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Elastic criterion for shear-banding instability in amorphous solids
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In amorphous solids, plastic flow is prone to localization into shear bands via an avalanche of shear-
transformation (ST) rearrangements of constituent atoms or particles. However, such banding instability still
remains a lack of direct experimental evidence. Using a real 3D colloidal glass under shear as proof of
principle, we study STs’ avalanches into shear banding that is controlled by strain rates. We demonstrate that,
accompanying the emergent shear banding, the elastic response fields of the system, typical of a quadrupole for
shear and a centrosymmetry for dilatation, lose the Eshelby-type spatial symmetry; instead, a strong correlation
appears preferentially along the banding direction. By quantifying the fields’ spatial decay, we identify an elastic
criterion for the shear-banding instability, that is, the strongly correlated length of dilatation is smaller than
the full length of shear correlation. Specifically, ST-induced free volume has to be confined within the elastic
shear domain of ST so that those STs can self-organize to trigger shear banding. This physical picture is directly
visualized by tracing the real-space evolution of local dilatation and ST particles. The present work unites the two
classical mechanisms: free volume and STs, for the fundamental understanding of shear banding in amorphous
solids.
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I. INTRODUCTION

Shear banding describes the plastic or flow instability that
localizes large shear strain into a relatively narrow band,
which is commonly observed in nature and technology [1–6].
For amorphous solids (e.g., metallic glasses, granular mate-
rials, colloidal glasses, etc.), shear-banding instability often
easily occurs to be the culprit behind their unpredictable and
often catastrophic failure. In past decades, the physical pro-
cess of how a shear band emerges from disordered structure
has aroused a great deal of interest and meanwhile much
controversy. Nevertheless, there is a general consensus that
shear bands in amorphous solids are structurally dilatant in
essence [7–15], pointing to the so-called Reynolds dilatancy
[16].

In amorphous solids, basic units of plastic events have
been identified as shear transformations (STs), i.e., localized
irreversible rearrangements of small groups of atoms or parti-
cles. It has been widely recognized that dynamic STs operate
transiently, but giving rise spatially to nonlocal Eshelby-type
shear fields around them. Via such elastic interactions, a series
of STs can be successively activated, like avalanches, and
ultimately develop into system-spanning shear bands with
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characteristic thicknesses. However, this universal picture is
evidenced mainly by indirect experiments [17–19], numerical
simulations [12,14,20–23], and theoretical modeling [17,24–
27]. Firsthand experimental proof is very rare [28], especially
in thermal particle systems. On the other hand, the dilatancy
of shear banding is mostly reflected by postmortem probe into
density or volume within bands. In fact, local creation of free
volume is not only a consequence of STs, but also a prerequi-
site for STs’ initiation [12,29,30]. A few works [10,13] have
probed a critical dilatation needed for the shear-banding initi-
ation. Nevertheless, the crucial role of STs’ dilatancy in shear
banding is highly underestimated or even totally neglected.
Up to now, there has not yet been a direct experiment to
elucidate the emergence of shear banding from the causal-
ity between elastic shear and dilatation responses of STs.
Specifically, what are their respective roles of STs’ shear and
dilatancy in shear-banding instability? Or, in what condition
are STs responsible for shear banding (or self-assembly of
avalanched STs) in amorphous solids?

In this paper, we answer these challenging questions with
resorting to a real 3D silica-particle colloidal glass under
simple shear. This amorphous solid displays the homoge-
neous deformation at low strain rates and the shear-banded
inhomogeneous flow at strain rates higher than the inverse
structural relaxation time. We calculate the spatial autocor-
relation of both shear strain and free volume at the particle
level, which characterizes with fidelity the elastic shear and
dilatation fields induced by STs, respectively. It is found that
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both fields can be resolved into a strongly correlated core and
a weakly correlated outside region, but showing very differing
rate dependence. The spatial-decay analyses of these elastic
fields reveal that the shear banding emerges if and only if
the core size of strongly correlated dilatation is smaller than
the full correlation length of shear distortion. This elastic
criterion implies that only these STs, whose induced free
volume is confined within their elastic shear field, have the
chance to self-organize into a shear band; otherwise they will
isotropically nucleate in space and ultimately contribute to ho-
mogeneous deformation. The two modes are further verified
by tracing the evolution of local dilatation and dilatation-
mediated STs in this real glass.

