s direction passing through the wire generating the
azimuthal magnetic field component. Alternatively, one could
change the fluids’ positions, i.e., consider a nonmagnetic fluid
droplet surrounded by a ferrofluid. On the other hand, in three-
fluid, two-interface, doubly connected system examined here,
we are able to manipulate the ring-shaped patterns’ direction
of rotation by only altering the relative intensity of radial
(NBr) and azimuthal (NBa) magnetic field components, while
keeping the electric current’s direction and fluids’ position
fixed. Moreover, we have verified that the direction of rotation
of the annular patterns follows the original motion of the
interface with the largest overall perturbation. That is, if for
a given set of parameters NBr, NBa, and R �= 0, then the outer
interface is more disturbed than the inner one, then the annular
structure rotates in the counterclockwise direction. This is the
case for all the patterns exhibited in Fig. 2 for which NBr �= 0
and NBa �= 0. Conversely, if the inner interface is more per-
turbed than the outer one, then the whole structure rotates in
the clockwise direction, and this is the situation illustrated in
Fig. 4 whenever NBr �= 0 and NBa �= 0.

The visual conclusions obtained in Fig. 6 are quantita-
tively supported by the complementary results presented in
Fig. 7, where we plot the linear (dashed curves) and weakly
nonlinear (solid curves) phase velocities vi(n, t ), with i =
1 (i = 2) for the inner (outer) interface, as a function of
time t . Figure 7(a) [Fig. 7(b)] represents the phase veloci-
ties corresponding to the rotating annular structure displayed
in Fig. 6(a) [Fig. 6(b)], with n = nmax = 8 [n = nmax = 6].
The linear curves of vi(n, t ), i.e., vi (linear), are obtained

by evaluating − Im[λi(n, t )]/n with the help of Eqs. (24)
and (25). Additionally, the weakly nonlinear predictions for
vi(n, t ), i.e., vi (WNL), are obtained by numerically evaluat-
ing − Im[ζ̇n(t )/ζn(t )]/n (for i = 1) and − Im[ε̇n(t )/εn(t )]/n
(for i = 2) with the assistance of Eqs. (11) and (12), re-
spectively. We call the readers attention to not confuse the
time-dependent, coupled phase velocities vi(n, t ) examined
here with the time-independent, decoupled velocities Vi(n)
presented in Sec. II when we discussed the two-fluid, single-
interface limit.

We initiate our analysis of Fig. 7 by discussing the linear
predictions for vi(n, t ) depicted in Fig. 7(a). It is evident that
the two dashed curves overlap, in addition of being positive,
and constant in time. Therefore, linear theory predicts that
the annular ferrofluid pattern rotates in the counterclockwise
direction with constant angular velocity during the whole
dynamics. The linear theory indeed captures the correct di-
rection of rotation of the annular pattern, but it is not accurate
in predicting the magnitude of the angular velocity, and the
dynamics of this rotational motion, as we notice by comparing
the linear and WNL curves. By following the behaviors of vi

(WNL), we observe that for early times, when the perturbation
amplitudes on both interfaces are very small and nonlinear
effects are negligible, WNL and linear predictions for the
phase velocities are practically the same. Nevertheless, as time
progresses, the perturbation amplitudes become larger and
nonlinear effects start to impact the dynamics of the rotational
motion by reducing the magnitude of the phase velocities
vi(n, t ). Later, after a short transient, the vi (WNL) curves
saturate at a value of phase velocity that is about 0.5% smaller
than the magnitude predicted by vi (linear). We have verified
similar reductions of about 6.4% in the case portrayed in
Fig. 2(b) and of 14.1% in Fig. 2(e). Actually, we have also
found a small increase of about 2.6% in Fig. 2(f) but only
for these particularly higher values of NBr and R. Therefore,
our second-order mode-coupling theory provides a weakly
nonlinear correction to the linear prediction of the propagation
velocity. Our findings reinforce the importance of developing
a nonlinear theory for this annular system since a purely linear
theory cannot accurately describe either the annular pattern-
formation process or rotational motion dynamics. It is worth
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noting that similar weakly nonlinear corrections have also
been found in related ferrohydrodynamic problems studied
in Refs. [50,51], where researchers investigated the genera-
tion of nonlinear waves on ferrofluid interfaces in rectangular
Hele-Shaw cells under an in-plane tilted, externally applied
magnetic field which makes an arbitrary angle with an initially
unperturbed ferrofluid interface.

