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Rayleigh-Taylor mixing in the presence of a third component with intermediate density is investigated
through three-dimensional large-eddy simulation (LES) with a high-order compact finite-difference code. Two
configurations are considered: (1) a symmetric configuration in which the Atwood number between the heavy
and intermediate components matches the Atwood number between the intermediate and light components and
(2) an asymmetric configuration in which the Atwood number between the heavy and intermediate components
is an order of magnitude greater than the Atwood number between the intermediate and light components.
Mass fraction covariances are extracted, and proposed Reynolds-averaged Navier-Stokes (RANS) closures for
density-specific-volume and density-mass-fraction covariances are evaluated in an a priori fashion. In addition, a
multicomponent extension of the k — ¢ — L — a — V RANS model [Morgan, Phys. Rev. E 104, 015107 (2021)]
is presented which includes model equations for the upper-triangular elements of the mass fraction covariance
matrix. This model, referred to as the k — ¢ — L —a — C model, is compared against results from LES and
against other RANS models. Profiles of average mass fraction, mass-fraction covariance, and density-specific-
volume covariance obtained with the k — ¢ — L — a — C model are found to agree well with LES data. Finally,
the impact of three-component turbulent mixing on average reaction rate is investigated in both premixed and
nonpremixed cases by heating the mixing layer and allowing it to undergo thermonuclear (TN) burn. A closure
model for average reaction rate is proposed for use with the k — ¢ — L — a — C model, and when this model is

applied, improved agreement is obtained between LES and RANS in total TN neutron production.
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I. INTRODUCTION

Turbulent mixing layers are encountered in a variety of
physical systems, including oceanic and atmospheric flows
[1-4], astrophysical phenomena [5], and in applications of
inertial confinement fusion (ICF) [6,7]. When such mixing
occurs in the context of reacting turbulence, whether the re-
actions are chemical or nuclear in nature, accurate prediction
of the statistics of scalar transport are vital to understanding
the impact of turbulence on reaction rate. [8,9].

In classical Rayleigh-Taylor (RT) mixing, two fluids mix
when they are subject to an acceleration gradient that is
opposite in direction to the mean density gradient [10,11].
For problems of two-fluid mixing, second-moment statistics
of a passive scalar can be characterized with a single scalar
variance [9,12]. In practical problems of engineering inter-
est, however, it is frequently the case that more than two
components will be involved in the mixing process. In the
“CD Symcap” ICF experiments, for example, tritium-filled
capsules were surrounded by a silicon-doped plastic ablator
(CH), and a deuterated plastic (CD) layer was either placed
against the tritium gas or recessed within the ablator by up
to 8 um [13,14]. In problems such as this, a single scalar
variance is not sufficient to fully describe the multicomponent
mixing process that occurs between the gas, the CD plastic,
and the surrounding plastic ablator which acts as a nonreacting
contaminant.
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To better understand the physics of mixing when more
than two materials are involved, the present work considers
the case of a three-component RT mixing layer in which
the heavy material is initially separated from light material
by the presence of a third, intermediate-density material. All
three materials are subject to an acceleration gradient such
that interfaces between heavy and intermediate and between
intermediate and light components both become unstable,
and eventually the heavy material penetrates through the in-
termediate material to mix directly with the light material.
Figure 1 illustrates schematically the three-component RT
mixing problem under consideration, where p indicates den-
sity and subscripts 1, 2, and 3 refer to the light, intermediate,
and heavy mixing components, respectively, such that p; <
02 < p3. In the late-time limit of this problem, the interme-
diate material becomes negligibly diffuse, and the problem
reduces to a classical two-component RT mixing layer be-
tween the heavy and light components. The present work
therefore considers mixing behavior prior to this late-time
limit, when the presence of the intermediate material is still
observable and significant.

Reacting Rayleigh-Taylor turbulence has been investi-
gated previously in classical two-component configurations
[9,15,16]. The present work builds on these prior works by
considering the impact of an additional inert contaminant
material. First, high-fidelity large-eddy simulation (LES) is
performed of the nonreacting three-component RT problem
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FIG. 1. Schematic representation of the three-component RT
mixing problem under consideration. Simulations include premixed
and nonpremixed reactant cases as well as symmetric and asymmet-
ric Atwood number configurations.

with the high-order finite-difference code Miranda. Two con-
figurations are considered, which can be described by the
general Atwood number,
A= PP 1

ij pi + p; ( )
A symmetric configuration is considered in which A3, = Ay,
and an asymmetric configuration is considered in which A3, =
10 x Aj3;. In each case, the mixing layer is allowed to evolve
until there is significant interpenetration of the heavy com-
ponent into the light component. Then, the mixing layer is
heated to 10 keV, and thermonuclear (TN) burn is initiated.
Both premixed and nonpremixed configurations are consid-
ered. In the premixed configuration, the intermediate material
is considered to be a mixture of deuterium (D) and tritium
(T) gas, while the heavy and light components are taken
to be inert plastics (CH). In the nonpremixed configuration,
the intermediate material is taken to be CH, while the light
material is treated as T, and the heavy material is treated as
deuterated plastic (CD).

Since Reynolds-averaged Navier-Stokes (RANS) model-
ing remains a common tool in ICF design and analysis, RANS
simulation of the three-component RT mixing problem is also
considered. Recently, the k — ¢ — L —a —V RANS model
has been developed for the simulation of two-fluid turbulent
mixing [12]. The k — ¢ — L — a — V model represents an im-
provement over similar models that assume a linear mixing
profile and quadratic turbulence profiles [9,17-21]. In con-
trast, the k — ¢ — L — a — V model relaxes the assumption of
a linear mixing profile and admits self-consistent high-order

spatial profiles through similarity analysis [12]. By design,
however, the k — ¢ — L —a —V model and other models
that transport a single mass fraction variance rely on an as-
sumption of only two mixing components. Similarly, existing
models for the impact of turbulent mixing on average TN
reaction rate [9,22] have been formulated under the same
assumption of two-component mixing. Thus, a need exists to
extend these models in order to perform RANS simulation
of the three-component mixing layer under consideration. To
this end, an extension of the k — ¢ — L — a — V model, re-
ferred to as the k — ¢ — L — a — C model, is presented which
solves transport equations for the upper triangular elements
of the mass fraction covariance matrix. These mass fraction
covariances are then utilized to construct a general model
for the impact of turbulent mixing on reaction rate, and one-
dimensional (1D) RANS results using these models are shown
to agree well with high-fidelity LES.

