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Propagating Schallamach-type waves resemble interface cracks
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Intermittent motion, called stick-slip, is a friction instability that commonly occurs during relative sliding of
two elastic solids. In adhesive polymer contacts, where elasticity and interface adhesion are strongly coupled,
stick-slip arises due to the propagation of slow detachment waves at the interface. Here we analyze two distinct
detachment waves moving parallel (Schallamach wave) and antiparallel (separation wave) to applied remote
sliding. Both waves cause slip in the same direction, travel at speeds much lesser than any elastic wave speed,
and are therefore describable using the same perturbative elastodynamic framework with identical boundary
conditions. A numerical scheme is used to obtain interface stresses and velocities for arbitrary Poisson ratio,
along with closed-form solutions for incompressible solids. Our calculations reveal a close correspondence
between moving detachment waves and bimaterial interface cracks, including the nature of the singularity and the
functional forms of the stresses. Based on this correspondence, and coupled with a fracture analogy for dynamic
friction, we develop a phase diagram showing domains of possible occurrence of stick-slip via detachment waves
vis-á-vis steady interface sliding. Our results have interesting implications for sliding and stick-slip phenomena
at soft interfaces.
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I. INTRODUCTION

Consider a simple system consisting of two rectangular
solid blocks, one elastic and the other relatively rigid, that are
pressed into contact and slid remotely at constant velocity V0.
Elementary considerations dictate that the interface will start
sliding once the shear force exceeds the static friction thresh-
old, commonly assumed to depend on the friction coefficient
μs and the normal force FN . That this rudimentary picture is
simply not universally true is borne out dramatically by earth-
quake faults, squealing brakes and violin strings [1–4]. These
systems exhibit what is known as stick-slip, a phenomenon
wherein the interface moves only intermittently even though
the contacting solids are slid remotely at constant speed.

Several plausible explanations for stick-slip have now
been established, hinging primarily on velocity dependence
of the interface friction force [2,5–7] and/or some type
of regularization [8,9]. Most commonly studied models for
understanding the repeated static-dynamic-static transitions
occurring during stick-slip are of the Burridge-Knopoff type
[10–12]. These models, originally applied to earthquake fault
motion, are characterized by a chain of horizontal and ver-
tical springs connecting both sliding bodies at the interface,
coupled with a suitable interface friction law. In the contin-
uum limit of these models, slip mediating interface fronts
propagate at or close to the speed of sound in the material
[13]. On the continuum scale, such fast moving waves are de-
scribable within linear elastodynamics, even though the exact
propagation velocity is determined by the particular boundary
conditions involved [14–16]. Nonetheless, these fronts almost
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always propagate at speeds comparable to the Rayleigh wave
speed [17–19], which is a material property. A notable excep-
tion is the recent work of Trømborg et al. [20] which describes
a multi-scale model for slow fronts, albeit by exploiting a
suitably defined velocity scale.

On the contrary, soft material contacts can exhibit stick-
slip via more subtle mechanisms [21]. This complication is
primarily because the effects of friction, adhesion and elastic
deformation cannot be decoupled. Under many conditions,
soft adhesive interfaces can slip only via the propagation of
slow moving pulselike fronts, with unique dynamics, often in-
volving simultaneous interface detachment and reattachment
[22,23]. A well-known example of such a detachment wave
is the Schallamach wave in rubbers [24], which results from
local interface buckling [25–30]. Detachment waves of this
nature are often described by analogy with the motion of a
ruck in a carpet [31,32]: If a carpet is to be moved by distance
�x, then we could either simply translate the entire carpet
surface at once by �x or create a localized slip zone by
buckling—causing slip �x—that then propagates along the
carpet and progressively causes it to slip. This buckling and
detachment type mechanism is quite general and also occurs
during motion of soft-bodied insects such as caterpillars and
earthworms [33,34].

Interface detachment waves of this nature are typically
characterized by their dramatically low propagation velocity,
compared to typical elastic wave speeds [35]; a fact that makes
them difficult to describe theoretically. Consequently, several
questions about the propagation of slow detachment waves at
soft interfaces remain unanswered and are the subject of the
present manuscript. Motivated by a recently described corre-
spondence between friction and fracture [36,37], we attempt
to establish a relationship between detachment wave motion
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and crack growth in soft interfaces. Such a relationship can
then be used to predict when detachment waves, and conse-
quently stick-slip, will occur at the expense of steady uniform
sliding.

The manuscript is organized as follows. We first present
experimental observations of detachment waves at a typi-
cal soft adhesive elastic interface that build on our recent
results showing the occurrence of opposite moving detach-
ment waves (Sec. II). The data presented herein is new
and complements our earlier observations. In Sec. III, we
present a common theoretical treatment of these waves using
a linear elastodynamic model. We obtain analytical solutions
for incompressible solids and numerically evaluate interface
stresses and velocities for arbitrary Poisson ratio. Based on
this treatment, a fundamental analogy with interface fracture
is established. We study the nature of the singularity ahead
of the leading edge of a slow moving detachment wave and
show that it resembles a statically loaded interface crack. Our
results allow us to construct a hypothetical “ phase diagram”
for the occurrence of slow frictional waves at soft interfaces.
We discuss the implications of our results in Sec. IV and
present some concluding remarks in Sec. V.

II. BACKGROUND: EXPERIMENTAL OBSERVATIONS OF
SLOW DETACHMENT WAVES

Before we embark on a theoretical analysis of slow mov-
ing detachment waves at adhesive interfaces, we first present
experimental data outlining their primary properties. While
most experimental studies of sliding friction use a spherical
indenter geometry, detachment waves are best observed using
a cylindrical geometry. This is because the latter can help iso-
late single wave events without any intervening edge effects.
The configuration is shown in Fig. 1 and is the same as that
used by one of the present authors in prior studies [38]. For
additional details, such as sample or indenter dimensions and
material elastic properties, the reader is referred to this article.
We provide only the essential data here to retain continuity
with the rest of the manuscript.

The schematic in Fig. 1(a) shows a model adhesive contact
interface between an elastic polymer (PDMS, Dow Corning
Sylgard 184) and a rigid cylindrical lens (Edmund Optics).
The geometry of the contact interface (xy plane) is such that
it resembles an “adhesive channel” so that single waves may
be easily isolated. The lens and polymer were brought into
contact by a normal load FN ∼ 50 mN, adjusted so that the
initial contact width was constant = 1 mm in the y direction.
The long aspect ratio of the contact also implied that the lens
and polymer had to be aligned with care to maintain constant
contact width. The contact region was illuminated using a
backlight source and imaged using a high-speed camera. Si-
multaneously, normal and shear forces were measured using
a piezoelectric dynamometer (Kistler). A sample image of the
contact region is shown in Fig. 1(b). Prior to any experiment,
contact was first established and maintained for a fixed time
t = 60 s to standardize any possible contact aging effects. The
polymer was then slid relative to the lens using a linear stage
at constant speeds V0 = 10 μm/s to 20 mm/s, for a distance
of 30 mm (sample length was 70 mm).

FIG. 1. Experimental setup and coordinate conventions used in
the text. (a) Schematic showing polymer-lens contact geometry and
sliding conditions. The xyz axes are also shown as red, green and
blue arrows, respectively. Note that the origin of coordinates is at
the center of the contact and not at the top face as indicated here
for convenience. (b) Approximate 2D side view of the interface; the
comoving angular coordinate η coincides with the physical x (see
text) and (c) sample camera image showing adhesive contact zone
(light gray) distinguished from the rest of the polymer (dark gray).
Remotely applied V0 is always taken to be from left to right, along
the x axis.