II. MATERIALS AND METHODS

A prototypical colloidal glass was prepared by using the
hard-sphere silica particles with a polydispersity smaller than
3.5% and the diameter 2R = 1.55 μm. The silica particles
were suspended in a mixture (solvent) of deionized water
(30% vol.), dimethylsulfoxide (69% vol.), and fluorescein-
NaOH solution (1% vol.). The density difference �ρ between
particle and solvent was ∼0.9 g/cm3, which induced the
spontaneous sedimentation of particles in the solvent due to
gravity. Under the gravitational sedimentation, the deposi-
tion flux of particles is the control parameter corresponding
to the quench rate for the glass formation. The dimension-
less particle flux is defined as φ0Pe, where φ0 ≈ 0.04 is
an initial volume fraction of particles and Pe is the Péclet
number accounting for the ratio of the rate of the sedimen-
tation to that of diffusion. The calculated Péclet number Pe =
�ρgR4/(kBT ) ≈ 0.8, where g is the gravity constant, kB the
Boltzmann constant, and T the room temperature. Jensen et al.
[31] extensively studied the effect of the deposition flux φ0Pe
on the resulting colloidal structures, and found that colloidal
glasses can be formed above φ0Pe ≈ 0.02. In the present
work, the deposition flux φ0Pe ≈ 0.032, which ensured the
formation of the colloidal glass with the volume fraction of
0.61 ± 0.1 [32]. The long-range disordered structure of the
as-prepared colloidal glass was confirmed by its radial distri-
bution function (RDF), as shown in Fig. 1(a) where the inset
shows a typical cross section of the glassy structure. The struc-
tural relaxation time of the as-prepared glass was measured
to τ∼2 × 104 s from the mean-square displacement (MSD)
of particles with the time [11,32–35], as shown in Fig. 1(b).
The MSD at short time exhibits the vibrational plateau. This
indicates that the present colloidal glass is a thermal particle
system and thus representative of a broad range of amorphous
solids.

The colloidal glass was sheared in a cell between a trans-
mission electron microscope (TEM) grid and a fixed coverslip
with the shear gap of higher than 200 μm. A schematic of the
shear cell is shown in Supplemental Material, Fig. S1 [32].
Through a hollow post, a piezoelectric translation stage was
used to move the TEM grid, thus applying a simple-shear
loading along the y direction at a constant strain rate. This
shear technique was originally developed by the Spaepen
and Weitz group [33,36]. Here, four groups of shear strain-
controlled experiments were performed and the applied strain
rates γ̇ were, respectively, set to be 1.0 × 10–5, 4.0 × 10–5,

FIG. 1. (a) RDF of the as-prepared colloidal glass. Inset: a typi-
cal cross section of the glassy structure. (b) MSD of all particles vs
the time.

8.0 × 10–5, and 1.2 × 10–4 s–1. The first two γ̇ < τ−1, while
the last two γ̇ > τ−1. In the z direction, a high-speed confocal
microscopy was used to visualize about 74 000 particles in a
77 × 77 × 40 − μm3 observation volume that was far away
from the sample boundaries during shear. The deformation
behaviors observed from this 3D window ruled out the pos-
sibility of any finite-size or boundary effect. The trajectories
of individual particles for the shear duration were carefully
tracked by acquiring 3D image stacks every 200 s (time step).
Before each shear loading, the colloidal glass was restored
to its initial state through sufficiently long-time relaxation,
which is evidenced in Figs. S2 and S3 [32].