The remainder of this paper is laid out as follows. First,
in Sec. II, the numerical models utilized in the present work
are presented. Descriptions of the Miranda and Ares computa-
tional codes are given in Sec. I A, andthek — ¢ — L —a —C
model is introduced in Sec. II B. Then, in Secs. II C and II D,
detailed descriptions are given of the computational setup of
the three-component RT problem for LES and RANS sim-
ulations. Results are presented in Sec. III, focusing first on
the initial nonreacting growth phase of the simulations in
Sec. III A followed by comparisons between RANS and LES
during the reacting phase of simulations in Sec. III B. Finally,
in Sec. IV conclusions are drawn, and recommendations are
made regarding the direction of future research.

II. NUMERICAL MODELS

A. Computational codes

Three-dimensional LES calculations in the present work
are solved in two stages. First, the Miranda code is used
to evolve the nonreacting layer until it is well mixed and
turbulent. Then, in a second stage of simulation, the mixing
layer is heated, and the Ares code is used to further evolve
the mixing layer as it undergoes TN burn with coupled ra-
diation diffusion. This approach has been used previously in
simulations of a reacting, two-component RT mixing layer in
a spherical geometry [9].

The Miranda code solves the compressible Navier-Stokes
equations presented in Appendix 1 with a 10th-order compact
differencing scheme for spatial discretization and a 4th-order
explicit Runge-Kutta scheme for temporal integration. Mi-
randa has been utilized extensively in previous studies of
compressible turbulent mixing [20,23-33]. To model the sub-
grid scale transfer of energy, Miranda utilizes an artificial
fluid LES approach in which artificial transport terms are
added to the fluid viscosity, the bulk viscosity, the thermal
conductivity, and the molecular diffusivity [34,35]. The form
of the artificial contributions utilized in the present work is the
same as that utilized in earlier work by Morgan et al. [9]. Since
the present study is focused on the high-Reynolds-number
regime in which viscous length scales are significantly smaller
than energy-containing structures, the approach of Olson ez al.
[26] is adopted, and fluid contributions to dynamic viscosity,
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TABLE I. Summary of TN reactions supported by Ares.

No. reaction Ot (MeV)
1 D+ D — n° + *He 3.26
2 D+D— 'H+4T 4.02
3 T+ T — n®+n + *He 11.32
4 D+ T— n’ +“*He 17.59
5 D + *He — 'H +*He 18.35

bulk viscosity, thermal conductivity, and molecular diffusivity
are taken to be zero (i.e., uy = By = ky = Dy = 0). This
modeling choice represents a trade-off between resolution of
the finest scales and development of the inertial range. By
relying on hyperdiffusivity to capture mixing at the finest
scales, the present simulations allow for the maximal separa-
tion of scales possible under the computational framework and
enable simulation of mixing in a fully turbulent, self-similar
state. Since the comparison RANS simulations assume a self-
similar state, the choice to neglect physical contributions to
viscosity and diffusivity facilitates the most direct comparison
between RANS and LES. While this means that the finest
scales of mixing in the LES results are governed by artificial
diffusive terms, the integral mixing behavior has been shown
to be well captured, including in problems of reacting flow
[9,30].

The Ares code solves the hydrodynamics equations in
Appendix 1 coupled with a radiation diffusion approach
presented in Appendix 2. Ares uses an arbitrary Lagrangian-
Eulerian method with a second-order remap [36]. Ex-
plicit time integration is accomplished with a second-order
predictor-corrector scheme [37], and spatial differences are
computed with a nondissipative second-order finite-element
approach. A tensor artificial viscosity [38] is applied for the
capturing of shocks and material discontinuities. Although
Ares also boasts an adaptive mesh refinement capability
[39,40], it is not utilized in the present study. Ares has been ap-
plied previously in studies of canonical Richtmyer-Meshkov
instability in both planar [28] and cylindrical [41] configura-
tions. It has also been utilized extensively in the simulation of
ICF targets and experiments [13,42-48].

In the present work, five TN reactions are computed by
Ares, as summarized by Table I. In these reactions, products
can be either neutrons, indicated by n°, or charged particles.
The rate of a given reaction with products y and reactants «
and B is given simply by

i’y,otﬂ = (Uv)aﬂnanﬂa (2)

where (ov)qp is the reaction cross section, and n, and ng are
the particle number densities. The reaction cross section is in-
terpolated using the TDFv2.3 library [49]. Additionally, each
reaction has an average thermal energy Qrn, which is tabu-
lated in Table 1. Local deposition of this energy is assumed
such that the average thermal energy is removed from the ion
energy field, and charged particle energy is deposited in the
same volume with a split between the ion and electron ener-
gies according to the Corman-Spitzer model [50]. Neutrons
are assumed to immediately escape the problem, and energy
carried by neutron products is removed from the system. Ther-

mal effects and the apportionment of average thermal energy
among reactants are determined following the method by War-
shaw [49]. Additionally, the ion-electron coupling coefficient
K. is determined according to Brysk [51].

B. Thek — ¢ — L —a — C model

The k —¢ — L —a — C model is a multicomponent ex-
tension of the k — ¢ — L —a — V model [12]. In the present
work, an overbar denotes Reynolds averaging and a tilde de-
notes mass-weighted (Favre) averaging. An arbitrary scalar,
f, is decomposed as

f=F+f=F+1" (3)
where the Favre average is related to the Reynolds average
according to

f= (4)

z_prf

0
The Reynolds stress tensor, mass-flux velocity vector,
density—specific-volume covariance, and mass fraction covari-
ances are defined, respectively, in terms of the velocity vector,
u;, the specific volume, 1/p, and the component mass fraction,
Yo, by

pTij = —pujuf, (5a)
ai = —uf, (5b)
1 !
b= —p’(—) , (5¢)
P
Cop = XY (5d)