The in situ images revealed the interface dynamics accom-
panying interface stick-slip under steady remote sliding. At
low V0, the interface shows rich spatiotemporal dynamics—
remaining stationary for long periods, separated by periods of
localized slip. These slip events are solely mediated by the
propagation of two distinct detachment waves, moving paral-
lel (Schallamach wave) and antiparallel (separation pulse) to
V0, henceforth denoted + and − waves. While the former is
well known [24], its less illustrious sibling was first reported
in Ref. [38]. Sample image sequences showing their propa-
gation properties are shown in Fig. 2, with the remote sliding
direction V0 also marked. Corresponding movies are presented
as supplementary material [39].

The three frames in the top panel depict a single moving
Schallamach or + wave within the interface, V0 = 0.5 mm/s.
It moves in the same direction as V0 and shows several typical
features. First, the detachment zone (dark) has a characteristic
V shape with wrinkles on its surface. The wrinkles form
locally as the wave progresses and result in imperfect contact
in its wake. Second, points on the interface remain stationary
before and after wave passage; they only translate in the V0

direction when the wave propagates past them. This is clearly
shown by the motion of a marker particle that is located just
below the PDMS surface (black in figure). The marker is
translated by the + wave so that it slips a finite distance �x+
after the wave has passed. Note that the amount of slip �x
is nearly equal to the extent of the wave in the propagation
direction. Third, the timestamps show that the wave propa-
gates at a constant speed c+ � V0. It is further clear that c+
(∼0.1 m/s) is much lower than any elastic wave speed in the
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FIG. 2. High-speed in situ images showing two distinct detachment waves at the polymer-lens interface. Top row shows a Schallamach
(+) wave propagating in the same direction as remotely applied V0. Note the timescale for wave propagation is significantly lesser than that for
uniform sliding. Bottom row shows a separation (−) wave propagating in the opposite direction. Applied velocity V0 = 0.5 mm/s (top row)
and 0.05 mm/s (bottom row).

material, cf. Rayleigh wave speed cR ∼ 10–100 m/s. Finally,
once the wave has passed, the entire sequence repeats with
another wave. Such single wave events occur at a constant
frequency n+ such that n+�x+ = V0, as established in prior
work [30].

The lower panel in Fig. 2 shows a very different type of
wave—the separation (−) wave—that propagates in the op-
posite direction to V0 while causing slip in the same direction.
In this sense, this wave may be thought of as the dual of
the Schallamach wave. It shares some similarities with the +
or Schallamach wave described above, viz. causing constant
interface slip �x− comparable to its width, and slow velocity
of propagation c− that obeys V0 < c− � cR as before. Yet,
this − wave is fundamentally different in that it propagates
in the direction opposite to V0, despite surface slip being in
the same direction as V0. The detachment zone has a shape
quite different from the V shape of the + wave and is also
devoid of any compression-induced wrinkles, so that complete
readhesion occurs in its wake. Once a single wave propa-
gates, the entire process repeats and interface motion occurs
in steps, similar to + waves. While V0 is different for the two
cases presented, it is generally observed that c+/V0 ∼ 50–100
and c−/V0 ∼ 10–50. Furthermore, c− < c+ and the frequency
n− < n+, as reported in our earlier work [38].

At the macroscale, the effect of intermittent interface mo-
tion due to repeated wave propagation events is recorded by
measuring the shear force as a function of time, see Fig. 3.
The corresponding nondimensional force traces for + and −
waves are shown in the left and right panels of this figure,
respectively. The shear force is normalized by the product GA

of the shear modulus G and the nominal contact area A. Time
is nondimensionalized by the time taken (t0) for the entire
length (L) of the interface to slip uniformly at speed V0. The
V0 values for the + and − waves corresponding to the data in
this figure are 0.5 mm/s and 0.05 mm/s, respectively.

Repeated wave motion results in oscillatory shear forces—
a characteristic of stick-slip motion—with distinct frequency
and amplitude reduction. For the case of + waves, Fig. 3 (left),
the force initially builds up as the interface is stationary and
the shear stress on the interface increases. This built up stress
is then released by the propagation of a single + wave and a
corresponding force reduction is observed in the figure. Each
subsequent cycle corresponds to the propagation of one such
wave at the interface. The timescale for wave propagation is
also much smaller than that for remote sliding t0 = L/V0. In

FIG. 3. Shear force measured simultaneous with multiple wave
propagation events for Schallamach (+) waves (left) and separation
pulse (− wave, right). The horizontal axis is nondimensionalized
by time t0 = L/V0. Applied velocity V0 = 0.5 mm/s (left) and 0.05
mm/s (right).
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comparison with + waves, the propagation of − waves is
accompanied by a smaller force reduction and a lower fre-
quency n−. Furthermore, the force trace eventually decays to
zero after the first few wave events, likely due to viscoelastic
relaxation and minor misalignment between the PDMS and
indenter. A similar decay is also seen in the case of + waves
but does not appear in Fig. 3 (left) due to the higher V0 and,
consequently, lower t0 in this plot.

In summary, interface motion is not continuous but occurs
intermittently via single slip events. While we have focused
exclusively on wave propagation here, nucleation events lead-
ing to single waves have been addressed in our prior work
[30,38]. It has been shown that the magnitude of V0 determines
which wave will nucleate at the edge of the contact. How-
ever, post-nucleation, slip events are solely mediated either by
Schallamach (+) or separation (−) waves propagating paral-
lel or antiparallel to V0, respectively. Both waves propagate at
speeds c± that are much slower than any characteristic elastic
wave speed in the material. They also retain their shape within
the interface and result in constant finite slip �x± in the same
direction as V0. The net macroscale effect of this periodic wave
propagation is stick-slip motion of the interface.

III. THEORETICAL ANALYSIS OF SLOW MOVING
DETACHMENT WAVES

It is clear from the experimental background presented in
Sec. II that propagating ± waves show unique properties, viz.
slow propagation velocity and effecting interface slip, that
are not characteristic of elastic surface waves in general [14].
We now attempt to explain these features using a theoretical
elastodynamic framework. A quasi-three-dimensional (3D)
version of this framework was introduced in our prior work
[40]. In this section, we present a fully 2D model, obtain
solutions for both compressible and incompressible materials,
and explore their consequences.

A. Geometry and framework

We assume that the elastic polymer and the rigid inden-
ter occupy the z � 0 and z < 0 half-spaces, respectively, see
Fig. 1(b), and that V0 is applied along the x direction at z →
−∞. Detachment waves propagate along the ±x directions
on the z = 0 interface, with signed wave speed c; the domain
length along this axis is L. In order to eliminate uncertainties
induced by wave nucleation, we use periodic boundary condi-
tions at x = ±L/2. This is justified by the constant wave speed
c and the fact that that only a single wave is present within the
domain x ∈ (−L/2, L/2) at any instant (cf. Fig. 2). We use a
comoving reference frame with angular coordinate η = k(x −
ct ) in which the wave is stationary. Here k denotes the wave
number and is related to physical parameters in the problem,
as discussed in Appendix. This type of periodic comoving
construction [Fig. 1(b)] is commonly used for describing wave
propagation phenomena, see, e.g., Refs. [15,16,41] and the
discussion in Ref. [42].

Within this system, the interface is separated into two
zones—a sticking zone (α < |η| < π ) with zero velocity,
and a slipping detached zone (|η| < α), comprising the wave
itself, with zero stress. Note that the angular wave extent

2α, when expressed in physical units, is nearly equal to the
amount of slip �x (cf. Fig. 2). The corresponding bound-
ary conditions are spelt out in Appendix. First, we define
nondimensional versions �(s),�(s) of the interface velocities
u̇x, u̇z as:

�(s) = u̇x(s)

c(1 + a2s2)
�(s) = u̇z(s)

c(1 + a2s2)
, (1)

where u̇x and u̇z are horizontal and vertical interface (z = 0)
velocities, a = tan α

2 and s = 1
a tan η

2 are dimensionless vari-
ables representing the detachment zone width and spatial
location, respectively, and c is the wave speed defined earlier.
Note that the wave extent corresponds to |s| < 1. Using the
procedure described in the Appendix, it can be shown that
�(s) and �(s) are governed by coupled singular integral
equations (|s|, |p| < 1):

τr

G
+ 2k1

π

[
(1 + a2 p2)

∫ 1

−1

�(s)ds

s − p
+ πa

V0

c
p

]

− 2k2(1 + a2 p2)�(p) = 0

σr

G
− 2k2

V0

c
+ 2k1

π
(1 + a2 p2)

∫ 1

−1

�(s)ds

s − p

+ 2k2(1 + a2 p2)�(p) = 0. (2)

Here G and ν are the shear modulus and Poisson ratio, re-
spectively, and the dimensionless constants k1 = 2(1−ν)

3−4ν
and

k2 = 1−2ν
3−4ν

. The remote (z → −∞) normal and shear stresses
are denoted σr and τr , respectively [see Appendix, especially
the discussion following Eq. (A1)].