The particle-level, local shear strain εi j can be calculated
from the relative motion of a particle with respect to its nearest
neighbors, based on the D2

min concept of Falk and Langer
[37]. We first define the nearest-neighbor displacement vector
dn(t ) = r(t ) − rn(t ), where r(t ) is the particle position at
arbitrary time t , and n is the number of the nearest neighbors
that is determined according to the RDF [Fig. 1(a)]. Then,
the best affine deformation gradient tensor � that transforms
the change of dn(t ) over the time interval �t can be found
by minimizing D2 = ∑

n [dn(t + �t ) − � × dn(t )]2. The εi j

is calculated as the symmetric part of �, where the indices i
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FIG. 2. Strain-rate dependent deformation modes of the colloidal glass sheared to the same macroscopic shear strain of 0.048. (a)–(d)
Strain rates: γ̇ = 1.0 × 10–5, 4.0 × 10–5, 8.0 × 10–5, and 1.2 × 10–4 s–1. Column (1) shows the the deformation displacement profiles �y(z) of
particles. Columns (2) and (3) are the 6-μm-thick y-z section (centered at x = 24 μm) reconstructions showing the spatial distribution of local
shear strain εyz and local dilatation ξ of particles, respectively, where the color denotes the cumulative εyz or ξ magnitude with the reference
zero-strain state.

and j ∈ x, y, and z. In the present simple-shear case, only εyz

survives and other components are negligibly small.
The particle-level, local dilatation ξ was originally defined

by some of us [29]. For a particle with a volume of v0, its ξ

can be calculated as ξ = (�v f /v0)/|�εyz| that evaluates the
increase �v f of local free volume induced by an increment
�εyz of local shear strain during one time step (200 s). The
local free volume v f is calculated according to previous work
[29,38–40]. A 2D schematic that illustrates the v f calculation
is provided in Fig. S4 [32]. First, we construct the Voronoi
polyhedra for all particles according to the standard tessella-
tion method [41]. The solid-blue lines are the Voronoi faces
that enclose Voronoi polyhedra. Then, we move the Voronoi
faces inwards by a distance of the particle radius R, as indi-
cated by the black arrows. The remaining volume surrounded
by the dotted-red lines gives an estimation of v f of the central
particle. Within this volume v f , the center of a particle could
move freely, but its surface never crosses the Voronoi faces
that surround it.

III. RESULTS AND DISCUSSION

A. Rate-modulated deformation modes

Figure 2 shows the deformation modes of the colloidal
glasses that were sheared to the same macroscopic strain
γ = 0.048, but under different strain rates (a)–(d): γ̇ = 1.0 ×
10–5, 4.0 × 10–5, 8.0 × 10–5, and 1.2 × 10–4 s–1. Column (1)
presents the cumulative displacement profiles �y(z) of all
particles. We observe that the deformation at γ̇ < τ−1 is
spatially homogeneous with a singly linear profile. At γ̇ >

τ−1, however, the deformation separates into two coexisting
bands with piecewise linear profiles. The shear deformation
is mainly localized into the top band that undergoes the
higher strain and strain rate than externally incurred. The
higher the strain rate is, the more pronounced the shear lo-
calization becomes. It is noteworthy that the transient shear
banding occurring here is thermally activated, but driven by
mechanical loadings. This mechanism is consistent with shear
banding in metallic glasses, and the latter is solidly evidenced
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by the temperature-dependent shear-band dynamics [42–44].
By contrast, the bottom band attached to the fixed boundary
shows a slowing-down deformation. The strain-rate depen-
dent deformation mode transition observed here is consistent
with that previously reported in other amorphous systems
[11,15,45–47]. It is noted that the applied strain rates are in
the vicinity of τ−1, where the shear banding emerges from the
homogeneous deformation. However, at very high rates far
above τ−1, whether this colloidal glass enters a steady-state
shear banding [48] or fails with a brittle manner [46] needs
further studies.