Equations (6)—(20) below summarize the k —¢ — L —a —
C model, where v is the volume fraction, w, is the eddy
viscosity, g; is the gravitational acceleration vector, e is the
specific internal energy, ¢ is the turbulent velocity, L is the
turbulent length scale, N is the total number of mixing com-
ponents, and V is half the trace of the mass fraction covariance
matrix. The model coefficients C4, Cp, Cp, Cp1, Cp2, Cp3, Cr1,
Cra, Cp3, Cc1, Cca, Cc3, Nay Ney N, Ny, Ni, Nc, Ny, and
Cyev are determined through similarity analysis. The model
equations are

I;)L;j =P8I~ t‘?—z o P ®
7o = P e+ (S ) ©
P =P s ~O o () 10
5? p1p¢2 +Cp2¢vl3/gﬁtljguz

oo ooy O
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Since the mass fraction covariance matrix is symmetric, and
mass fractions are constrained to sum to unity, only upper
diagonal components need to be transported according to
Eq. (14). So, for instance, in a problem involving three mixing
components, only the Ci,, C3, and Cr3 components need to
be transported. Remaining diagonal components of the mass
fraction covariance matrix can be derived according to

N

> —Cup. @1

B=1.p#a

Similarly, in a problem with only two mixing components,
only a single covariance component needs to be transported
(C12), and the k — ¢ — L — a — C model reduces to the k —
¢ — L —a —V model.

CD(O[ =

. (00)op Yo Vs Cup
EE-Y Y
alp ; ;

myng

Equation (25) is general for both premixed or nonpremixed re-
actants. In the Ares code, a simplification is made by grouping
reactants into materials. For example, in the present problem
D and T are considered reactants while more generally gas

TABLE II. Summary of physical parameters used to constrain
k — ¢ — L — a — C model coefficients.

o ®RT n m q)—l S/A ®KH

0.03 0.80 1.11 1.33 0.035 0.08 0.80

Model coefficients are set through similarity analysis in a
procedure identical to that outlined forthe k —¢ — L —a —V
model [12] in terms of the RT growth parameter «, the RT
mixedness ®gr, the mechanical decay exponent for homoge-
neous isotropic turbulence (HIT) n, the scalar decay exponent
for HIT m, the Kelvin-Helmholtz (KH) turbulence intensity
®~!, the KH growth parameter §/.4, and the KH mixedness
Okg. More complete description of these parameters is given
by Morgan [12], but the values of these parameters used to set
model coefficients in the present work are given in Table II.
Table IIT then summarizes the full set of model coefficients
used.

To close the average reaction rate, the expression myny, =
pYy is utilized to transform Eq. (2) to the following form in
terms of the species molar mass m,:

(00)opYaYpp?
mymg ’

(22)

Ty,ap =

Then, by applying a Reynolds decomposition and averaging,
Eq. (22) is transformed into

: (0V)opYaYsp
Tyap = —"
mgyhig

X {1+ == =t ==+ ==

Y op v oY
o b PO P f +hot?},
Y. Yp P pYe  PYp

(23)

where fluctuations of the cross section have been neglected,
and third- and fourth-order moments have been indicated
by the abbreviation h.o.t. (high-order terms). To close the
density-mass-fraction covariance terms in Eq. (23), the fol-
lowing relationship is proposed:

N — —
/Y// o
e n :(L - 'L—ﬁ)caﬂ. 24)
N7

Then, assuming that the turbulent density intensity p’p’/p>
can be approximated by the previous expression for b, substi-
tuting back into Eq. (23) gives the reaction rate closure,

)ZC+§:<E—“—2>@+XN:(E—‘3—E—’)@ (25)
N Y, Y)Y, v, V)% |

B

and plastic are considered materials. Thus, reactants may be
initially premixed, as in a DT gas material mixing with CH
plastic material, or nonpremixed, as in T gas material mixing
with CD deuterated plastic material. An assumption is then
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TABLE III. Model coefficients for the k — ¢ — L — a — C model.

Ciev Cp Cp Cri Cpy Cis Cpi Cp

Cp3 Cy Coi Coo Cez3 Nyexa Ny N¢

12.0 0242 1.00 0400 0472 0.208

-0.500  6.89 x 107*

0.0576 1.286 153 120 0.352 0.119 0.0238 0.190

made that fluctuations of reactant mass fractions can be related
to fluctuations of the material mass fraction. For instance, if
reactant « is in the material 1, then it is assumed,

Y// Y//
?i ~ )7—1 (26)
o 1

For reactions among premixed reactants in the same material,
Eq. (21) can be substituted to evaluate the first covariance term
on the right-hand side of Eq. (25).

C. LES problem setup and initial conditions

Three-dimensional LES calculations are conducted on a
computational mesh of dimension 27 x 27 x 47 cm?® with
the gravitational acceleration vector oriented in the negative
z dimension. The initial thickness of the intermediate-density
material is taken to be 1/8 of the domain size in z, such that
the light material is initialized with p; from —27 < z < —%,
the intermediate-density material is initialized with p, from
—% <z <%, and the heavy material is initialized with p3
from % < z < 2m. Fluid densities are chosen such that p; =
0.01 g/cm?®, and other component densities are determined
based on desired Atwood numbers. Table IV summarizes
material densities and Atwood numbers for the two config-
urations considered. In the symmetric configuration, Az, =
A such that A3; = 0.5, and in the asymmetric configuration
Aszr = 0.5 while A>; = 0.05. In each case, densities are com-
puted to conform to these desired Atwood numbers.

Periodic boundary conditions are set in the x and y dimen-
sions, and nonpenetrating wall boundaries are set at z = —2m
and z = 2. A hydrostatic pressure field is specified such that
the mixing layer remains nominally centered around z = 0.
Constant mesh spacing is utilized in all dimensions, such that
the number of grid points in the z dimension, N,, is equal to
twice the number of grid points in the x and y dimensions;
in other words, N, = 2N, = 2N,. For these simulations, N, =
1152 for a total of about 382 million computational elements.

An initial perturbation is specified at each of the two mate-
rial interfaces in Fourier space as a function of maximal and
minimal wave numbers k¢ and ki, according to

Kmax Kmax A .
E(x,y) = Z cos (jx + 6. ;)
J=Kmin k=Kmin Kmax — Kmin 1 1
x sin (ky + 6,.1), N

TABLE IV. Summary of problem configurations. Densities in
units of mg/cm?.

where A indicates the mesh spacing and the phase shift vec-
tors 6, ; and 6, ; are drawn from uniformly distributed random
numbers between 0 and 27. The mixture density at each
interface at time ¢t = 0 is then given by

(X, y,2) = pL + %{1 + tanh [#}} (28)

where the subscripts L and H refer, respectively, to the light
and heavy densities at each interface. A broadband initial
perturbation spectrum is specified such that ky;, = 6, and
Kmax = 96.