Singular integral equations (SIEs) of this form are com-
monly supplemented by side conditions [43]. In the present
case, these side conditions are given by∫ 1

−1
�(s)ds = πV0

ac

∫ 1

−1
�(s)ds = 0. (3)

The rest of this section pertains to elucidating the physical
implications of Eq. (2) under various conditions.

B. Exact solution for ν = 0.5: Existence of + and − waves

When the elastic polymer is incompressible (ν = 0.5), the
constants k1 = 1 and k2 = 0 in Eq. (2), so that the two SIEs
are decoupled. Physically, this means that the normal and tan-
gential direction elastic fields are independent of each other.
The corresponding interface velocities are found by direct
inversion [43]

�(p) = − σr

2G

p√
1 − p2

√
1 + a2

1 + a2 p2

�(p) = 1√
1 − p2

[( V0

c a

) √
1 + a2

1 + a2 p2
− τr

2G

p
√

1 + a2

1 + a2 p2

]
, (4)

from which the final dimensional forms of u̇x(x, t ) and u̇z(x, t )
are easily obtained using Eq. (1).

Note that Eq. (2) is obtained from the boundary condi-
tion that the detachment zone is traction free. Consequently,
outside the detachment and within the stick zone |s|, |p| > 1,
the right-hand side of this equation is nonzero and gives the
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FIG. 4. Diagram showing existence of two branches B± corre-
sponding to ± detachment waves. Any c between the two bounding
curves (solid blue) is permitted for wave propagation. The value
τ ∗

r /G represents the formal limit beyond which wave propagation
ceases, while the two branches B± meet at τr/G = 4/π . Both these
values are shown as vertical gray lines. The region bounded by the
horizontal dashed red lines represents breakdown of the proposed
perturbative analysis.

corresponding stresses σ (p) and τ (p). Here the left-hand side
of the equation is no longer a singular integral and readily
yields:

σ

σr
= |p|√1 + a2√

p2 − 1

τ

τr
= |p|√1 + a2√

p2 − 1
−

(V0

ac

)(
2G

τr

)√
1 + a2√
p2 − 1

|p|
p

. (5)

Enforcing the physical constraint that u̇x(η) is everywhere
in the same direction as V0 [see Appendix, Eq. (A2)] in Eq. (4)
results in the condition[

tan(πV0/2c)

πV0/2c

]
� 4G

πτr
. (6)

This inequality, involving V0, c, and τr , puts a constraint on
the existence of physically relevant wave solutions to the gov-
erning SIEs. Consequently, we may plot an existence diagram
showing two branches B+, B− that satisfy Eq. (6), see Fig. 4.
These branches correspond to c/V0 > 0 (+ wave branch)
c/V0 < 0 (− wave branch), respectively. The minimum allow-
able wave speed c+ or c− for a given value of τR is determined
by the curve B±; all wave velocities c lying between B±
(shaded region in Fig. 4) are therefore permissible. Thus, the
wave speed is not fixed a priori by a material velocity scale
but is instead determined by the interface conditions post wave
nucleation. Additionally, the + wave and − wave branches
obtained from Eq. (6) are perfectly symmetric. While this
symmetry is restricted to the propagation velocity alone, it
does not predict the speed at which ± waves actually propa-
gate. This latter feature is solely determined by the nucleation
mechanics; we discuss this proposition in Sec. IV.

It is also clear from Fig. 4 that B± merge at τr/G = 4/π .
At this point, the envelope of allowed wave speeds shrinks
to zero and for τr/G > 4/π , physically relevant propagating
wave solutions are not possible. However, this exact limit is
not reached in practice since a narrow region close to the
horizontal axis (bound by dashed red lines in the figure) must
be excluded from consideration. Within this region, c± is no
longer small compared to cL and cT so that the entire per-
turbative formulation is invalid. The corresponding maximum

τr value is generically denoted τ ∗
r , see vertical dashed line in

Fig. 4. For fixed V0 ∼ 10−2 m/s as used in the experiments
of Sec. II, τr is not appreciably different from G. This region
must nonethess be excluded from our further discussion. The
bifurcation diagram in Fig. 4 hence shows the domain of ex-
istence of opposite moving slow ± detachment waves within
the elastic framework.

The interface displacements are obtained for both ± waves
[shaded region between solid blue and dashed red lines in
Fig. 4] by integrating the velocities in Eq. (4). The vertical
displacement in the detachment zone is determined from u̇z

uz

�x
= −

( c

2πV0

)(σr

G

)
tanh−1

(a
√

1 − p2

√
1 + a2

)
. (7)

Note that the constant of integration is fixed by the condition
that the interface readheres after wave passage and no net z
displacement is induced for both ± waves, cf. Fig. 2.

The x displacement is also obtained similarly, but the con-
stant of integration must now be set a little more carefully,
depending on which branch in Fig. 4 we are describing. This
is because the location of points before and after wave passage
depends on the sign of c/V0, see Appendix, Eq. (A2). Hence,
the condition on ux in Eq. (A2) must be enforced separately
for the + and − branches.

For a Schallamach (+) wave, we obtain

ux

�x
= − 1

π

[
tan−1

(
p
√

1 + a2√
1 − p2

)

+ cτr

2GV0
tanh−1

(
a
√

1 − p2

√
1 + a2

)]
+ 1

2
, (8)

while for the separation (−) wave,

ux

�x
= 1

π

[
tan−1

(
p
√

1 + a2√
1 − p2

)

− cτr

2GV0
tanh−1

(
a
√

1 − p2

√
1 + a2

)]
+ 1

2
. (9)

These relations fully resolve the interface dynamics for
ν = 0.5. Features of the solutions in Eqs. (4), (5), (8), and (9)
are presented in the next section after discussing the solution
of the fully coupled (ν 
= 0.5) problem.

C. Numerical solution for ν �= 0.5

For general elastic media with arbitrary ν, the original SIE
system in Eq. (2) can be cast in the form of a matrix equation:[−m 0

0 m

][
�(p)
�(p)

]
+ 1

π

[
0 1
1 0

] ∫ 1

−1

[
�(u)
�(u)

]
du

u − p

=
[− τr

2k1G(1+a2 p2 ) − 2aV0/c
2k2V0/c−σr/G
2k1(1+a2 p2 )

]
, (10)

where m = k2/k1 and with the additional conditions of Eq. (3)
as before.

In order to solve this coupled system numerically, we
invert the SIEs using special function approximations [44].
First, we introduce the complex variable χ = � + i� so that
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Eq. (10) is

−mχ − i

π

∫ 1

−1

χ (u)du

u − p
= g1 − ig2 = g(χ ), (11)

where the right-hand side of Eq. (10) is represented as
(g1 g2)T without loss of any generality. Just as with the
ν = 0.5 case, we expect the solution to be singular at both
ends p = ±1, so that this complex valued SIE can be solved
numerically using Jacobi polynomials P(ξ,ζ )

n (p). To find the
solution of Eq. (11), we consequently have to determine coef-
ficients cn such that

χ (p) =
∞∑
0

cnw(p)P(ξ,ζ )
n (p), (12)

where the weight functions w(p) for Jacobi polynomials (un-
bounded at both p = ±1) are given by

w(p) = (1 − p)ξ (1 + p)ζ ξ = −1

2
− iω ζ = −1

2
+ iω

ω = 1

2π
log

(
1 + m

1 − m

)
(13)

with m = 1−2ν
2(1−ν) = k2/k1, as defined in Eq. (11).