We conclude our discussion regarding the rotational dy-
namics of the ferrofluid annulus under crossed magnetic fields
by inspecting Fig. 7(b). Note that all the conclusions obtained
previously in Fig. 7(a) about the rotational dynamics, and
the linear and weakly nonlinear predictions for this motion,
remain valid for the case illustrated in Fig. 7(b). For example,
in Fig. 7(b) one also detects a weakly nonlinear correction
to the linear prediction of the propagation velocity: In this
case, the vi (WNL) curves saturate at a value that is about
29% smaller than the magnitude predicted by vi (linear).
The related reductions in the other relevant cases in Fig. 4
are 29.9% in Fig. 4(b), 49% in Fig. 4(e), and 30.2% in
Fig. 4(f). A few additional remarks are still worth mentioning
in Fig. 7(b): First, note that now all the curves, regardless
of being linear or WNL, are associated to negative values
of the phase velocities. This implies a rotational motion in
the clockwise direction, in agreement with the rotation of the
annular structure displayed in Fig. 6(b). Furthermore, we ob-
serve that v1 (WNL) reaches a saturated value of about −500
very quickly, while v2 (WNL) follows a similar trend but
oscillating around that value before saturating at a later time.
Analogous oscillatory behaviors of phase velocities were also
identified previously in Refs. [37,51], and they are connected
to meaningless transients occurring before the establishment
of the permanent annular shape profile.

We have also examined the rotational dynamics utilizing
values of dimensionless parameters beyond those considered
in Fig. 7, and our main findings can be summarized as follows:
For all the weakly nonlinear simulations performed, we no-
ticed that the magnitude of the phase velocities increases when
either larger values of NBr or NBa are utilized. This increase in
the phase velocities vi of the coupled system (i.e., for R �= 0)
for larger values of NBr and NBa is indeed expected, since the
linear phase velocities Vi of the fully decoupled system (i.e.,
for R → 0) presented in Sec. II are proportional to

√
NBrNBa.

In addition, R controls the time required for v1 (WNL) and v2

(WNL) match together at the final saturated magnitude, being
that time is larger for smaller values of R.

V. CONCLUDING REMARKS

We have investigated the problem of the immiscible dis-
placement of an intermediate annular layer of a ferrofluid,
bounded by nonmagnetic fluids in the confined geometry of a
Hele-Shaw cell. Such a dual-interface ferrofluid system is un-
der the influence of crossed magnetic fields, having radial and
azimuthal components. This particular ferrohydrodynamic
setup is of special interest since (i) it involves the interplay be-
tween two disjoint interfaces of a doubly connected magnetic
fluid region and (ii) permits separate bidirectional magnetic
manipulation (via radial and azimuthal field components) of
the inner and outer boundaries of the ferrofluid ring.

Our second-order mode-coupling analysis reveals the
emergence of a family of nonlinear, stationary pattern-
forming structures. After an initial linear stage of exponential
growth, nonlinear effects become important, and the ferrofluid
annulus deforms, giving rise to skewed fingered protrusions.
These fingers eventually cease to grow and reach a perma-
nent profile. Furthermore, due the to action of the crossed
magnetic fields, such immutable-shaped patterns rotate with
a predetermined angular velocity, whose magnitude and di-
rection can be regulated by the relative strength between the
radial and azimuthal components of the applied magnetic
field.

We have found that the thickness of the annulus also plays
a key role in determining the nonlinear shape of the annular
ferrofluid structure, with thinner annuli presenting enhanced
coupling between the outer and inner boundaries of the mag-
netic fluid ring. One particularly interesting feature of the
magnetic fluid annular configuration under crossed fields is
the fact that, depending on the magnitude of the fields’ compo-
nents and the thickness of the ferrofluid ring, the two bounding
interfaces can be made simultaneously unstable. Moreover,
we have verified that the number of fingers produced can be
tuned by the external magnetic field. Finally, our second-order
mode-coupling analysis provides a correction to the linear
prediction of the angular velocity, indicating that for the most
cases studied, the weakly nonlinear coupling between the var-
ious interfacial modes leads to a reduced value of the spinning
velocity.