Simulations are evolved in Miranda using an ideal gas
equation-of-state (EOS) until hg9, the mixing width defined
as the distance between 99% contours of Y; and Y3, reaches
2w (50% of the domain size in z). During this early time,
no reactions occur, and evolution is purely hydrodynamic.
Once hgy = 2, electron and ion temperatures are set to 10
keV everywhere, and the problem is continued with radiation
diffusion and TN burn physics in the Ares code. Additionally,
at this time which shall be denoted as #y,m, gravitational ac-
celeration is turned off, boundary conditions at z = £2m are
changed to extrapolation, and EOSs are changed to tabular
Livermore EOS (LEOS) 1018 and LEOS 5350 for the gas
and plastic, respectively [52,53]. Table V summarizes mate-
rial compositions for times ¢ > fyym. DT gas is assumed to
consist of a 3:1 DT mixture by atom fraction, and plastics
consist of carbon and hydrogen in an atom ratio of 1.35:1.
The simulation is then continued in Ares until the average
electron temperature drops below 0.5 keV. Prior simulations
[9] and experimental observations by Haines et al. [54] have
demonstrated that the existence of spatial temperature varia-
tions can have a nonnegligible impact on the observed reaction
rate. Therefore, to eliminate this potential complication in
comparisons with RANS results, a preliminary LES is first
run to obtain a realistic temperature time history. Then, a
secondary simulation is then carried out in which spatial
variation in temperature is eliminated by imposing a spatially
uniform, time-varying temperature profile obtained from the
preliminary simulation. While a spatially uniform temperature
profile is used in the present work for the purpose of creat-
ing an idealized problem more suitable for comparison with
RANS, it is worth noting that mixing layers with a photon
mean free path A << hgg should be well approximated by this
idealized problem. In work by Olson et al. [55], for instance,

TABLE V. Summary of material compositions during burn
phase. DT gas is 3:1 mixture, and plastics consist of carbon and
hydrogen in an atom ratio of 1.35:1.

Configuration Az Ay Az 03 02 01 Case Material 1 Material 2 Material 3
Symmetric 0.268 0.268 0.500 100 577 333 Premixed CH DT CH
Asymmetric 0.500 0.050 0.537 100 333 3.02 Nonpremixed T CH CD
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FIG. 2. Instantaneous contours of density in the y = & plane at several time instants for the symmetric [(a)—(e)] and asymmetric [(f)—(j)]
configurations. Contours of ¥, = 0.01 have been overlaid inred. (a) z/ty = 0.0, (b) t/ty = 5.93,(c) t/to = 11.7,(d) t /ty = 16.6, (e) t [ty = 22.5,
(f) t/tg = 0.0, (g) t /1y = 6.14, (h) t /1y = 12.3, () t /to = 17.2, and (j) 1 /to = 23.3.

it was observed that ICF capsules filled with an argon-tritium
gas mixture demonstrated reduced shock flash temperature
compared with capsules filled with protium-tritium due to
enhanced coupling with the radiation field.

In this way, large-eddy simulations are carried out in three
parts. First, a hydrostatic three-component RT mixing layer is
evolved using the Miranda code. During this stage of simula-

tion, no reactions are occurring, and the problem is purely a
hydrodynamic one. Then, once the mixing layer is well mixed,
a second stage proceeds using the Ares code to compute the
TN reactions with a fully coupled radiation-hydrodynamics
treatment. During this second stage of simulation, turbulent
fluctuations in temperature may exist, and an average tem-
perature history is extracted. In the third and final stage, the
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FIG. 3. Comparison of time evolution of the mixing layer width hgy between LES and RANS with the k — ¢ — L —a — C model.

(a) Symmetric configuration and (b) asymmetric configuration.

Ares calculation is repeated with a spatially uniform, time-
varying temperature profile set to the average temperature
history extracted from the previous stage. By computing tur-
bulence statistics obtained during the reacting stages of the
calculation, it is possible to obtain validation data by which
to evaluate the k — L — a — C RANS model and the average
reaction rate closure given by Eq. (25). Note that a similar
three-stage procedure was used previously by Morgan et al. to
evaluate the k — L — a — V RANS model in the context of a
two-component reacting mixing layer [9].

D. RANS problem setup and initial conditions

RANS simulations are conducted with the k — ¢ — L —
a — C model in Ares. For comparison purposes, results will
also be shown with a multicomponent extension of the k —
L — a —V model [9,20,21], which will be referred to as the
k — L —a — C model and utilizes the same multicomponent
extension outlined by Eqgs. (14), (20), and (25). These models
are expected to differ primarily by the form of their spatial
profiles. Simulations are performed on a 1D mesh with 576
uniformly spaced computational zones extending from z =

o
o
a

o
o
=

0.03¢

0.02

0.01f %
O Definition (Eq. 5¢)

—— Closure (Eg. 20)
"~ 04 02 0 02 04 06

z/h99

density—specific-volume covariance, b

—2m to z = 2w with nonpenetrating walls at the boundaries.
Problems are set to match the LES as closely as possible with
the same material densities and compositions as described
in the previous section. As in the LES problem, a constant
gravitational acceleration in the negative z dimension is bal-
anced by a hydrostatic pressure gradient such that during
the nonreacting stage of the problem, the mixing layer re-
mains nominally centered about z = 0. Turbulence quantities
are initialized such that L,_g = 0.004 cm, k,_o = 1.0 x 10~10
cm?/us?, and ¢—9 = /k;—o in the two computational zones
bordering the material interfaces at z = 7.

As in the LES problem, the mixing layer is allowed to
evolve without reactions and with an ideal gas EOS until
hgg = 2m. After this point, electron and ion temperatures are
set to 10 keV everywhere, ideal gas EOSs are changed to
tabular LEOS 1018 and 5350, and the problem is continued
with radiation diffusion and TN burn physics. Additionally at
tourn» gravitational acceleration is turned off, and the boundary
conditions are set to extrapolation. Temperature in RANS sim-
ulations is specified everywhere to equal the mass-weighted
average temperature time history obtained from LES.