The side condition in Eq. (3) is now
∫ 1
−1 χ (t )dt = iπV0

ac . An
approximate solution for χ is readily obtained if the infinite
series in Eq. (12) is terminated with a finite number of terms.
Using orthogonality of Jacobi polynomials, the coefficients
obey [45]

i

2 sin πξ
θk (−ξ,−ζ )c1+k = Fk (14)

for k = 0, 1, 2, . . . where

Fk =
∫ 1

−1
P(−ξ,−ζ )

k (x)
g(x)dx

w(x)
, (15)

θk (ξ, ζ ) = 2ξ+ζ+1

2k + ξ + ζ + 1

�(k + ξ + 1)�(k + ζ + 1)

k!�(k + ξ + ζ + 1)
,

(16)

θ0(ξ, ζ ) = iπV0

ac
= 2ξ+ζ+1�(ξ + 1)�(ζ + 1)

�(ξ + ζ + 2)
. (17)

We can now solve for c1, c2, . . ., using Eq. (14) and the corre-
sponding expressions for θk and Fk .

The result of this numerical procedure is an n-term ex-
pansion for the interface velocities u̇z, u̇x in terms of Jacobi
polynomials. It was found that when the detachment zone is
small (a � 1), only two terms in the expansion are sufficient.
This was verified in two ways—first by solving the ν = 0.5
case numerically and comparing with the exact result pre-
sented in Sec. III B and, second, by explicitly verifying that
|cn/c2| � 1 for n > 2. The ν = 0.5 solution was reproduced
almost exactly by the numerical scheme with n = 2.

We now discuss various features of the interface velocities
and stresses accompanying wave propagation obtained using
this scheme. The existence of two wave solutions even for
ν 
= 0.5 may be seen by analytic continuation of the ν = 0.5
solution (Fig. 4) for arbitrary ν. Additionally, the two solu-
tions still remain symmetric as before as explicitly verified

FIG. 5. Interface z velocity showing detaching and reattaching
zones within the wave, as a function of ν. Inset shows crossover
points for u̇z > 0 and u̇z < 0 for different ν.

by the change c → −c. This is not unexpected since ν 
= 0.5
only couples the normal and shear components but does not
in any way change the symmetry in the problem. The results
presented next are all for α = π/10 and τr/σr = 5, unless
stated otherwise.

The vertical velocity u̇z(η) within the detachment zone is
shown in Fig. 5 for ν = 0.2, 0.35 and 0.5. Note that the veloc-
ity is zero for α < |η| < π in accordance with the boundary
conditions, see Appendix, Eq. (A1). Several features are im-
mediately noticeable. First, the positive (negative) part of the
curve represents interface detachment (reattachment). The ve-
locities are unbounded at the ends η = ±α as expected from
both the analytical and numerical solutions. Second, it is clear
that the ν = 0.5 curve is perfectly antisymmetric with the
interface stationary in the comoving frame exactly at η = 0
(see inset). This stationary point is the same irrespective of
both V0 and c (+ or − waves), as can be checked from Eq. (4).
However, for ν = 0.2, 0.35, the stationary point is away from
η = 0, its precise location being a function of V0, σr , and τr .
As ν becomes smaller, the point shifts to the left (right) for
c > 0 (< 0). Finally, all three curves appear very close (but
do not meet) near η � −0.4α. The only significance that may
be attached with this point on the physical interface is that its
velocity is nearly independent of ν.

The horizontal velocity shows very interesting dynamics,
see Fig. 6, for conditions identical to that for Fig. 5. First, the
velocity u̇x/c is always positive, due to the imposed physical

FIG. 6. Interface horizontal velocity u̇x (η) within the detachment
zone for various values of ν. Curves for different ν do not meet at a
common point.
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FIG. 7. Normal stress variation along the interface ahead and
behind a moving detachment wave. Note that the stresses are constant
σ (η) = σr far away from the detachment zone and zero within, as per
the applied boundary conditions.

constraints, see Eq. (A2). As with u̇z, it is also unbounded at
both ends η = ±α for all ν values. Second, and analogously
to the u̇z case, the interface velocity becomes independent of
ν at a fixed location η � +0.3α. Even though the curves do
not meet exactly (see inset), interface locations corresponding
to η = +0.3α move at the same speed as they would if the
material were incompressible. Finally, as ν deviates from 0.5,
the u̇x curve becomes less (more) steep at the trailing (leading)
edge η = −α(+α). This behavior is due to the enhanced cou-
pling between the horizontal and normal directions at lower
values of ν.

We now turn to the interface stresses as the wave prop-
agates. These are complementary to the velocities and are
nonzero only outside the contact zone. The normal stress
variation for ν = 0.2, 0.35, 0.5 (α = π/10 is fixed) is shown
in Fig. 7. In all three cases, the normal stress is unbounded as
η → ±α±. Note that here ±α± is here defined as:

α± = lim
ε→0+

α ± ε. (18)

Unboundedness at contact edges is a well-known character-
istic of adhesive contacts [46] and shows that the need for
adhesion emerges naturally from the solution of the problem,
without explicit specification in any of the boundary condi-
tions. Furthermore, the ν = 0.5 curve immediately decays to
the remote value σr both ahead and behind the detachment
zone. This decay is much more gradual for smaller ν so that
significant normal stress deviation (σ/σr 
= 1) occurs over
a larger part of the sticking zone when ν = 0.2. This has
important consequences for the occurrence of these waves, as
discussed in Sec. III E.

The shear stresses for ν = 0.2, 0.35, 0.5 are unbounded at
η → ±α± and appear to be nearly indistinguishable in the
linear plot of Fig. 8, in stark contrast to the σ curve, and is due
to τr being comparatively larger than σr (τr = 5σr by assump-
tion). They indeed differ very little near the η = −α edge or
even for smaller η < −α (see insets). As η → π , τ/τr → 1
as is expected. However, the effect of ν is clearer away from
the extreme ends of the contact. Here, the three curves are
comparatively more distinct (see inset, right) with the ν = 0.5
curve decaying the slowest, in contrast to the normal stress
case (Fig. 7). Also noteworthy are the opposite signs of the

FIG. 8. Tangential stresses accompanying the motion of a single
detachment wave. The shear stress singularity changes sign on either
side of the wave, corresponding to detachment and reattachment.
τ/τr → 1 as η → ±π and τ/τr = 0 within the detachment zone.

shear stress at the left and right ends of the detachment zone
η = ±α. This reflects the need for the interface to reattach
under an applied remote shear load, its implications will be
explored further in Sec. III F. Finally, given this sign change,
there exists a point on the interface where τ = 0, its exact
location depends on ν.

D. Fracture equivalence for ± waves for ν = 0.5

We now show that the elastic interface fields accompa-
nying single ± detachment waves in Sec. III B are strongly
reminiscent of moving interface cracks. This wave-fracture
analogy is actually exact in the limit a → 0, or, equivalently,
k�x � 1, since it then corresponds to an infinite half space
with a single detachment wave. In this case, the analogy is
best demonstrated close to either end of the detachment zone
for ν = 0.5.