The rate-dependent deformation modes can be further in-
dicated by the spatial distribution of local shear strain εyz of
particles, as shown in column (2) of Fig. 2. At γ̇ < τ−1, the
εyz distribution is homogeneously fluctuated throughout the
sample. At γ̇ > τ−1, the fluctuation becomes heterogeneous,
and high-εyz particles are concentrated in the top shear band,
contributing to its macroscopic speed-up deformation. Col-
umn (3) shows the spatial distribution of local dilatation ξ

of particles, also with an obvious rate effect. At γ̇ < τ−1,
there exist many positive- and negative-ξ clusters (resem-
bling liquidlike and solidlike regions), both homogeneously
distributed with each other. This is a sharp contrast to the
εyz distribution whose values are mostly positive. Therefore,
the system-averaged shear strain should be larger than the
averaged dilatation, which corresponds to the stress analyses
by Derlet et al. [49]. The positive- and negative-ξ clusters
observed here are also consistent with the dilating and con-
tracting plastic events found numerically in granular matter
[50]. With increasing γ̇ , these positive-ξ clusters become
smaller sizes, and tend to coalesce in the top band. Nev-
ertheless, some negative-ξ clusters can be also observed in
the band region. These observations qualitatively agree well
with the reported density or volume fluctuation in shear bands
[11,12,14,17,51], pointing to the dilatancy of shear banding
in amorphous solids. We also find that particles with higher ξ

are spatially close to those that underwent larger εyz, reminis-
cent of the experimental finding that larger shear strain drives
higher volumetric dilatation within shear bands [52,53].

B. Elastic correlation fields

We calculate the spatial correlation of local εyz or ξ of
particles, for exploring the system’s elastic responses to the
observed rate-induced transition of deformation modes. The
normalized autocorrelation function for ϑ = εyz or ξ in 3D
space is defined as

Cϑ (�r) = 〈ϑ (r + �r)ϑ (r)〉 − 〈ϑ (r)〉2

〈ϑ2(r)〉 − 〈ϑ (r)〉2 , (1)

where �r are the distance vectors between arbitrary two par-
ticles, and the angular brackets denote the average over all
particles. The angle-resolved Cεyz (�r) fields for the cumula-
tive εyz after γ = 0.048 at the four strain rates are calculated
in Fig. 3, where the characteristic y-z plane views are shown
as usual. It is clear to see that the elastic shear fields consist
of a strongly correlated local core and a correlation-decayed
nonlocal outfield. The shape of the cores is close to a circle
(a sphere in 3D), and their sizes seem to be unchanged with
varied strain rates. But, the outfields are highly rate dependent.

FIG. 3. The y-z plane views of the 3D spatial autocorrelation
function of the local shear strain εyz of particles. (a)–(d) Strain rates:
γ̇ = 1.0 × 10–5, 4.0 × 10–5, 8.0 × 10–5, and 1.2 × 10–4 s–1.

At γ̇ < τ−1 [Figs. 3(a) and 3(b)], characteristic quadrupole
patterns are reproduced, which signify that Eshelby-type STs
are active in the sheared glass. These STs can be approx-
imately regarded as spherical Eshelby inclusions embedded
in infinite isotropic elastic medium [54,55]. Similar Eshelby-
type elastic shear signals have been widely observed in other
colloidal glasses [11,34,36], thermal or athermal amorphous
solids [30,56], granular solids [23,28], and even supercooled
liquids under shear [57]. When the glass is sheared at γ̇ > τ−1

[Figs. 3(c) and 3(d)], the outfield loses the fourfold azimuthal
symmetry, where a strong correlation preferentially appears
along the shear y direction. This provides an elastic shear
signal of the shear banding (or avalanched STs), as pointed
out by Chikkadi et al. [11,34].