O Definition (Eq. 5¢)
—— Closure (Eqg. 20)

-04 -0.2 0 0.2 0.4 0.6

FIG. 4. A priori evaluation of proposed closure for b at t = t,,,,. Symbols represent direct evaluation of Eq. (5c), and solid lines represent
direct evaluation of Eq. (20) from LES data. (a) Symmetric configuration and (b) asymmetric configuration.
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FIG. 5. A priori evaluation of proposed closure for p'Y)/p at t = t,,. Symbols represent direct evaluation, and solid lines represent
evaluation of Eq. (24) from LES data. (a) Symmetric configuration and (b) asymmetric configuration.

III. RESULTS AND DISCSSION

A. Nonreacting mixing layer

Before considering behavior of the reacting mixing layer
problem, it is first desirable to examine the multicomponent
mixing layer as it undergoes purely hydrodynamic evolution
prior to t = tyym. Figure 2 provides a qualitative impression
of the mixing layer growth at several time instants, where the
nondimensional timescale #; is defined according to

= |2 (29)
Aszg
and the reference length scale [, is taken as
= — 2" (30)

Kmax — Kmin -
In Fig. 2, instantaneous contours of density in the y = & plane
are plotted at several time instants for both the symmetric
and asymmetric configurations. These contours illustrate how
both interfaces quickly become unstable due to the multi-
mode initial perturbation and how eventually heavy spikes of
material 3 eventually penetrate all the way into material 1,

—_

<Y>
o
<) o
=) 0

Average Mass Fractions,
o o
N S

Ol—
-0.5

leading to a highly turbulent, well-mixed layer at late time. In
the symmetric configuration, illustrated in Figs. 2(a) through
2(e), both interfaces grow at roughly the same rate; whereas in
the asymmetric configuration illustrated in Figs. 2(f) through
2(j), the upper interface with higher Atwood number develops
much more rapidly than the lower interface. This asymmetric
mixing behavior is particularly noticeable by considering the
red contour of ¥, = 0.01 in Figs. 2(g) and 2(h). In these
images, the upper contour is clearly observed to contain more
structure and greater amplitude perturbations than the lower
contour. Of course, this behavior is expected by the widely
used model for RT growth that says in the limit of self-
similarity, the mixing layer width should grow approximately
according to

h(t) ~ aAgt>. (31)

In Eq. (31), « is a constant growth parameter, and A is the
interfacial Atwood number.

Figure 3 plots the time evolution of the mixing layer width
hgg for both LES results and RANS results using the k — ¢ —
L — a — C model. For the present work, RANS results are
generated with model coefficients constrained to reproduce a

—_

o

o
©

o
2}

©
IS

Average Mass Fractions, <Y>
o
N

-0.5

FIG. 6. Comparison between LES and RANS of average mass fraction profiles f/; in the symmetric configuration at = fym. (a) LES (solid
lines) versus the k — ¢ — L — a — C model (dashed lines). (b) LES (solid lines) versus the k — L — a — C model (dashed lines).

045104-8



SIMULATION AND REYNOLDS-AVERAGED ...

PHYSICAL REVIEW E 105, 045104 (2022)

1
>-Azs
v 0.8
%)
c
Qo
‘g 0.6f
& <Y>
7 <Y>1
TS 04 — 2
= <Y>
[} 3
o)
o
o 0.2
<

O Y

0.5

—_

o

L
> 0.8
&
c
S
© 0.6f
(Y
[T
1))
3 04
g o
(0]
(=]
g
o 0.2r
Z
0 L
-0.5 0 0.5
z/h

FIG. 7. Comparison between LES and RANS of average mass fraction profiles f’; in the asymmetric configuration at # = fy,,. (a) LES
(solid lines) versus the k — ¢ — L — a — C model (dashed lines). (b) LES (solid lines) versus the k — L — a — C model (dashed lines).

self-similar RT growth rate of « = 0.03. As seen in Fig. 3, this
choice agrees reasonably well with LES for both the symmet-
ric and asymmetric configurations. Where the RANS results
demonstrate quadratic growth virtually from time ¢/fy = 0,
however, the LES results require some amount of time to
transition to turbulence before quadratic growth is achieved.
By design, the present LES is run with a broadband initial
perturbation spectrum and with zero molecular viscosity; both
choices are intended to minimize the time required for the
LES reach a self-similar state. As Fig. 3 shows, both the LES
and RANS grow at a similar rate for times #/fy = 12 and can
therefore both be expected to be in a comparable self-similar
state at f = fpyrm When hog reaches 2. Interestingly, both LES
and RANS indicate an inflection in /g9 in the asymmetric case
occurring around 7 /ty &~ 18, which corresponds roughly when
the heavy component penetrates into the light material and
begins driving the growth of &gy at the lower interface at a
faster rate than before. This inflection is not present in the
symmetric case.

Following the approach of Olson and Greenough [28], it is
possible to obtain an approximation of the effective viscosity

X 10_3‘ ‘ ‘
- (a) e

—_
o

©

Average Density Profile, <p> (g/cms)

-0.5 0 0.5

in the present LES results according to
pet = Cup| VS| A%, (32)

where S = (5;;S; j)l/ 2 in terms of the strain-rate tensor S; s
and C, is a code-specific constant determined previously for
Miranda to be approximately equal to 8.11 [28,30]. Utilizing
Eq. (32), an effective Taylor Reynolds number Re, = 230,

and an effective large-scale Reynolds number Re = % ~
5800 are computed for the symmetric configuration at the end
of the nonreacting phase (f = fyym). Based on this approxima-
tion for Re; , the mixing layer is expected to be fully developed
according to the Dimotakis criterion [56].