Consider a stationary crack of length l at the interface
between two infinite bodies, one of which is rigid and the
other elastic with ν = 0.5. For such interface problems, the
complex stress intensity factor under combined normal and
shear loading is given by [47]

K = K1 + iK2 = (σr + iτr )
√

π l/2. (19)

It is certainly tempting to directly compare our present prob-
lem to one of a static interface crack, especially given the
strength of the stress singularity, see Eq. (5). In fact, such
a comparison is common for quasistatic JKR-type adhesion
problems under shear loading [48,49]. However, we must
note two important subtleties in our case. First, our prob-
lem is one of elastodynamics in an essentially singular limit.
This singular behavior is due to the nature of the remote
boundary conditions—while the normal boundary condition
(σr specified) is the same as with the static crack problem,
the tangential condition is not. In fact, specification of a re-
mote velocity V0, which clearly does not have an equivalent
in the static case, prevents us from directly applying this
fracture analogy in the tangential direction. The description
is valid as V0 → 0±, but breaks down when V0 = 0, for this
then corresponds simply to a 1D frictionless normal contact
problem. The possibility of propagating waves causing finite
interface slip does not arise at all in such a case. Secondly,
we have already seen that the normal and tangential dynamics
are completely decoupled for ν = 0.5 so that the detachment
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wave-fracture analogy can be spelt out in the z direction
first. Further, as mentioned above, we can mimic the case
of a single crack in an infinite body by setting a → 0 in our
formulation.

The interface normal stress may be rewritten from Eq. (5)
as

σ = σr | tan η/2| sec α/2√
tan2 η/2 − tan2 α/2

(20)

and is valid for both ± waves by accounting for the sign of
c/V0.

As we approach the leading edge of the wave, η = α +
�α, with �α → 0+, the denominator may be factored using
a Taylor series expansion in �α as

σ = σr tan(α/2) sec α/2√
2 tan α/2

√
tan(α/2 + �α/2) − tan α/2

∣∣∣∣
�α→0+

= σr
√

2 tan α/2√
k
√

r
, (21)

where r is the distance (in physical coordinates) from the
leading edge of the ± wave. Given this 1/

√
r dependence, we

may define an equivalent mode-I stress intensity factor KLE
I as

KLE
I = σr

√
2π tan α/2√

k
, (22)

where the superscript LE corresponds to the leading edge of
the detachment wave. Since the normal stress is symmetric,
the same behavior is also observed at the trailing edge, and
we may thus drop the superscript entirely. The expression in
Eq. (22) is identical with that for a periodic array of cracks
in an infinite solid under normal loading (see, for instance,
Ref. [50]).

For a � 1, tan α/2 ∼ α/2 and α/k = �x/2 [see Eq. (A3)
in Appendix]. The stress intensity factor thus reduces to

KI = σr

√
π�x/2. (23)

Recall that this expression is obtained from the elastodynamic
solution after taking c/cL, c/cT � 1 limit, along with a � 1
above. This is clearly equivalent to the static interface crack
solution for ν = 0.5 and one body rigid [45,47]. Hence it is
clear that mode I stress intensity factor for a crack of length 2l
becomes identical with that in Eq. (23) if we replace �x by 2l
so that the interface slip, equal to the detachment zone extent,
is the equivalent crack size.

The tangential case of mode II shear loading is more il-
luminating. An equivalent procedure can be repeated as for
the normal case, the only change being that we now have to
account for which end η = ±1 is the leading edge, depending
on which of the ± waves we are interested in. The interface
shear stress is obtained from Eq. (5) as:

τ (η) =
[
τr | tan η/2| ± 2V0G

c

]
sec α/2√

tan2 η/2 − tan2 α/2
, (24)

where ± depends on which wave is being considered. For the
leading edge +(−) is used when V0/c > 0(< 0). Taking η =
α + �α as �α → 0+, this expression becomes

τ =
[
τr

√
tan α/2 ± 2V0G

c
√

tan α/2

]
1√
kr

(25)

and the corresponding stress intensity factor at the LE of either
± detachment wave is

KLE
II =

[
τr

√
tan α/2 ± 2V0G

c
√

tan α/2

]√
2π

k
(26)

which is dependent on V0, τr , and the wave number k. Clearly
this velocity-dependent stress intensity factor is valid for all
values of �x. This “asymmetry” in the mode II stress in-
tensity factor is markedly different from the mode I case
and has some important consequences. As mentioned earlier,
V0 = 0 ⇒ τr = 0 and the limit is singular since it corre-
sponds to a static frictionless problem. One cannot have waves
propagating at the interface, each resulting in �x± slip in
this situation.

Let us take a closer look at the nondimensional stress
intensity factor κLE

II = KLE
II τ−1

r �x−1/2 from Eq. (26). Clearly,
κLE

II has two parts with nontrivial dependence on V0/c.
The first part ∼[tan(πV0/2c)]1/2(2πV0/c)−1/2 and the second
∼(2πV0/c)1/2[tan(πV0/2c)]−1/2. For a given boundary value
problem with a prespecified V0, the ratio V0/c can take any
value within the region bounded by B± (solid blue) and the
dashed red curves in Fig. 4 with the constraint that V0/c < 1
for all V0, τr . This implies that when k�x � 1 or a � 1, the
first term approaches a constant, just as with Eq. (23), and as
expected for a static fracture problem where KII ∼ τr�x1/2.

However when a � 1, the second term in the expression
for κLE

II does not tend to a constant, but instead → G/τr . In
fact, for a � 1, 2V0

ac → 4
π

the total expression for the stress
intensity factor becomes

KLE
II = (τr + 4G/π )

√
π�x/2 when a � 1. (27)

In order to use the fracture analogy now, one must make two
formal changes to the standard static mode II interface crack
problem. In addition to identifying the crack-length 2l with
�x as before, we also replace the remote shear τr by an “
effective shear” τr + 4G/π .

The extra 4G/π term is a load-independent contribution
to the stress intensity factor and a priori appears to be un-
physical, since it would then imply the occurrence of stress
concentration in the absence of external loading (τr = 0).
However, looking at its origin in Eq. (26) reveals that it is
obtained only in the limit V0 → 0± when tan α/2 ∼ α/2, but
is not valid for V0 = 0. Thus, there are two reasons why inter-
preting Eq. (27) as a general load-independent stress-intensity
factor is misleading. First, it shows that the second term is
constant only for very small V0 but is not present for V0 = 0
exactly. This is, as we’ve already mentioned, because the case
of V0 = 0 is no longer an elastodynamic problem, but instead
corresponds to a static problem with no shear. Consequently,
there is no mechanism to energetically sustain constant slip-
inducing detachment waves. Secondly, in obtaining Eq. (27)
from Eq. (26), two factors of V0 are canceled from the nu-
merator and denominator of the second term, which is clearly
not possible when V0 = 0. Retracing its origin to the exact
solution, we see that the second term does not arise at all from
the governing SIE, Eq. (2) when V0 = 0.

Both mode I and mode II stress concentration factors are
functions of the interface slip �x, nearly equal to the de-
tachment zone width. For ± waves that effect larger slip, the

045002-8



PROPAGATING SCHALLAMACH-TYPE WAVES RESEMBLE … PHYSICAL REVIEW E 105, 045002 (2022)

FIG. 9. Normal stress fields showing oscillating singularity near
the tip of the detachment zone. Inset is a semilog plot showing the
extent of the oscillating zone. It is clear that the maximum stress
increases sharply with ν and its location simultaneously approaches
the detachment zone tip.

stress intensity at the leading edge is larger so that they may
propagate at lower remote stress. However, it is important
to remember that detachment wave propagation is a funda-
mentally different process on the macroscale compared to
(catastrophic) crack growth. The former results in constant
finite tangential slip at the interface, while the latter causes
rupture and subsequent interface separation in the normal
direction.

E. Fracture equivalence for arbitrary ν: Oscillating
singularities and process zones

The fracture equivalence for the general case of ν 
= 0.5
requires a more detailed discussion of the crack-tip stresses. It
is well known that for a static crack at a bimaterial interface
between one rigid and one elastic body, the stresses show an
oscillating singularity. The oscillation region is small, typi-
cally about four orders of magnitude smaller than the crack
length. The physicality of this oscillating singularity has been
the subject of much debate [51,52].