Figure 4 shows the y-z plane views of the dilatation cor-
relation fields Cξ (�r) of particles under the four strain rates.
Again, the Cξ (�r) full field consists of a strongly correlated
core and an outside region with the correlation decay. But,
very different from the shear cases (Fig. 3), both core and
outfield of Cξ (�r) highly depend on the strain rates. At
γ̇ < τ−1 [Figs. 4(a) and 4(b)], the cores are nearly the cir-
cular (spherical in 3D) shape. The outfields display a unique
centrosymmetric feature, instead of the shearlike quadrupole.
As strain rates increase to the banding range (γ̇ > τ−1), the
spherical cores gradually become an ellipsoid with its long
axis inclined to the shear y direction and meanwhile their
sizes decrease [Figs. 4(c) and 4(d)]. The shear banding also
entails the symmetry breaking of the dilatation outfield that
shows an enhanced correlation along the y direction. This
is an experimental presentation of Eshelby-type dilatation
transformations (DTs) in amorphous solids, and the dilatation
signal of both isolated STs and shear banding (or avalanched
STs) is a refreshing outcome. We must point out that the DTs
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FIG. 4. The y-z plane views of the 3D spatial autocorrelation
function of the local dilatation ξ of particles. (a)–(d) Strain rates:
γ̇ = 1.0 × 10–5, 4.0 × 10–5, 8.0 × 10–5, and 1.2 × 10–4 s–1.

here are induced by STs rather than directly by pure dilatation
sources.

C. Spatial correlation lengths

We quantitatively analyze the spatial decay of the system’s
shear and dilatation fields (Figs. 3 and 4) to extract charac-
teristic correlation lengths related to STs. In 3D space, the
angle-averaged shear Cεyz (�r) or dilatation Cξ (�r) correla-
tion is calculated as a function of any possible interparticle
distance |�r| that is not below the first-neighbor shell. As
shown in Fig. 5(a), the averaged shear correlation at each
strain rate exhibits the two-stage decay: an exponential decay
in cores followed by a power-law decay in outfields. The
two-stage decay is consistent with the Eshelby-inclusion the-
ory [30,36,49,54,55], although elastic fields for inclusions or
cores is commonly assumed to be uniform in the theory. We
notice that the spatial correlation of some physical quantities
[58–60] such as D2

min and “softness” only shows a singly
exponential decay. A possible reason is that these quantities
are defined in terms of nonaffinity or deviation from elasticity.
It is interesting to find that the exponential decay in cores does
not depend on the strain rates, which can be well fitted by (the
dashed-pink line) exp(−|�r|/lc) with a constant correlation
length lc ≈ 2.3 μm. This rate-independent lc is well consis-
tent with the unchanged sizes of Cεyz (�r) cores in Fig. 3,
which can be regarded as a measure of the core sizes of STs.
The normalized lc by the particle diameter (1.55 μm) is about
1.48, very close to the normalized size (1.1 ± 0.2) of initial
rearrangements determined by the spatial correlation of D2

min
or softness [58]. In the flow of a jammed silicone emulsion,
Goyon et al. [61] have found a similar flow cooperativity
length that is rate independent, and near the jamming point
this length is compared with the silicone droplet diameter.

FIG. 5. Angle-averaged elastic correlation vs interparticle dis-
tance |�r|: (a) shear Cεyz (�r) and (b) dilatation Cξ (�r) fields. The
dashed-pink lines shown in (a) and (b) are the fits to exp(−|�r|/lc )
and exp(−|�r|/Lc ), respectively. The solid-black lines shown in (a)
and (b) are the fits to |�r|−α and |�r|−β , respectively, where α =
4.5, 5.2, 6.5, and 8.0 as the strain rates increase, but β = 3.45 ± 0.05
is rate independent.

The power-law decay in Cεyz (�r) outfields is highly rate
dependent, which can be fitted by (the solid-black lines)
|�r|−α with different exponents α = 4.5, 5.2, 6.5, and 8.0
as the strain rates increase. The distance deviated from the
power-law decay can be reasonably defined as a characteristic
correlation length ls for the shear full field. It determines that
ls decreases from 3.7 to 3.0 μm with increasing γ̇ from 1.0 ×
10–5 to 1.2 × 10–4 s–1. STs interact on each other via nonlocal
elastic outfields by themselves. Therefore, ls per se could
be understood as the interaction length of STs, that is, the
minimum size of avalanches consisting of only two STs. The
avalanche sizes decrease with increasing strain rate [56,62].
In athermally sheared Lennard-Jones glasses, Lemaître and
Caroli [63] have proposed a scaling law ls ∝ γ̇ −1/3. We find
that this scaling law holds well for the currently homoge-
neous deformation (γ̇ < τ−1), but gradually deviates due to
the shear banding (γ̇ > τ−1); see Fig. S5 [32].
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FIG. 6. Correlation lengths of elastic fields as a function of the
applied strain rates. The positions of the first- and the second-
neighbor shells of the colloidal glass are marked.