Before delving into additional comparisons between LES
and RANS, however, it is first desirable to utilize the LES
results to evaluate proposed RANS closures given by Egs. (20)
and (24) in an a priori fashion. Figure 4 evaluates the closure
for b in both the symmetric and asymmetric configurations.
In this figure, symbols represent direct evaluation of the def-
inition of b given by Eq. (5¢), while solid lines represent
evaluation of the closure given by Eq. (20), which is com-
puted from mass fraction covariances like the RANS model

X 10_3‘ ‘ ‘
- (b)

Y
o

Average Density Profile, <p> (g/cms)

-0.5 0 0.5

FIG. 8. Comparison of average density profiles p att = fy,,. (@) Symmetric configuration and (b) asymmetric configuration.
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FIG. 9. Comparison of normalized turbulence kinetic energy profiles k/Ky at t = tyym. (@) Symmetric configuration and (b) asymmetric

configuration.

would do. In both the symmetric and asymmetric cases, the
two expressions for b are found to be in close agreement,
which provides confidence that Eq. (20) is an accurate closure
for the density-mass-fraction-covariance, which is important
to accurate prediction of buoyancy production in the RANS
model.

Similarly, Fig. 5 evaluates the proposed closure for the
density-mass-fraction covariance, o’Y;/, in both the symmetric
and asymmetric configurations. In Fig. 5, symbols represent
direct evaluation of oY,/ from LES, while solid lines represent
evaluation of the closure proposed by Eq. (24). As with the
closure for b, Eq. (24) utilizes mass fraction covariances to
close p’Y) terms, as the RANS model would do. In both the
symmetric and asymmetric cases, the closure is found to be in
close agreement with direct evaluation, which provides confi-
dence in Eq. (24). While the density-mass-fraction covariance
does not appear in the RANS equations for purely hydrody-
namic evolution, it does appear in the reaction rate closure
given by Egs. (23) and (25) and therefore will be important
in Sec. III B when considering the case of the reacting mixing
layer.

Figures 6 and 7 illustrate the extent of multicomponent
mixing that is occurring by plotting average mass fractions

o
o
a

o
o
=

0.03f

0.027

0.017

Density—specific-volume covariance, b

o

?a at time ¢ = fy,;y in the symmetric and asymmetric config-
urations, respectively. In addition, these figures compare the
average profiles obtained with LES with those predicted by
thek—¢ —L —a—Candk — L —a— CRANS models. By
definition, fuy, is the time at which hg9 = 27r; so, it is not
surprising that the LES and RANS results generally agree
on the width of the mixing profiles at this time. What is
interesting, however, is the level of agreement in the shape
of the profiles and in particular the magnitude of the peak
value of Y,. Although the k — L —a — C model is able to
generally capture some of the qualitative behavior, results
with this model are clearly limited by assumption of a linear
mixing profile. As a result, there is significant discrepancy be-
tween LES and k — L — a — C, particularly in the tails. With
the k — ¢ — L — a — C model, which is designed to achieve
higher-order spatial profiles, a much higher level of agreement
is achieved between LES and RANS in both the shape of
profiles and in the peak magnitude of ¥;.

Figures 8—10 further compare LES and RANS results at
t = tyum by plotting, respectively, profiles of average den-
sity, turbulence kinetic energy, and density-specific-volume
covariance. In Fig. 8, average density profiles are found to
be in reasonable agreement between LES and the two RANS

b

0.08f
0.07¢
0.06f
0.05¢
0.04f
0.03f
0.02f
0.01f

Density—specific—volume covariance

o
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b4 h99

FIG. 10. Comparison of density-specific-volume covariance b at t = fy,,. (2) Symmetric configuration and (b) asymmetric configuration.
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FIG. 11. Comparison between LES and RANS of mass fraction covariance profiles C,z in the symmetric configuration at t = fyyy,. (a) LES
(solid lines) versus the k — ¢ — L — a — C model (dashed lines). (b) LES (solid lines) versus the k — L — a — C model (dashed lines).

models; although, the k — ¢ — L — a — C model is again ob-
served to agree more closely with LES than k — L —a —C
due to the high-order nature of the profiles achieved by the
k —¢ — L —a— C model. In Fig. 9, profiles of k across the
mixing layer are normalized by Kj, the peak value of k,
for purposes of comparing profile shape between LES and
RANS. Recall that since the RANS models do not capture the
transition to turbulence, it is not expected that the magnitude
Ky should necessarily agree between LES and RANS for a
given instant in time. As illustrated in Fig. 9, however, the
high-order profile achieved by the k — ¢ — L — a — C model
is again in closer agreement with LES than the quadratic pro-
file predicted by the k — L — a — C model. Similarly, profiles
of b are observed to be in reasonably close agreement between
LES and RANS in Fig. 10. Where earlier results in Fig. 4
showed the closure for b given by Eq. (20) to be accurate in an
a priori comparison, results in Fig. 10 additionally show this
to be the case when for comparisons made in an a posteriori
fashion. As with other results, the k — ¢ — L — a — C model
agrees more closely with LES in the shape of the b profile than
the k — L — a — C model.

Finally, in Figs. 11 and 12, profiles of mass fraction co-
variances are compared between LES and RANS for the

©
=

0.051

-0.05¢

Mass Fraction Covariances, C(XB

-04 -0.2 0 02 04 06

symmetric and asymmetric configurations. In these figures,
LES results are obtained through direct evaluation of second
moment statistics, RANS results for off-diagonal covariances
(C12, Cy3, and Cy3) are transported according to Eq. (14),
and RANS results for diagonal elements (Cy;, Cy,, and Cs3)
are constructed from the off-diagonal elements according to
Eq. (21). While boththe k —¢p — L —a—Candk — L —a —
C models generally capture the qualitative behavior of the
LES results, the k — ¢ — L —a — C model results demon-
strate a remarkable level of agreement in both the shape
and magnitude of all six covariance components, particu-
larly in the symmetric configuration. This level of agreement
demonstrates that the k — ¢ — L — a — C is able to accurately
capture the characteristics of the three-component mixing
problem most important to reaction rate modeling.