As discussed in Sec. I, magnetically controlled annular
ferrofluid systems offer a number of possibilities for mi-
croscale applications and fluid flow manipulation in confined
environments. Considering the specific findings of our current
study, the rotating ring-shaped ferrofluid droplets we stud-
ied could be used to provide efficient fluid mixing at low
Reynolds numbers in narrow channels. Mixing under such
circumstances is challenging, since one normally cannot rely
on either turbulence or inertial effects to produce disorder in
the velocity field. Another possible capability for ferrofluid
annuli structures is to utilize their magnetic controllability,
shape malleability, and intrinsic doubly connected nature in
on demand liquid-cargo delivery functions, since they could
trap, transport, and release liquid samples and delicate objects
in an efficacious manner.

A natural extension of this work consists in examining
the pattern-forming dynamics of the dual-interface ferrofluid
structures under crossed magnetic fields during advanced
times through fully nonlinear numerical simulations. We plan
to perform such a challenging numerical study in the fu-
ture, with the generalization of available boundary integral
approaches via the vortex-sheet formulation [38] to doubly
connected ferrofluid regions. Another stimulating possibil-
ity is to study theoretically the corresponding behavior of
a confined magnetorheological (MR) fluid [52,53] annu-
lus under the influence of applied crossed magnetic fields,
where in addition to the issues discussed in this work,
one could consider how the magnetically induced yield-
stress effects of MR fluids would affect the system. Finally,
we hope that experimentalists will feel motivated to verify
the theoretical pattern-forming predictions presented in this
work.
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APPENDIX : SECOND-ORDER MODE-COUPLING
FUNCTIONS

This Appendix presents the expressions for the second-
order mode-coupling functions which appear in the text.

In Eq. (11), the second-order terms are given by

F (n, n′) = −A|n|
R1

{
σ

R3
1

[
1 − n′

2
(3n′ + n)

]

+ χ

2

[
(1 + χ )NBr + 3

NBa

R4
1

+χ

(
NBr − NBa

R4
1

)
n′(n − n′)

]

+ in′χ2sgn(I )

√
NBaNBr

R2
1

}
, (A1)

G(n, n′) = 1

R1
{A12|n|[1 − g1(n, n′) sgn(nn′)]

− f −1
1 }, (A2)

H (n, n′) = −|n|
R2

{
1

R3
2

[
1 − n′

2
(3n′ + n)

]

− χ

2

[
(1 + χ )NBr + 3

NBa

R4
2

+χ

(
NBr − NBa

R4
2

)
n′(n − n′)

]

− in′χ2sgn(I )

√
NBaNBr

R2
2

}
, (A3)

I (n, n′) = 1

R2
{A23|n|[1 − g2(n′) sgn(nn′)]}, (A4)

J (n, n′) = |n|
R1

{
(A23 + 1)R|n′|+2

1 − R2|n′| sgn(nn′)

}
, (A5)

K (n, n′) = |n|
R1

{
(A23R2|n| + 1)R|n′|−|n|

1 − R2|n′| sgn(nn′)

}
, (A6)

where

g1(n, n′) =
(

A12 + 1

2A12

)
(1 + A23R2|n|)(1 + R2|n′|)
(1 − A23R2|n|)(1 − R2|n′|)

+
(

A12 − 1

2A12

)
, (A7)

g2(n′) = A23 + 1

A23(1 − R2|n′|)
, (A8)

and the sgn function equals ±1 according to the sign of its
argument.

The second-order expressions in Eq. (12) are given by

F (n, n′) = H (n, n′), (A9)

G(n, n′) = 1

R2
{A23|n|[1 − g3(n, n′) sgn(nn′)]

− f −1
4 }, (A10)

H(n, n′) = F (n, n′), (A11)

I (n, n′) = 1

R1
{A12|n|[1 − g4(n′) sgn(nn′)]}, (A12)

J (n, n′) = |n|
R2

{
(A12 − 1)R|n′|−2

1 − R2|n′| sgn(nn′)

}
, (A13)

K(n, n′) = |n|
R2

{
(A12R2|n| − 1)R|n′|−|n|

1 − R2|n′|

× sgn(nn′)

}
, (A14)

where

g3(n′) =
(

A23 − 1
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)
(1 − A12R2|n|)(1 + R2|n′|)
(1 + A12R2|n|)(1 − R2|n′|)

+
(
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)
, (A15)

and

g4(n′) = A12 − 1

A12(1 − R2|n′|)
. (A16)
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