Figure 5(b) calculates the averaged correlation of the di-
latation field Cξ (�r), which also shows the two-stage decay
with increase of |�r|. The dilatation cores exhibit an expo-
nential decay that can be fitted by (the dashed-pink lines)
exp(−|�r|/Lc), but with rate-dependent correlation lengths
Lc. As the strain rate increases from 1.0 × 10–5 to 1.2 ×
10–4 s–1, Lc decreases from 4.2 to 2.2 μm, corresponding to
the size change of the dilatation cores observed in Fig. 4.
The dilatation outfields also follow a power-law |�r|−β de-
cay, but with a rate-independent exponent β = 3.45 ± 0.05.
Again, we define the distance deviated from the power-law
decay as a characteristic correlation length Ld of the dilata-
tion full field. The determined Ld values also show negative
rate dependence, ranging from 7.8 to 6.5 μm. The length
Ld measures the maximum propagation distance of dilatation
induced by STs, which is at least twice greater than ls (3.7 to
3.0 μm). This long-range diffusion behavior possibly arises
from STs-enhanced transport of free volume [64], especially
in amorphous systems with nondirectional bonding nature
[65]. It is noteworthy that either ls or Ld is much smaller
than the sample size of the studied glass. Therefore, these
very weakly correlated plateaus at large |�r| are not noise
due to the limits of sample sizes, but possibly result from
a certain long-range anomalous decay [66]. In addition, the
above spatial correlation analyses and the data repeatability
are confirmed by two independent runs performed in the same
experimental condition; see Fig. S6 [32].

D. Elastic criterion for shear-banding instability

Figure 6 plots all correlation lengths versus the strain rates,
where the positions of the first- and the second-neighbor shells
of RDF [see Fig. 1(a)] are marked for better understanding
these length scales. The rate-independent correlation length
(lc ≈ 2.3 μm) of the shear cores indicates that STs themselves
in the studied glass are localized events at the short-range
scale. But, the elastic shear field induced by STs can reach the
long-range scale, and its correlation length ls shows a negative

rate effect. With increasing strain rate, ls becomes shorter
ranged. For example, at the highest γ̇ = 1.2 × 10–4 s–1, ls de-
creases into the second shell. The correlation length Lc of the
dilatation cores also exhibits a negative rate effect, but more
susceptibly than ls. The values of Lc span a wider range from
the long-range (4.2 μm) to short-range (2.2 μm) scale, even
below lc at the highest γ̇ = 1.2 × 10–4 s–1. The correlation
length Ld of the dilatation full field always resides in the
long-range scale, much larger than other three lengths. From
the rate effect of these correlation lengths, the relationship

Lc < ls, (2)

which can be identified as an elastic criterion for the shear-
banding instability. In other words, the strongly correlated
dilatation cores must be confined within the shear-correlation
full-fields, whereas the weakly correlated dilatation outfields
seem to be trivial. According to the previous study by some of
us [29], the dilatation cores actually are the potential regions
of activation of STs. Therefore, this criterion Lc < ls implies
that new STs must be activated within the domain of the elas-
tic shear fields of preexisting STs. Only in this way can these
adjacent STs strongly interact with each other and ultimately
self-organize into a shear band via avalanches.