An identical situation appears with detachment waves
within our model as well. The equivalent of the Dundurs’
parameter β in our case is the ratio m = 1−2ν

2(1−ν) , see Eq. (13). In
fact, the final governing SIEs are the same as those for a static
crack problem [53], except for additional terms dependent on
V0. Consequently, an oscillatory singularity analogous to the
stationary interface crack appears in the stresses, and we use
the latter case to illustrate this behavior.

A typical normal stress variation just ahead of the crack-tip
is shown in Fig. 9 for ν 
= 0.5. In order to amplify the oscil-
latory nature of the singularity, we have chosen ν = 0, 0.08.
First, for r/a > 0.01, the σ/σr curves are similar to those
obtained earlier (cf. Fig. 7). The crack-tip stresses appear to
diverge as r → a with σ/σr > 10. However, as we further ap-
proach the crack-tip, say r ∼ 0.02a, the stresses actually show
an oscillating singularity—the apparently diverging stresses
show typical log(sin r) behavior for r/a ∼ 10−4, see inset to
Fig. 9. This behavior is most pronounced for ν = 0 (dash-
dotted blue line) with the maximum stress ∼10σr occurring
near r/a ∼ 10−4. As ν increases (ν = 0.08, solid orange
curve), the stress peak becomes progressively higher and,
simultaneously, its location moves closer to the crack-tip. So

FIG. 10. Stresses ahead of the leading edge of a moving wave.
Left: Schematic of the “process zone” ahead of the wave representing
the macroscopic effect of microscopic mechanisms that bound the
stresses. Right: Process zone size as a function of the Poisson ratio
ν, for different cut off values ξ .

much so that for realistic values of ν > 0.2, the peak is very
large and occurs at r/a ∼ 10−7.

The question then naturally arises about whether this type
of oscillating singularity has any physical consequences. For
this, we argue that, within the framework of linear elastic-
ity, we very well expect that some microscopic mechanism
bounds the stresses ahead of the leading edge of a detachment
wave. This is analogous to threshold stress or plastic zone
models commonly employed in fracture mechanics [54,55].
Let the dimensionless cut-off stress be denoted by ξ = σ/σr .
For various values of this cut-off threshold, we can evaluate
the equivalent process zone size rc ahead of the leading edge,
see Fig. 10. The schematic on the left shows the process zone
and stress cut-off for either stress component. The panel on
the right of this figure shows the variation of rc with ν for
three different values of ξ .

Three observations may be made from the two graphs in
Figs. 9 and 10. In order to estimate a realistic value for ξ ,
and hence rc, it is important to consider applied loads that
don’t violate the validity of the present model. If stresses
everywhere within the body are to still obey linear elastic-
ity, say, |σ (x, z)| � 0.1G, then ξ = 10 would require that
σr � 0.01G. Hence if the threshold value ξ is larger, then the
range of permissible (within linear elasticity) remote stresses
is smaller. As a result, typical values of ξ < 5 provide a real-
istic estimate of the process zone size for a broader range of
remote loads.

It is now clear from Fig. 10 (right) that for these values of
ξ , the corresponding cut-off zone size rc is much larger than
the extent of the oscillating zone in Fig. 9. In fact, rc can never
be comparable to the latter since this would require very large
ξ ∼ 100 which is far beyond the domain of validity of the
present model. It is also clear from Fig. 10 that rc decreases for
any ν if the threshold ξ is raised. This means that the material
can sustain larger opening stresses prior to wave propagation.
The precise microscopic mechanisms operating at the lead-
ing edge will set the exact value of ξ . Finally, a noticable
difference in process zone sizes occurs for ν = 0.2, ranging
from rc/a ∼ 0.5 to >1.75. Consequently, rc is sensitive to
the chosen threshold ξ and specification of the microscopic
mechanisms bounding the stress become important in systems
where ν is small.
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F. Detachment waves vs. cracks and stick-slip vs. steady sliding

The equivalence between moving detachment waves and
interface fracture has important consequences for the onset of
sliding at a frictional interface. Given that the transition from
static to dynamic friction at an elastic interface is effected by
a propagating rupture front resembling a crack [36], one of
two sliding modes can occur: stick-slip (via detachment wave
propagation) or steady sliding (via rupture or crack growth).
Depending on the healing or reattachment mechanism opera-
tive at the interface, “mixed” modes could also occur wherein
periodic rupture-slip-healing events lead to stick-slip [56]. For
the present discussion, we omit this possibility while noting
that such ruptures can indeed occur in soft materials like
hydrogels, but do not involve significant interface detachment,
as with ± waves [41].

To evaluate which one occurs for a given τr − �x combi-
nation, we use the stress intensity factor at the leading edge
of the wave, Eq. (23), while making note of its validity for
small a. Analogous arguments may be constructed for the
more general case. First, for the leading edge of a detachment
wave to advance, we require

(
τr + 4G

π

)√
π�x/2 = �. (28)

In contrast, cracklike propagation at both ends requires

τr

√
π�x/2 = �. (29)

We assume that the fracture toughness � is independent of
which mode of failure is prevalent—a property quantified
by the so-called mode mixity ϑ . � usually increases with ϑ

but given that τr � σr in the experiments, � = constant is a
reasonable assumption [57]. Secondly, �x is the equivalent
crack length for both possible modes so that the geometry at
the leading edge is identical. Finally, the detachment wave
solutions we have obtained (Sec. III C) apply over a finite
domain and are not just an asymptotic approximation as with
static crack fields. So our inferences should apply to both
types of ± waves, at the corresponding leading edge. We also
know that the interface cannot sustain detachment waves for
far field shear τr > τ ∗

r (see Fig. 4) which forms a boundary in
τ -�x space. Note that for the experiments discussed in Sec. II,
V0 ∼ 10−2 m/s and the value τ ∗

r does not differ significantly
from 4G/π . As a final comment, we must emphasize that
Eq. (28), being based upon local conditions ahead of the
leading edge, is only a necessary condition for d-wave prop-
agation. Sufficiency is ensured by consideration of a suitable
readhesion mechanism at the trailing edge of the wave.

Based on these facts, we obtain the phase diagram shown
in Fig. 11. The two curves represent Eq. (28) (dash-dotted
orange) and Eq. (29) (solid blue) and the horizontal dashed
line denotes the limit τ ∗

r . The abscissa value at which the
orange curve meets the dashed line is denoted �xc (vertical
dashed line) and plays the role of a critical interface slip. The
diagram is applicable to any material pair capable of forming
adhesive contact as long as one material is significantly stiffer
than the other. The primary geometric requirement is that the
dimensions of the contacting solids must be much larger than
the crack length.

FIG. 11. Phase diagram showing domains of occurrence of ±
detachment waves (d-waves) and, consequently, regions of stick-slip
and steady sliding as a function of remote shear stress τr/G and
interface slip �x per wave. The solid blue curve represents the stress
intensity for shear interface cracks and the dash-dotted orange curve
shows the corresponding intensity for detachment wave motion. For
�x < �xC only steady sliding is possible. The limit τ ∗

r /G corre-
sponds to limit of validity of the pertubative framework presented.

The diagram must be interpreted as follows. Let us first
consider an adhesive interface with an inherent detachment
zone of size �x > �xc. As loading at constant remote V0 is
commenced, the interface remains stationary and the result-
ing remote shear stress increases monotonically from τr = 0.
When τr crosses the dash-dotted orange curve in Fig. 11, the
necessary condition for d-wave propagation is satisfied. How-
ever, since the interface is stationary, d-wave propagation does
not occur immediately and the interface remains stationary
with continued increase in τr . Once τr crosses the solid blue
curve, crack propagation begins from the detachment zone.
Depending on the strength of readhesion (sufficiency condi-
tion for d-wave propagation), we can either have stick-slip
or steady sliding beyond this point. If readhesion is strong
enough, then the detachment zone begins to translate, with one
edge extending and the other closing due to readhesion. Now
the τr reduces and can fall between the solid blue and dash-
dotted orange lines (orange/shaded “//” region) and stick-slip
motion ensues. If τr remains within the cross-hatched blue
region in the figure and if readhesion is not strong enough,
then stick-slip does not occur and the initiated crack grows
continuously, causing steady interface sliding.