B. Reacting mixing layer

Results of the reacting mixing layer are considered next.
Recall, once t = tyurm, (i.€., when hgg reaches 27r), electron and
ion temperatures are set to 10 keV everywhere, and the prob-
lem is continued with TN burn physics. A preliminary LES is
first run to obtain a realistic temperature time history, and the
mass-weighted average temperatures from this preliminary
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FIG. 12. Comparison between LES and RANS of mass fraction covariance profiles C,p in the asymmetric configuration at# = fyym. (a) LES
(solid lines) versus the k — ¢ — L — a — C model (dashed lines). (b) LES (solid lines) versus the k — L — a — C model (dashed lines).
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FIG. 13. Mass-weighted average ion (7;), electron (7,), and radiation (7,) temperature history of burning mixing layer with premixed

reactants from LES in (a) symmetric and (b) asymmetric configurations.

simulation are then imposed everywhere in follow-on LES
and RANS simulations. Figure 13 plots the temperature time
history that is used for the premixed case in both the symmet-
ric and asymmetric configurations. Little separation occurs
between the ion and electron temperatures, and the radiation
temperature reaches a nearly steady value that peaks around
0.25 keV and decays to around 0.22 keV. The temperature
histories plotted in this figure are obtained from preliminary
LES calculation; they are then imposed uniformly in both
follow-on LES and RANS calculations. This allows for direct
evaluation of the reaction rate closure given by Eq. (25) under
the condition that fluctuations in temperature (and therefore
also in reaction cross section) can be neglected.

Figure 14 plots the total TN neutrons produced as a func-
tion of time for simulations with premixed reactants in both
the symmetric and asymmetric configurations. LES results
are compared against two sets of k — ¢ — L —a — C RANS
results. Dashed lines in Fig. 14 indicate RANS results that
include no modification to reaction rate due to turbulent fluc-
tuations (i.e., taking C,g = 0), and solid lines indicate RANS
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results that utilize Eq. (25) to close the average reaction
rate. RANS results that utilize Eq. (25) are found to be in
remarkably close agreement with LES, while those results
that include no modification to reaction rate (which essentially
assumes mixing is purely atomic) underpredicts total TN neu-
trons by approximately 20% for the symmetric case and by
30% for the asymmetric case.

Figure 15 shows the temperature time history obtained for
simulations with nonpremixed reactants in the symmetric and
asymmetric configurations. As with the premixed case, the
time histories presented in this figure were obtained as av-
eraged temperatures from a preliminary LES calculation and
then imposed as a spatially uniform temperature history in fol-
low on LES and RANS calculations. Similarly to the premixed
case, ion and electron temperatures show little separation, and
the radiation temperature decays slowly from about 0.26 keV
to about 0.17 keV at the end of the simulation.

Figure 16 then plots the total TN neutrons produced as a
function of time for simulations with nonpremixed reactants
in the symmetric and asymmetric configurations. Again, LES

x107

—_
T

o LES
- = = k—-¢—L-a-C (no modification)
—— k—-¢-L-a-C (with modification

Total neutrons produced (moles)

0.2 ¢ 0.4 0.6
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FIG. 14. Comparison of total neutron production as a function of time for LES and RANS with the k — ¢ — L — a — C model for mixing
layer with premixed reactants. RANS results shown with and without modification to the reaction rate described by Eq. (25). (a) Symmetric

configuration and (b) asymmetric configuration.
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FIG. 15. Mass-weighted average ion (7;), electron (7,), and radiation (7,) temperature history of burning mixing layer with nonpremixed

reactants from LES in (a) symmetric and (b) asymmetric configurations.

results are compared against two sets of RANS results—one
set in which no modification is made to the average reaction
rate, and a second in which Eq. (25) is used to model the
impact of turbulence on the average reaction rate. While the
agreement between LES and RANS in this case is not as
close as in the premixed case, utilizing Eq. (25) is observed
to reduce overprediction of total neutrons from 115% to 30%
in the symmetric configuration and from 106% to 17% in the
asymmetric configuration. In contrast to the premixed case in
which reactions can occur anywhere with component 2, in the
nonpremixed case, reactions can only occur in areas where
component 1 mixes diffusively with component 3. Generally
speaking, this means that the nonpremixed case tends to be
more sensitive to effects of numerical diffusion, which might
account for some of the remaining discrepancy between LES
and RANS results. Overall though, the results of Figs. 14
and 16 suggest that the k — ¢ — L — a — C RANS model with
appropriate modification to the average reaction rate is able to
reasonably predict key metrics of TN burn when temperature
fluctuations can be neglected.

0000000 O 000 O O O o |

o LES
- - - k—=¢p—L-a—-C (no modification)
— k—-¢—-L-a—C (with modification

Total neutrons produced (moles)

ti O'5ft t
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IV. SUMMARY AND CONCLUSIONS

In the present work, the impact of contaminants in prob-
lems of reacting turbulent mixing has been examined in the
context of a three-component RT mixing problem. First, LES
of a nonreacting RT mixing layer with three components was
performed to obtain a high-fidelity baseline against which
to compare lower-fidelity RANS calculations. This LES was
performed in symmetric and asymmetric configurations, and
the nonreacting mixing layer was allowed to develop into a
turbulent, well-mixed state with interpenetration of the heavy
component all the way through to the light component.

In addition, a multicomponent extension to the k — ¢ —
L — a —V model [12], termed the k — ¢ — L — a — C model,
was proposed, including treatment for the impact of turbu-
lence on the average reaction rate. This model relaxes the
assumption of only two mixing components utilized by pre-
vious models [9,12,22] and therefore is expected to better
account for the presence of nonreacting contaminant com-
ponents. Utilizing the high-fidelity LES, new closure models
for the density-specific-volume covariance [Eq. (20)] and the

(no modification)
(with modification

Total neutrons produced (moles)

0.5 1
time after tburn (us)

FIG. 16. Comparison of total neutron production as a function of time for LES and RANS with the k — ¢ — L — a — C model for mixing
layer with nonpremixed reactants. RANS results shown with and without modification to the reaction rate described by Eq. (25). (a) Symmetric

configuration and (b) asymmetric configuration.
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density-mass-fraction covariances [Eq. (24)] were evaluated
in an a priori fashion and demonstrated to provide accurate
closure.

Comparisons for the nonreacting mixing layer at time ¢ =
tourn Showed a high level of agreement between LES and
RANS results with the k — ¢ — L — a — C model in profiles
of average mass fraction, average density, turbulence kinetic
energy, density-specific-volume covariance, and in the shape
and magnitude of the six components of the covariance ma-
trix. RANS results with the simpler k — L — a — C model
demonstrated an ability to capture the qualitative behavior
of the LES but exhibited a greater degree of discrepancy in
both magnitude and shape of the spatial profiles considered.
Differences between the k — ¢ — L — a — C model and the
k — L — a — C model highlight the benefit of the high-order
spatial profiles admitted by the k — ¢ — L —a — C model
which allow it to achieve a high degree of agreement with
LES.