To visualize this picture directly, we reconstruct the the
contour plot of local dilatation ξ of particles in a 6-μm-thick
y-z section, and trace its spatial evolution in three successive
time steps. During this process, the particles participating
in STs are superimposed on the contour plots. Here the ST
particles are identified by the significant jump of their local
strain εyz and nearest neighbors, as detailed previously [29].
Figure 7(a) gives the typical results of the homogeneous de-
formation at γ̇ = 1.0 × 10–5 s–1, where the color represents
the contour of ξ and white-filled circles denote ST particles.
We clearly see that each ST can trace back to its high-ξ
source in previous steps. Such spatial correspondences are
marked by dashed-line arrows. In the current steps, the STs
will relax local dilatation and thus lie in blueish regions.
As expected, the high-ξ regions are relatively far from the
preexisting ST particles, and their distances are mostly greater
than the shear-correlation length ls (3.7 μm) of STs. In this
manner, the new activated ST particles in the next steps have
little chance of interacting with STs that occurred in the last
steps. Eventually, the accumulation of these independent STs
contributes to spatially homogeneous deformation [Figs. 2(a)
and 2(b)].

Figure 7(b) presents the inhomogeneous case at γ̇ = 1.2 ×
10–4 s–1, where both the contour of ξ and ST particles exhibit
a distinct behavior. In the top shear band, we observe that the
high-ξ regions induced by STs are always adjacent to the ST
particles, and their distances (corresponding to Lc) are indeed
shorter than ls (3.0 μm). The new ST particles in the next steps
will be activated at the neighboring high-ξ sites in the last
steps. Obviously, these STs are spatiotemporally correlated,
which are indicated as three successively generated aligned
STs [marked 1–3 in Fig. 7(b)] mediated by DTs along the
banding direction. In this situation, STs, both new activated
and preexisting, are highly avalanched, due to their overlapped
elastic fields. Avalanches of STs finally mature into a shear
band that spans the whole system [Figs. 2(c) and 2(d)]. Unfor-
tunately, this full process cannot be captured with the current
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FIG. 7. Typical contour plots of local dilatation ξ of 6-μm-thick y-z sections during three successive time steps, superimposed upon
particles participating in STs (white-filled circles). (a) Homogeneous deformation (γ̇ = 1.0 × 10–5 s–1) and (b) shear-banding (γ̇ = 1.2 ×
10–4 s–1) modes. The dashed-line arrows spatially link ST particles with their high-ξ sources.

time resolution (200 s). However, these experimental obser-
vations support the atomistic simulations by Şopu et al. [12].
They indeed found that maxima of positive volumetric strain
just occur in the regions of those self-assembled STs during
shear-band initiation. In contrast, the displacement fields be-
tween two adjacent STs display rotated vortex structures [14]
with relatively low volumetric strain. It is expected that the
long-range transport of dilatation or free volume (if Lc > ls)
could weaken or even destruct such bridging hard (elastic)
vortices, thus rendering STs no longer correlated.

IV. CONCLUSIONS

Our experimental findings substantiate the idea that free-
volume dynamics and ST operations are inherently correlated
and deeply interdependent [7,29,67,68]. Either local coales-
cence of free volume or nonlocal shear of STs is only a loose,
necessary condition for shear-banding instability in amor-
phous solids. One must take into account the shear-dilatation
causality during STs, which is quantified by Lc < ls. This elas-
tic criterion reveals that only those dilatation- or free-volume
confined STs have the chance to interact via their contacted
shear fields, and ultimately self-organize into a shear band.
This physical picture coordinates local effect of free volume
with nonlocal effect of STs, thus uniting the two classical
mechanisms for shear banding in history.

At last, we argue that the elastic criterion Lc < ls should be
valid in other dilatant shear-banding cases due to the change
of structure or temperature, although here it is obtained from
the rate effect of shear banding. Our results may be also gen-
eralized to a broad range of amorphous solids, where the shear
banding results from avalanches of dilatant STs. Importantly,
all analyses in this study are based on two very basic quanti-
ties: shear strain εi j and free volume v f of particles. Both can
be defined universally for any amorphous solid, regardless of
structural motifs and chemical components. We believe that
specific values of the correlation lengths may vary among
different systems, but the causality between shear and dilata-
tion of STs should hold well. Nevertheless, some amorphous
systems very close to liquid sides may be excluded. This is
because that, in such soft systems, the nature of shear banding
is not necessary dilatant [48,69,70].
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