In the complementary case of �x < �xc, increasing τr

crosses the threshold line τ ∗
r prior to satisfying the neces-

sary condition for d-wave propagation. Therefore, only steady
sliding is possible in this domain (shaded green “\\”). In the
lower region of the phase diagram (shaded gray “◦”), where
the remote τr is small and comparable to (or even smaller
than) σr , shear and normal direction stresses become coupled
so that mode-mixity effects become important. This region
of the phase diagram must then be constructed using the
numerical solutions computed in Sec. III C.

This entire picture places significant constraints on the
nucleation of detachment zones at interfaces. For any material
to show stick-slip motion consistently, it must be capable of
producing �x, via either buckling or tensile necking, that is
larger than �xc. The propensity for producing such a large de-
tachment zone, coupled with ease of wave motion for ν � 0.5,
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is likely why polymers readily show stick-slip via detachment
wave propagation, while most metals do not.

IV. DISCUSSION

The elastic framework discussed in our work has repro-
duced the primary observations surrounding the propagation
of ± detachment waves at a soft adhesive interface, viz. the
existence of two slow and opposite moving waves, the appar-
ent lack of a definite velocity-scale and the resulting constant
interface slip. In addition, the theory and associated numerics
also provided expressions for the interface stresses, velocities
and displacements. The limit α → 0 is exactly reproduced by
the approximate functions used in the numerical scheme. The
leading edge of the wave was found to resemble a stationary
crack-tip with an effective remote shear stress modified by V0.
This correspondence, along with that between moving cracks
and the onset of dynamic friction, allowed the construction
of a phase diagram demarcating regions of occurrence of
stick-slip and uniform sliding, see Fig. 11. We now discuss
some implications of our work as well as potential extensions
for future investigation.

A. Comparing theoretical predictions with experimental
observations

Having explored the consequences of the theory presented,
it is now important to compare the theoretical predictions
and explanations presented in Sec. III with the experimental
observations in Sec. II. The boundary value problem posed
in Eq. (2) depends, in addition to material constants G, ν, on
the loading conditions τr and V0, as well as �x±. A complete
model that accounts for nucleation outside the interface will
be capable of predicting �x via suitable considerations of sur-
face buckling or tensile detachment. Consequently, the present
model, dealing only with wave propagation, assumes a value
for �x± a priori. Given this value, any wave number k and
α can be chosen within the shaded region bounded by B± in
Fig. 4. It is noteworthy that this allows for infinite possible
wave speeds, unlike usual wave propagation problems where
the speed is fixed by a velocity-scale in the problem. Addition-
ally, the question of which wave will propagate in any given
situation is also indeterminate—both ± waves are equally
likely. However, the corresponding tensile or compressive
nucleation mechanisms have very different dependence on
the applied V0. It is also possible that, given a sufficiently
long channel, both waves are nucleated at either end of the
adhesive contact channel (Fig. 1). In most cases, the strong
V0 dependence of these mechanisms means that + waves are
more pronounced at higher V0 compared to − waves. This is
in fact borne out by prior experimental observations [38].

Given a choice of c± from within the permissible zone in
Fig. 4, the theory quantitatively predicts the corresponding in-
terface displacements, velocities and stresses within the linear
elastic approximation and for any arbitrary ν. Several features
of this calculation are self-evident with the experiments. For
instance, the occurrence of a tensile normal stress at the edges
of the sticking zone are very similar to those seen in static
adhesive contacts [46] and adhesive sliding experiments using
spherical indenters [48]. This is despite the fact that adhesion

has not been explicitly included in our model, either in the
governing equations or as boundary conditions. It is quite
possible that these field predictions, along with possible non-
linear effects, can be quantitatively compared with additional
detailed experiments, see for instance Ref. [58]. Stresses can
be measured (in the xz plane) using photoelasticity and the
corresponding displacements determined either from Hooke’s
law or directly via digital image correlation methods. We hope
to pursue this in the near future.

B. General implications for detachment wave propagation

Some implications of our analytical and numerical results
are now discussed. Firstly, the entire framework does not
necessitate the use of an interface friction law. Indeed, the
boundary value problem introduced in Sec. III applies irre-
spective of any friction law between the indenter and the
sliding elastic body. Second, as shown in Fig. 4, propagation
speeds for detachment waves can vary over a range of allowed
values. The precise one observed depends on wave nucle-
ation details and the width of the detachment zone. Coupled
with the first implication, this means that description of slow
moving waves does not need any a priori slow velocity scale
introduced into the problem via an interface friction law, as
is commonly done [59]. It must, however, be mentioned that
an additional source for such a velocity scale could well be
the material’s viscoelastic response. Incorporating this into the
present framework is a formidable task and one is forced to
take recourse instead to more simplistic formulations [60].

Thirdly, the results for arbitrary ν 
= 0.5 show that the
effective “ process zone” ahead of a moving wave is sen-
sitive to the microscopic mechanisms at the edge of the
detachment zone. This is even more important for metals and
crystalline materials in general, where formation of a detach-
ment zone via either tensile necking or compressive buckling
is a difficult process. In such cases, the primary recourse to
accurately determine the cut-off stress and process zone size
is via molecular dynaimcs simulations [61] and physically
motivated cohesive zone models [62]. For incompressible ma-
terials such as rubbery polymers, this is not so; infinite tensile
stresses at the edges of contact are in fact a common feature
in linear elastic adhesion problems [46].

C. Analogs of slow detachment waves in other
soft sliding systems

Based on our results, two very close analogies may be
made for ± waves. The first is between these waves and elastic
dislocations: dislocations also move under a remote shear load
and result in plastic slip along the glide plane. This slip is
also a signed quantity in the same way that �x is, being
always parallel to V0. In fact, such an analogy, for Schallamach
(+) waves specifically, had been postulated by Gittus in his
theory of “interfaceons” at bimaterial interfaces [63]. This
work, though clearly unaware of the possibility of − waves
at interfaces, provides a simple model to estimate the remote
stresses necessary to effect wave motion. Similar dislocation-
like models have also been proposed for delamination defects
in composite interfaces [64].
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The second analogy pertains to the locomotion of soft-
bodied invertebrates and has already been alluded to previ-
ously [38]. Since these organisms lack any limbs, they must
locomote via suitable muscular movements that occur in the
form of waves. Specifically, two types of detachment waves
have been identified in these organisms [34,65]. Looping loco-
motion is seen in caterpillars and involves a local buckle that
traverses from tail to head when the organism moves forward.
Likewise, retrograde waves can result from an extension of
the organism’s head—a tensile zone— and traverse from head
to tail. It is clear that the mechanics of these waves, effected
by local muscular elasticity, has much in common with the
± waves described in this manuscript. However, putting these
biological wave motions into a suitable elastic framework will
involve analysis of slender objects, which is beyond the scope
of the present work. It is hoped that such an analysis will also
shed light on possible nucleation mechanisms applicable to
the ± waves described here.

D. Viscoelastic and relaxation effects

Our theoretical description of ± waves is based on lin-
ear elasticity and it is perhaps imperative to discuss the role
of viscous relaxation. PDMS is well known to exhibit lin-
ear viscoelastic behavior in the small strain or displacement
regime [28], a feature that is, in fact, evident in our experi-
ments as well. At low V0, corresponding to long experimental
timescales, viscoelastic relaxation effects are clearly visible
for − waves, see Fig. 3 (right). Here, the force trace shows
a mean decline over a timescale of ∼0.2t0, or approximately
1 s, typical of viscoelastic relaxation. These effects, though
important, have not been accounted for in the present work.
Furthermore, it is at present not clear how one can even
begin to incorporate these viscoelastic effects within an analo-
gous half-space model. The primary complication arises from
the possibility of multiple Rayleigh-type surface wave solu-
tions [66]. Consequently, constructing an equivalent ansatz
for the viscoelastic half-space problem is nontrivial, even if
the formidable task of solving such an algebraically complex
model is notwithstanding. Having said this, there does exist
a treatment of generic stick-slip disturbances in viscoelastic
media [41]. However this work uses a Coulomb friction model
and homogeneous boundary conditions to make the problem
amenable to stability analysis. Unfortunately, both these con-
ditions are invalid in the case of ± detachment waves so that
a fundamentally different approach is necessary. The well-
known viscoelastic-elasticity analogy offers some hope of
making the problem tractable, but the resulting equations are
rather unwieldy and require careful consideration. We are
presently evaluating some possibilities along these lines and
are hopeful that some progress can be made.