Next, LES and RANS calculations were performed of the
three-component RT mixing layer as it underwent TN burn. To
create a grounds for common comparison, a spatially uniform
temperature history was imposed, based on results from a
preliminary LES calculation. Under this constraint, the impact
of spatial variations in reactant concentrations was separated
from spatial variations in temperature, allowing for direct
evaluation of a new proposed closure for the average reaction
rate [Eq. (25)]. For premixed TN reactions occurring in the
intermediate component, application of this closure resulted in
a RANS prediction of total TN neutrons that agreed with LES
to within 1%. RANS simulations which did not include this
closure were found to underpredict TN neutron production
with respect to LES by 20-30%. For the nonpremixed case,
in which the intermediate material represented a contaminant
between reacting light and heavy components, RANS results
using Eq. (25) were found to agree with LES to within 30%),
whereas results that did not include this closure overpredicted
TN neutron production by over 100%. While the present work
has focused on the simplistic problem of a reacting three-
component mixing layer, this configuration has been chosen
because it represents a simplification of the basic mixing
physics found in actual ICF capsules such as the recessed-
layer CD Symcap experiments [13,14]. These results suggest
that significant errors in RANS-based ICF simulations may
arise if the impact of turbulence on reaction rate is neglected
or is modeled inaccurately.

Overall, this work has shown that the new k — ¢ — L —
a — C model is able to provide a high level of agreement with
LES for the reacting three-component RT mixing problem
when the impact of turbulent fluctuations in the reaction cross
section can be neglected. Of course, this simplification will
not always be appropriate, and a more complete model should
account for turbulent moments involving the fluctuating cross
section. It is therefore recommended that future research fo-
cus on developing means to provide closure for these terms
perhaps through modeling turbulent variations in temperature.
In addition, the three-component RT problem considered in
the present work represents a simplistic generalization of the
basic physics of a reacting turbulent mixing layer involving
contaminants. Future work should additionally seek to assess
the k — ¢ — L — a — C model in application to more realis-

tic ICF problems. Based on the present work, it is expected
that the k — ¢ — L — a — C model, with its high-order spatial
profiles and multicomponent treatment for turbulent variations
in reactant concentrations, should agree more closely with
experiment than earlier simulations with the k — L —a —V
model [14].
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APPENDIX: GOVERNING EQUATIONS

1. Hydrodynamics equations

The governing equations are the compressible Navier-
Stokes equations for a multicomponent, reacting flow:

a(gfa) N a(gfzu,-) _ _3;;[ ¥, (A2)
3(,;;,_]-) N 8(,(;1214_/) _ _;’ij 4 % + pg;, (A3)
aa_i; N a[(EaJ;ip)ui] _ 3(;;’1') _ g_jlcj + pgiui + 0. (Ad)

In Egs. (A1) through (A4), p is density, ¢ is time, u; is the
velocity vector, x; is the spatial coordinate vector, Y, is the
mass fraction of species «, J,; is the diffusive mass flux of
species «, 7, is the reaction rate of species «, p is pressure,
7;j is the viscous stress tensor, g; is a gravitational body force
vector, E is the total energy, g; is the heat flux vector, and Q is
the heat source term. The diffusive mass flux is given in terms
of effective binary diffusion coefficients D, as

N

Y, Y
Joi=—p|Dy— — Y, Dg— |, A5
’ p( 8x,~ ; b Bxi ) ( )
for k=1, 2, ..., N total species. The viscous stress tensor is

given by

ousi+ (p— 2 ) s (A6)

Tij = ij - = —~—0jj,

J i 3M PTG

where o is the shear viscosity, 8 is the bulk viscosity, §;; is
the Kronecker delta, and §;; is the strain rate tensor,

1 /0u; Ou;
Sij= =~ —+ ). AT
/ 2<8xj+8xi> (A7)

The heat flux vector is given in terms of the thermal conduc-
tivity «, the temperature 7', and species enthalpy /4,

oT
qdi = —K— + Zh(x]{x,i' (AS)
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Component temperature, enthalpy, and pressure are obtained
through the EOS as a function of component partial density
and specific internal energy. These relationships are given
functionally as

P = Pros(eq, pa)s (A9a)
T, = Tros(eq, Pa), (A9b)
he = Heos(eq, po)- (A9c¢)

Using an assumption of pressure and temperature equilibrium,
an iterative process is used to solve for component volume
fractions, v,, which allows the determination of partial densi-
ties and energies according to

Y.
pu = 22 (A10)

Vg

and

N
E 1
e = ;—EuiuizgYaea.

Total pressure is then determined according to the mixture
relationship

(Al1)

(A12)

N
P=)_ VaPa-
a=I1

2. Radiation diffusion equations

In the present work, coupling between radiation and hydro-
dynamics is treated with a Planckian nonequilibrium diffusion
model. A single opacity, w, is used to characterize both the
energy absorbed from the radiation field and the energy con-
tributed from the material to the radiation field via emission.
The radiation energy E, is then evolved according to

9E, 3 ( c OE,
ar  ox;

- T —E,), Al3
3wpax,.)+cwp(“e ) (A1)

where c is the speed of light in a vacuum, 7, is the electron
temperature, and a, is the radiation constant which is given in
terms of the Stefan-Boltzmann constant osg by

4

a, = —0osg. (A14)
c
Electron and ion energies are allowed to evolve separately,
with the ion energy given by Eq. (A4) and the electron energy
E, given by,
ok, 0(E.u;) 0ge.i

o T T ow ax,»+Qe'

(A15)

The electron heat flux vector g, ; is given in terms of the
electron conductivity k., by

0T,
axi )

ge,i = —Ke (A16)

The ion and electron fields are then coupled to the radiation
field through the source terms which are given by

. CvKig s
0, =" T =T + cop(E, — a,T,') + Orne, (A7)
t
. pchie A
0= (T, = T;) + Q1N i- (A1)

A

In Eqgs. (A17) and (A18), K is the ion-electron coupling
coefficient, and T; is the ion temperature. The specific heat,
electron, and ion temperatures are determined from the EOS,
and the radiation temperature is related to the radiation
energy by

E =aT" (A19)

O1n.. and Oy, in Eqs. (A17) and (A18) are source terms due
to local deposition of energy from TN reactions.
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