E. Limitations of the periodic framework

It is important to outline when the entire framework leading
to Eq. (2) is valid and what its limitations are. We recall that
our formulation is based on the use of a periodic boundary
condition along the propagation direction as well as a co-
moving coordinate system. To the best of our knowledge, this
type of framework was first proposed by Comninou, Dundurs

and coworkers [16,19], see also the discussion by Freund
[42]. The framework is itself applicable under the following
general conditions. First, the waves being described must
necessarily be nondispersive, which, in our work, is borne
out by experimental observations, see Fig. 2. Second, periodic
boundary conditions imply that we are not solving for a single
wave but an infinite array of detachment waves. In the present
case, this is again justified by the fact that stick-slip occurs
only via propagation of single ± detachment waves (at any
instant) that are generated at a constant frequency, as shown
in our earlier work [38]. Finally, the use of periodic boundary
conditions takes away the need to specify initial conditions.
While this makes the analysis simpler, this simplicity is man-
ifest as an ambivalence towards which wave (+ or −) is
actually propagating at the interface, and is reflected in the
symmetric bifurcation diagram (Fig. 4). The downside is that
without taking into account the initial conditions (determined
by dynamics of the free surface outside the contact zone), one
cannot make any prediction about which wave will occur in a
given situation nor the extent of resulting slip �x±.

V. CONCLUSIONS

When an elastic body is slid against a rigid body at con-
stant remote velocity, the contact interface often demonstrates
stick-slip motion. Our work has shown an intimate link be-
tween this intermittent interface slip and the propagation of
detachment waves. Two detachment waves—Schallamach (or
+ waves) and separation pulses (or − waves) occur, with
unique frequency and velocity of propagation. They move
parallel (+) and antiparallel (−) to the applied remote ve-
locity, but cause slip in the same direction. The properties
of these waves are directly obtained by using in situ imaging
techniques.

An elastodynamic framework was presented to describe
these waves theoretically. The resulting singular integral
equations allowed two distinct wave solution branches, cor-
responding to ± waves at the interface. The interface stresses,
displacements and velocities were obtained in closed form
for incompressible elastic materials and a numerical scheme
was used to determine these fields for more general cases.
Based on these results, it was found that the leading edge of ±
detachment waves resembles a stationary bimaterial interface
crack. Several features of interface fracture also appear in
our formulation, including an r−1/2 dependence for ν = 0.5
and oscillating singularity ahead of the crack tip for ν 
= 0.5.
Based on this analogy, and the correspondence between inter-
face fracture and the onset of steady sliding, a phase diagram
was developed to determine when stick-slip via detachment
waves would occur vis-á-vis steady sliding.
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APPENDIX: COUPLED SINGULAR INTEGRAL
EQUATION FORMULATION

As discussed in the text, we set the detached zone in co-
moving angular coordinates η = k(x − ct ) as −α < η < α,
with the rest of the interface (α < |η| < π ) in sticking con-
tact. Here, as in the text, k is the wave number and |η| < π

comprises the entire contact. The resulting mixed boundary
conditions are

σ, τ

{= 0 η ∈ (−α, α)

= 0 α < |η| < π

u̇x, u̇z

{ 
= 0 η ∈ (−α, α)
= 0 α < |η| < π

.

(A1)
The stresses σ and τ are normal and tangential to the interface,
respectively. The far-field (z → −∞) stresses are denoted σr

and τr , respectively and the remote sliding speed is V0. Note
that only one of either τr or V0 can be specified, the other is
a response; in our case V0 is applied, as in the experiments
described in Sec. II. In addition to this, the following condi-
tions also have to be satisfied. First, once the wave completely
passes any point within the interface, it causes that point to
slip by a distance �x. Second, points on the interface must
physically always move in the direction of imposed V0 (signed
quantity), irrespective of wave motion direction, cf. Fig. 2.
Therefore, we have

ux(η) =
{

0 before wave
�x after wave passage

u̇x(η)

V0
� 0 ∀ η ∈ (−π, π ). (A2)

Note that before (after) wave corresponds to η > α (η < −α)
if the wave speed c > 0 and the inverse if c < 0. Physical con-
ditions of wave propagation, viz. that only a single wave exists
within the contact zone and that slip occurs solely due to wave
motion, require that the wave parameters α (detachment zone
extent) and k (wave number) be related to the experimental
parameters V0,�x as [38]

α = π

∣∣∣V0

c

∣∣∣ k = 2π

�x

∣∣∣V0

c

∣∣∣ (A3)

so that the entire problem is posed in terms of the imposed V0,
and experimentally measurable parameters c,�x.

The description above, along with the partial differential
equations (PDEs) of elastodynamics within the domain z � 0
constitute a fully specified boundary value problem in terms
of the interface displacements or velocities u̇x and u̇z. These
governing PDEs can be simplified to yield two singular inte-

gral equations, as described in Ref. [40]. First, an ansatz is
used for the displacement fields such that they obey the elas-
todynamic PDEs. This ansatz consists of a superposition of
traveling waves that decay exponentially into the bulk and is
characterized by two sets of complex constants. Next, the con-
stants are evaluated using the boundary conditions in Eq. (A1)
within the detachment zone |η| < α. This is done using a dual
series expansion procedure. Finally, using the fact that the
wave speed is much smaller than the longitudinal (cL) and
transverse (cT ) elastic wave speeds, i.e., that c/cL, c/cT � 1
(cf. Sec. II), we perform a perturbation expansion in powers
of c/cL and c/cT and retain only second-lowest-order terms.
The result is a pair of coupled SIEs for the interface velocities
u̇x and u̇z:

0 = τr

G
+ 2k1

π

[
(1 + a2 p2)

∫ 1

−1

�(s)ds

s − p
+ πa

V0

c
p

]

− 2k2(1 + a2 p2)�(p)

0 = σr

G
− 2k2

V0

c
+ 2k1

π
(1 + a2 p2)

∫ 1

−1

�(s)ds

s − p

+ 2k2(1 + a2 p2)�(p), (A4)

where the nondimensional functions �(s),�(s) of the inter-
face velocities are as defined in the text [Eq. (1)]. The material
constant G is the shear modulus and a = tan α/2. The angular
variable η is changed to p = tan η/2

tan α/2 (or s within the integral)

and the dimensionless constants k1 = 2(1−ν)
3−4ν

and k2 = 1−2ν
3−4ν

where ν is the elastic material’s Poisson ratio.
This set of coupled SIEs is the starting point for the analy-

sis in Sec. III [see Eq. (2)] and have to be solved for � and �,
subject to the additional conditions∫ 1

−1
�(s)ds = πV0

ac

∫ 1

−1
�(s)ds = 0, (A5)

which result from orthogonality of the corresponding Fourier
expansions [40]. Note that the SIEs are coupled and of the
second-kind, making their solution analytically cumbersome.
However, in principle, solving this system for � and � gives
us the interface velocities directly. From this, the interface
normal and shear stresses may be determined as discussed in
the text, see the discussion preceding Eq. (5). Interface dis-
placements may be found by directly integrating the velocities
u̇x and u̇z, subject to the conditions in Eq. (A2). This accounts
for the occurrence of interface slip due to wave passage.
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